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Unveiling new interdependencies 
between significant DNA 
methylation sites, gene expression 
profiles and glioma patients 
survival
Michal J. Dabrowski1, Michal Draminski1, Klev Diamanti   2, Karolina Stepniak3, Magdalena A. 
Mozolewska   1, Paweł Teisseyre1, Jacek Koronacki1, Jan Komorowski1,2, Bozena Kaminska   3 
& Bartosz Wojtas3

In order to find clinically useful prognostic markers for glioma patients’ survival, we employed Monte 
Carlo Feature Selection and Interdependencies Discovery (MCFS-ID) algorithm on DNA methylation 
(HumanMethylation450 platform) and RNA-seq datasets from The Cancer Genome Atlas (TCGA) for 
88 patients observed until death. The input features were ranked according to their importance in 
predicting patients’ longer (400+ days) or shorter (≤400 days) survival without prior classification of 
the patients. Interestingly, out of the 65 most important features found, 63 are methylation sites, and 
only two mRNAs. Moreover, 61 out of the 63 methylation sites are among those detected by the 450 k 
array technology, while being absent in the HumanMethylation27. The most important methylation 
feature (cg15072976) overlaps with the RE1 Silencing Transcription Factor (REST) binding site, and 
was confirmed to intersect with the REST binding motif in human U87 glioma cells. Six additional 
methylation sites from the top 63 overlap with REST sites. We found that the methylation status of 
the cg15072976 site affects transcription factor binding in U87 cells in gel shift assay. The cg15072976 
methylation status discriminates ≤400 and 400+ patients in an independent dataset from TCGA and 
shows positive association with survival time as evidenced by Kaplan-Meier plots.

There is a growing evidence that molecular markers such as IDH1/2 mutations, MGMT promoter methylation, 
TERT promoter mutational status or 1p/19q co-deletion are important for diagnosis and prognosis of glioma 
patients1. However, there is an increasing need for more precise description of patient genetic background to 
better predict their survival and response to therapy. The majority of the recently discovered molecular patterns 
in human gliomas have been based on gene expression and methylation analysis of CpG sites2,3. Many of these 
patterns cluster into subtypes which allows a categorization of glioblastoma samples from The Cancer Genome 
Atlas (TCGA). Glioblastomas (GBMs), the most common malignant brain tumors in adults, have been divided 
into major subtypes: classical, mesenchymal and proneural2 based on transcriptomic analyses. These subtypes 
have been characterized by high frequency of specific somatic alterations, e.g. proneural tumors are enriched in 
IDH1 mutations, while classical ones are enriched in EGFR amplification and CDKN2A deletions2.

Methylation status of specific genomic regions, such as promoters and enhancers, may activate or repress 
their activity4. Indeed, aberrant methylation of CpG islands in promoters of tumor suppressor genes in cancer is a 
phenomenon known for a long time5. CpG island methylator phenotype (CIMP) was first described in colorectal 
cancer5. More recently, methylation array platforms have been used to identify differentially methylated regions 
in other tumor types, including glioblastomas (G-CIMP)6. Glioma specific CpG island hypermethylation has 
been related to favorable survival prognosis and associated very closely to IDH1/2 mutation in WHO grade II/III 
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glioma and secondary glioblastomas6,7. Determinants of long-term survival of IDH1/2 wild-type GBM patients 
beyond MGMT promoter methylation remain to be identified. Moreover, there is a subset of IDH1/2 mutated 
G-CIMP phenotype GBM patients with a very poor prognosis3. Independent genome-wide DNA methylation 
profiling of short- (<1 y) and long-term survivors (>3 y) with the HumanMethylation450 K array has confirmed 
a G-CIMP positive phenotype that was tightly associated with the IDH1 mutation and has identified a set of 
differentially hypermethylated CpG loci between long and short term GBM survivors, including members of 
the HOX genes, and NR2F2 and TFAP2A genes coding for the transcription factors8. A recent study9 has found 
LOC283731 promoter hypermethylation that has correlated with improved patient outcome. Its prognostic per-
formance has been confirmed in three independent cohorts. LOC283731 promoter hypermethylation has been 
proposed as a prognostic biomarker in IDH1 wild-type/non-G-CIMP GBMs9.

Though most of the previous analyses of DNA methylation patterns in gliomas have been performed on the 
TCGA datasets10, we aimed to search further these datasets for molecular factors (hereafter features) having 
impact on survival of glioma patients. Our analysis was built upon the use of the Monte Carlo Feature Selection 
and Interdependencies Discovery (MCFS-ID) algorithm that allows to perform supervised feature selection; for 
a brief account see Methods11,12. MCFS-ID identifies features and possible interdependencies between them that 
distinguish patients belonging to different classes, e.g. controls vs. sick.

Here, we aimed at discovering a set of significant features, such as gene expression profiles and DNA methyla-
tion sites, and their interdependencies that would enable accurate distinction between glioma patients with short 
and long overall survival (OS) i.e. days to death. Our study was based on the TCGA-derived data of 88 glioma 
patients diagnosed with WHO grades II, III, and IV, all of them with a full clinical information including time of 
death. Patients were assigned to one of the two decision classes depending on their OS: short-term survivors (less 
than 400 days: ≤400) and long-term survivors (more than 400 days: 400+). We did not take into account any  
“a priori” grouping of the patients, not even as WHO recommended classification by grades.

The discovered significant features are mainly differentially methylated DNA regions. Their significance was 
confirmed on an independent glioma study cohort. We confirmed that those features are much better predictors 
of patients’ OS than the previously described molecular markers (such as, e.g., IDH, ATRX, DAXX mutation 
status). Finally, we found that the most important methylation feature (cg15072976) overlaps with RE1 Silencing 
Transcription Factor (REST) binding site, is functional and its methylation status affects transcription factor 
binding in U87glioma cells as evidenced by gel shift assay.

Results
Feature significance and interdependencies.  We applied our analysis pipeline to investigate putative 
associations in the dataset comprising both gene expression values and DNA methylation beta-values (β-values; 
Supplementary Table S1, see methods for details), as well as to obtain a ranking of significant features that accu-
rately discern short and long overall survival of glioma patients, hereafter ≤400 and 400+ patients, respectively. 
The choice of such two decision classes was based on an analysis of the density of survival times ranging from 7 
to 4084 days. The survival histogram can roughly be approximated by a power function with a negative exponent 
(Supplementary Fig. S1A), but a closer analysis of the histogram up to 1000 days revealed a consistent drop in its 
values for survival from about 400 days up (Supplementary Fig. S1B). This is in agreement with the results of the 
previous studies where the median glioblastoma survival has ranged from 10 to 16 months13,14.

The Monte Carlo Feature Selection and Interdependency Discovery (MCFS-ID) algorithm returns a ranked 
list of features that are the best, and thus play a significant role in the classification of objects that belong to differ-
ent classes. It is capable of incorporating pairwise interdependencies, if there are such, between each of those best 
features and any of the other features. Moreover, within our approach no assumptions need to be imposed on the 
relationships between the features nor between the features and the classes the objects belong to. In particular, 
any nonlinear interdependencies are taken into account. Finally, the Interdependencies Discovery (ID) module is 
built into the algorithm. It returns a directed graph of the pairwise interdependencies found.

Interestingly, out of the top 65 significant features obtained from MCFS-ID, 63 were DNA methylation sites 
and only two genes (Fig. 1A). All significant DNA methylation sites refer to CpG type and none to CpH. Using 
this set of significant features, we were able to assign patients to correct decision classes (≤400, 400+) with 
balanced accuracy from 80% to 90% depending on the classifier we used (Supplementary Fig. S2). The values of 
significant features exhibit a clear pattern: ≤400 patients have lower CpG β-values but higher expressions of GJD3 
and KIAA0040 genes than those of class 400+ (Fig. 1B). The observed differences were statistically significant 
(p-values by Kruskal-Wallis test with Bonferroni correction, Supplementary Fig. S3). Notably, the detected pat-
tern shows that each of the features taken alone can be considered a rather reasonable class predictor, and hence 
no significant (i.e., instrumental in achieving high classification accuracy) interactions between features should 
be expected. Indeed, Fig. 1B shows that each of the features stands alone as a reasonably good class predictor and 
hence does not need any other interacting feature to predict the class.

Given the top 65 features, we calculated Mutual Information between each of them and the survival time. 
Mutual Information (MI) is a nonparametric measure of nonlinear dependencies between features under study 
and therefore much more general than the traditional correlation coefficient. It should be noticed, however, that 
the importance of each feature for classification, as assessed by MI, is measured separately for each feature and 
thus possible interactions between features cannot be taken into account. In Supplementary Table S2, the 65 
features’ MIs and Relative Importance (RI) returned by MCFS-ID were compared. Interestingly, some features 
(marked in grey) were recognized as significant by MCFS-ID and as non-significant by MI. This seems to corrob-
orate the claim that MCFS-ID is able to detect subtle dependencies and interdependencies between features. To 
confirm the significance of the features found in our analysis (i.e., using the MCFS-ID algorithm) we carried out 
an additional analysis using the Multiple Survival Screening (MSS) algorithm15. The latter algorithm allowed us to 
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assess reproducibility and stability of the chosen subset of features. The obtained results confirmed the relevance 
of the features selected by MCFS-ID (described in the Supplement).

The ID part of the pipeline provided a number of interdependencies between features that are significant 
for classification and those that are not. In the graph (Fig. 1C), 60 strongest pairwise interactions are shown. 
Interestingly, only eight of the 65 significant features (cg15072976, cg02027945, cg02648057, cg16291657, 
cg05312104, cg07754940, cg03172801, cg16911275, cg19972648) strongly interact with some other features, and 
no strong interaction between any two significant features was found. In this way, the conjecture stated earlier has 
been confirmed. We also checked (details not shown) that incorporation of features that strongly interact with the 
two significant features into the classification only marginally, if at all, improves classification accuracy.

Note that the above refers to predictive interdependencies between features, since the dependencies in 
question require the context of the two decision classes (≤400, 400+). Thus, a separate scrutiny of associations 
between the 65 significant features was needed. In Fig. 1D Pearson’s correlation matrix is given for 67 features: 
significant DNA methylation sites, two genes, patient survival (defined as days_to_death, hereafter DtD) and 
age. The two genes and age are negatively correlated with DNA methylation sites and DtD, whereas correla-
tion between DNA methylation sites is positive. One may expect that stronger correlation is the result of a 
closer genetic distance. Hence, we focused next on the two chromosomes where the detected significant genes 
(KIAA0040, GJD3) are placed. On chromosome 1, there are 5 DNA methylation sites (cg16911275, cg12598340, 

Figure 1.  Significant features from the top of the ranking obtained by MCFS-ID. (A) Relative Importance (RI) 
of features placed in the top positions of the ranking. Red color corresponds to significant features, gray to those 
below the cutoff point (see Methods). (B) Mean values of the significant features for each of the decision classes 
(≤400 and 400+ patients). (C) Top 60 interdependencies detected by the MCFS-ID and visualized as a directed 
graph. The graph comes from structure analysis of the decision trees built by the MCFS-ID. Each node of the 
graph represents a feature which took part in constructing one or more trees (i.e., appeared in some splitting 
rules, each of which is set to include only one feature). When two features (more precisely, splits made on them) 
frequently co-occur along the (directed) paths of all decision trees, they are considered as interdependent 
and are connected in the graph by a directed edge with nodes representing these features. Herein, the higher 
the feature’s RI, the darker the red color of the corresponding node; the larger the size of a node the more 
edges related to this node; and, somewhat simplifying, the width and level of darkness of an edge joining two 
features are positively dependent on the number of the features co-occurrence and negatively dependent on 
the distances between the features along the paths they co-occur. (D) Pearson correlation matrix for MCFS-ID 
significant features, age and the outcome ‘days to death’ (DtD).
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cg04246763, cg16122427, cg01436424) along with the KIAA0040 gene and two (cg11278727, cg10937494) on the 
chromosome 17 with the GJD3 gene. No significantly stronger correlation between genes and DNA methylation 
sites from the same chromosome was observed for either KIAA0040 or GJD3.

Furthermore, in order to better elucidate the significance of the identified DNA methylation sites, we assigned 
them to genes using level 3 TCGA 450 k Illumina Bead Array annotations. We found that 44 out of the 63 sig-
nificant DNA methylation sites are paired with a corresponding gene, while the remaining 19 are not assigned 
to any gene. Interestingly, out of the 44 methylations, there are 7 sites in a range of 865 bp annotated to MYADM 
gene and two DNA methylation sites at a distance of 287 bp to each other are annotated to TBR1. The remaining 
35 DNA methylation sites are assigned to 35 various genes. Moreover, we examined correlation between each of 
the DNA methylation’ β-values and an expression level of the corresponding gene. We found that the 12 methyl-
ation sites relatively strongly correlate with expression levels of the corresponding genes (Spearman correlation 
abs(rho) >0.5). All correlations are inverse, the strongest being that between cg14550985 and RIN1, and equal 
to (−0.78). In the remaining 11 pairs, only 8 genes appear, since five of the methylation sites are correlated with 
MYADM (Supplementary Fig. S4).

DNA methylation status may vary due to multiple factors, among them age and gender. Accordingly, we 
employed Interaction Information to verify whether age or gender affect dependence between the top 65 features 
and survival (see Supplementary Information for explanation). No significant interaction between age or gender 
and any of the top 65 features was found. Therefore, we may conclude that age and gender do not affect the rela-
tionship between the top 65 features and the survival (Supplementary Table S2).

The relationship of newly discovered significant features to known molecular markers and clinical  
characteristics of patients.  In order to better assess utility of the discovered significant features (N = 65), 
the MCFS-ID analysis pipeline was run again on data from the same 88 patients but now comprising known 
molecular markers as well as clinical characteristics (hereafter patient characteristics) adapted from Ceccarelli et 
al. (see Supplementary Information) and only the top 5 k features from the MCFS-ID ranking (Fig. 1A). Among 
the set of characteristics there were several predictors of patient’s survival, e.g. IDH, ATRX and DAXX mutation 
status, methylation of MGMT promoter and TERT promoter status, TERT expression. In the set of patient char-
acteristics, a WHO tumor grade was also included. As expected patient’s survival was different in patients with 
tumors of different grades (Supplementary Fig. S5). However, molecular markers were recognized as more signif-
icant features for predicting patient survival than the tumor grade.

All patients’ characteristics as well as the top 5 k features were used to verify their significance for distinguish-
ing the patients with different OS (≤400 or 400+). It turned out that the highest position taken by any of the 
patients’ characteristics in the new ranking is 137 and belongs to ‘IDH.codel.subtype’. The overlap between the 
top 65 features from the first ranking (Fig. 1A) and the one from the second MCFS-ID analysis (Supplementary 
Fig. S6) was equal to almost 74% (Supplementary Fig. S7). Moreover, the two sets of the top 25 features coin-
cided, thus the reliability of the procedure was confirmed. In summary, it showed that– at least for the presented 
data – the features discovered by our pipeline (63 methylation sites and two genes) are much better predictors of 
patients’ outcome, than any of those earlier reported in the literature.

Genomic Annotations of significant DNA methylation sites.  After ensuring that the selected 65 fea-
tures are capable of predicting the decision class of the patients with high accuracy, we aimed at verifying their 
participation in molecular processes. For that reason, we determined the annotations of the genomic regions 
surrounding the 63 methylation sites. We extended each methylation site by 25 bp upstream and downstream, 
constructing Methylated Regions (MRs) 51 bp long. Using biomaRT16 we found that most of the MRs occurred 
in promoters or promoter flanking regions. Interestingly, almost one third of the MRs were not associated to any 
specific region (Fig. 2A). All MRs were assigned to a single element except cg17295864 that was marked with 
both CCCTC-binding factor (CTCF) and enhancer (11th in the MCFS-ID ranking). The MRs that intersected 
with brain-specific, neuron-specific, neuronal stem cell specific and astrocyte-specific enhancers obtained from 
FANTOM, returned only the cg03505995 methylation site, which was annotated to a CTCF region by Ensembl17. 
We also identified MRs intersecting with various ChIP-seq signals in five glioma-related cell lines in ENCODE 
and NCBI (Fig. 2B). These signals include histone modifications H3K4me3 and H3K9ac that are associated with 
active gene promoters, transcription initiation and elongation. Additionally, the genomic signals of CTCF, REST, 
the RB binding protein 4 (RBBP4) and POL2 (Fig. 2B) were overlapping our top MRs. The REST binding sites 
that overlapped MRs come from U87 human glioma cells. Methylation sites from those MRs were ranked as 1st, 
10th, 11th, 21st, 26th,46th, and 65th by the MCFS-ID. According to Ensembl, no annotation could be assigned to 
three of those methylations (1st, 10th, 26th). Nevertheless, the first one occurred 822 bp upstream from the coding 
region of GAL3ST2, the second one overlapped with the RIN1 gene region and the last one with KCNH2 intron. 
The other REST intersecting methylation sites matched the following regions: CTCF binding site and enhancer, 
promoter flanking region, promoter and enhancer, respectively. It is worth mentioning that U87 POLII signals 
from ENCODE18 intersected with three MRs: the two already reported in the case of REST (10th and 65th) and 
a new one cg07754940 (6th in the ranking). Based on NCBI data one can find much more POL2-methylation 
intersecting regions. The intersection results of functionally active genomic regions of glioma-related cell lines, 
especially U87 with MRs, as well as the important genomic functions annotated to them, suggested that the meth-
ylation status of those cytosines may play a significant role not only in classification but also in a wider spectrum 
of molecular interactions.

Local epigenomic landscape of the top DNA methylation site.  We investigated the genomic land-
scape of the topmost feature from the MCFS analysis. First, we observed that cg15072976 overlaps with the bind-
ing site of the transcription factor (TF) REST which is predicted by the analysis of the curated TF binding sites 
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(TFBS) and the ENCODE predicted motifs (Fig. 3A). The high methylation level of the CpG site was confirmed 
in a collection of six brain related cell lines and by Methylation Dependent Immunoprecipitation followed by 
sequencing (MeDIP-seq) (Fig. 3B). Only the U87 glioma cells show an unmethylated status for cg15072976. 
This CpG site also overlapped with open chromatin sites and intergenic single nucleotide polymorphisms 
(SNPs) indicating its potential functionality (Fig. 3D–E). Additionally, we found this site in the promoter of 
GAL3ST2, which encodes a member of the galactose-3-O-sulfotransferase protein family (Fig. 3C). GAL3ST2 
has been known to be expressed in several brain tissues (GTEx average FPKM score for brain tissues 150 – data 
not shown) and its downregulation has been associated to human colonic non-mucinous adenocarcinoma19. 
However, we did not observe any significant difference in the GAL3ST2 expression between the groups ≤400 and 
400+ (Supplementary Fig. S8). We focused on elucidating how cg15072976 methylation status affects the REST 
binding site.

Confirmation of functional significance of the cg15072976 methylation site.  From the six MRs 
overlapping with U87 REST peaks we selected the one that represented the top-most feature from the MCFS-ID 
ranking. Using FIMO20 we detected transcription factor motifs for REST overlapping with the MR. Thus, we 
obtained not only information about overlapping REST binding site from ENCODE U87 data, but also con-
firmation of the existing REST binding motif. To test the functionality of methylation status for this site we 
performed Electrophoretic Mobility Shift Assay (EMSA) (Fig. 4). Biotin-labeled DNA probes containing methyl-
ated or unmethylated CpG site were incubated with nuclear extracts isolated from U87 glioma cells; the binding 
in the absence or presence of an excess of an unlabeled analogue (competitor) served as a specificity control. 
DNA-protein complexes were formed exclusively for methylated consensus sequence manifested by retarded gel 
mobility. The 200-fold molar excess of unlabeled probe had out-competed specific interactions and 20-fold molar 
excess of competitor reduced but did not fully eliminate a positive shift. A probe containing CG → AT nucleotide 
substitution in the methylation site was used as an additional negative control.

Each patient-derived cell line displays different molecular background. Two commonly used in in vitro studies 
glioma cell lines, U87 and LN18, exhibit some molecular differences such as opposite MGMT promoter methyl-
ation status as well as TP53 and PTEN mutation status21. Due to this fact we investigated whether the top meth-
ylation site occurring at the consensus REST motif is important for its binding in an additional glioma cell line 
(LN18). EMSA was carried out identically as above, but this time with the LN18 nuclear extract (Supplementary 
Fig. S9). As expected, EMSA results showed the same pattern as in U87 cells indicating that the binding of REST 
to the methylated site cg15072976 is commonly affected in malignant gliomas.

Prediction of REST-DNA complex structure.  The structure of the REST protein has not been solved 
experimentally yet. Therefore, we employed structure bioinformatics approach to protein structure predic-
tion22,23. We found REST to be moderately similar to other DNA-binding proteins. In particular, its N-terminal 
fragment that includes amino-acids residues from ~150 to ~430 was highly similar to its counterparts in other 

Figure 2.  Distribution of Methylated Regions (MRs) annotated to specific genomic regions. (A) Annotated 
with the use of biomaRT tool or (B) with the use of data deposited in NCBI (marked with*; for aliases see 
Supplementary Table S4), as well as ENCODE (marked with**).
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proteins. Consequently, the structure of the REST part that interacts with the specific DNA sequence (the same 
as used in the EMSA experiment) was predicted with relatively high reliability (see Supplementary Information 
for details). Using a template-based model, we predicted the rigid structure of the protein-DNA complex of 
a short specific DNA sequence containing REST binding motif and the REST N-terminus fragment (Fig. 5A). 
Upon molecular dynamic (MD) analysis, relaxation of the complex was observed. Major structural changes of 
both DNA and REST N-terminal caused by their strong interactions were found (Fig. 5B). The DNA binds to the 
zing-finger regions of the REST and during interaction its structure was subjected to bending from the perfect 
B-DNA conformation, while protein moved to grab the DNA more tightly, especially in the major groove regions 
of the DNA. We concluded that: (i) the selected, specific DNA sequence with REST motif bound strongly to the 
REST N-terminal part confirming our hypothesis; (ii) the structure obtained was a reliable starting structure that 

Figure 3.  Epigenetic landscape associated with the most indicative methylation site cg15072976 in U87 glioma 
cells. (A) The first three tracks show ChIP-seq transcription factor (TF) binding sites (TFBS) curated from 
brain cell lines for CTCF, REST and RNA Pol II (cf. Methods). The fourth track shows ChIP-seq TFBS from 
ENCODE including Factorbook motifs. This track is a curated set of various transcription factors (161) from a 
collection of tissues and cell lines. (B) The first seven tracks shown the methylation level of the CpG sites in the 
cg15072976 region for seven human brain cell lines measured by 450 K bead Illumina methylation array from 
ENCODE/HAIB. All cell lines (SK-N-SH, BE2 C, PFSK-1, SK-N-MC, SK-N-SH RA and U87) are cancerous, 
except for normal human astrocytes NH-A). As score is used the β-value of the methylation multiplied by 1000. 
The last two tracks show the methylation level of healthy brain tissue from Methylation-sensitive Restriction 
Enzyme digestion followed by sequencing (MRE-seq) and MeDIP-seq in grayscale34. (C) The first track displays 
genes from GENCODEv1935. The second track shows the microarray exon expression from 13 regions of the 
human late mid-fetal brain. (D) Open chromatin landscape. A normalized score (0–1000) was computed for 
all the peaks of DNaseI hypersensitive sites for 125 cell lines (1% FDR). The peaks were clustered by score and 
clusters with score less than 100 were removed. The extend of the box indicates the length of the cluster, the 
color is a grayscale proportional to the highest signal observed in any cell line and the number left from each 
box indicates the number of contributing cell lines. (E) The first track shows SNPs and indels from dbSNP 
build-14736. The second track contains SNPs from somatic non-inherited mutations curated from a large 
number of sources from the Catalogue of Somatic Mutations in Cancer (COSMIC) version8137.

Figure 4.  Binding of nuclear proteins from U87 glioma cells to DNA sequence containing REST consensus 
motif with methylated CpG site detected with electrophoretic mobility shift assay. Three variants of biotin-
labeled, double stranded DNA probe carrying the REST consensus motif were used in the experiment: 
methylated or unmethylated CpG site or a probe carrying CG → AT nucleotide substitution. Competition assays 
with the excess of the corresponding, unlabeled probe were performed (competitor). For the methylated probe 
2 100× or 20× molar excess of the competitor was added to confirm specificity of the binding. The control lanes 
with no nuclear extract (NE) added (lanes 1, 5 and 8) show migration of a free probe. The reaction mixtures 
were resolved in 4% native electrophoresis gels.
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occurred in the binding process; (iii) full-blown MD studies as well as a thorough analysis of methylation influ-
ence on the complex formation are needed to show the likely structure of the complex and reveal the mechanism 
of binding and the specificity of the DNA-protein binding site.

Validation of feature selection results on an independent dataset.  Our MCFS-ID analysis was 
performed using the TCGA dataset collected in 2015, 88 patients, from now on termed the training set. Currently, 
the TCGA dataset with matching RNAseq, 450 k methylation arrays and OS time, comprises additional 79 new 
patients, from now on termed the test set. Inclusion criteria for both training and test set was a confirmed status 
of patient being deceased.

In order to validate our 65 top-ranking features we performed 3 different experiments. In the first experiment 
a 10-fold Cross-Validation (CV) was used on the 88 patients. Secondly, 10-fold CV was performed on the whole 
data comprising 167 patients. Thirdly, we used the training set (n = 88), for model building, and tested the model 
on the test set (n = 79). The obtained CV balanced accuracy results are presented in Fig. 6. It is not surprising that 
the highest balanced accuracy is obtained for the set of 88 patients because it is the original data used for feature 

Figure 5.  Computational prediction of specific DNA sequence containing the REST motif and the REST 
N-terminus fragment. DNA-binding motif docked to the REST with calculated surface of the REST. (A) Rigid 
model after energy-minimization. (B) Dynamic after short molecular dynamic simulation.

Figure 6.  The balanced accuracy values that result from the three Cross-Validation (CV) experiments: gray and 
orange corresponds to 10-folds CV on the original 88 and all 167 patients, respectively; blue corresponds to the 
most reliable result, where the set of 88 patients was used for training and the remaining 79 patients for testing; 
rpart-decision tree, knn- k Nearest Neighbours, rf - random forest, nb - naive Bayes, svm - support vector 
machines.



www.nature.com/scientificreports/

8SCIENtIfIC ReporTS |  (2018) 8:4390  | DOI:10.1038/s41598-018-22829-1

selection. However, the most reliable experiment (testing on the unseen 79 patients) also led to a successful pre-
diction with a high balanced accuracy equal to 80.91% for the random forest classifier (Fig. 6).

We have also used the test set to validate performance of our top cg15072976 methylation. The difference 
between the methylation level distributions for the two classes of patients (≤400 and 400+) was most obvious in the 
case of training data (Fig. 7A). This difference, though not so significant, was maintained for the test data (Fig. 7B). 
Positive association between methylation level of the cg15072976 site and survival time for both training and test sets 
could also be readily inferred from corresponding dot and Kaplan-Meier plots (Fig. 7C–F, respectively).

Figure 7.  Validation results of cg15072976 performance on both training and test sets. Upper panel: Distributions 
of cg15072976 β-values presented as violin plots for ≤400 (blue) and 400+ (red) patients from the training set 
(A) and test set (B). Middle panel: dot plots of cg15072976 β-values for the training set (C) and test set (D). Lower 
panel: Kaplan-Meier plots for patients from the training set (E) and test set (F), with patients divided according to 
their cg15072976 β-values; black line marks 400 days, chi square p-values are written on the top of each panel.
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Discussion
The majority of the samples from TCGA glioma datasets (GBMs, LGGs) have been processed using Illumina’s 
Infinium Human Methylation k27 BeadChip that covers over 27,000 CpG methylation sites. A part of the glioma 
samples from TCGA have been processed with Illumina’s Infinium Human Methylation k450 BeadChip that, as 
described by the vendor, covers 96% of known CpG islands. Apart from covering most of the methylation sites 
within the known CpG islands, it also covers: (1) CpG sites outside of CpG islands, (2) non-CpG methylated sites 
identified in human stem cells, (3) differentially methylated regions (DMRs) identified in human cancer-normal 
tissue pairs, (4) CpG sites outside of coding regions, (5) miRNA promoter regions. CpG sites within CpG islands 
have been quite well described and their functional importance for a proximal gene expression is well under-
stood. Interpretation of functional importance of DMRs located far away from the genes is difficult. It is even 
more difficult to assess the importance of methylated cytosine sites that are followed by a base different from G 
(CpH)24. The last one was not our case because all 63 significant DNA methylation sites were of the CpG type. 
Having access to ChIP-seq data from glioma cell lines, we demonstrated that the significant methylations could be 
involved in transcription regulation. Methylation at a specific site may inhibit protein binding to DNA similarly to 
SNP appearing within TFBS, as shown for CTCF25. At the same time, the methyl-CpG-binding domains (MBD) 
of various proteins, e.g., MeCP226 bind with a high affinity to MRs protecting DNA from other TFs. Furthermore, 
MBD-containing proteins may recruit other molecules, e.g., histone deacetylases, chromatin remodeling factors 
that change chromatin accessibility for TFs. Interestingly, in our study only in a case of some genes their expres-
sion corresponded with the level of CpG methylation (Supplementary Fig. S4). This supports a hypothesis about a 
relatively small effect of a single regulatory region if a gene is regulated by combinatory action of several of them. 
In such a case, regulatory regions should be considered jointly to detect their association with gene expression 
levels27. Such approaches are beyond the scope of this study, since it requires more genomic and epigenomic data 
as well as a larger patient’s cohort than available.

Nevertheless, it has been recently confirmed that methylation status of tumor cells is crucial for patients’ 
survival. Firstly, the G-CIMP phenotype has been described and promoter methylation of oncogenes has been 
confirmed as a good prognostic factor6. Moreover, G-CIMP methylation status adds a prognostic value to the 
existing prognostic markers, such as IDH1/2 mutations, 1p-19q codeletion and MGMT promoter methylation3. 
It has been shown that a subgroup of IDH1/2 positive gliomas with low G-CIMP profile has a shorter overall sur-
vival than other IDH1/2 positive gliomas3. While it is quite obvious that G-CIMP methylation status does have a 
clinical meaning, it is hard to apply G-CIMP methylation evaluation in a clinical setting. There is a need to specify 
a limited set of methylation markers that can be successfully introduced into clinic.

TCGA methylation datasets comprise, as it was described before, of both 27 k and 450 k methylation arrays. 
In a work of Ceccarelli et al. a common set of methylations between 27 k and 450 k was used to assure a reliable 
data size. As 27 k methylation array contains only CpG methylation sites, mostly from promoter regions, these 
methylation sites have a relatively easy interpretation, since hypo-/hypermethylation of promoter sites is a well 
known mechanism of gene expression regulation. In our work, we undertook a more demanding path and con-
sidered only 450 k methylation arrays from glioma samples deposited in TCGA that had a matching transcrip-
tomic profile from RNAseq and clinical records (patients’ OS and patients’ status as ‘deceased’ was the inclusion 
criterion). We wanted to confirm MCFS-ID utility in analyzing large datasets (with approximately 0.5 M features) 
and attempted to discover biologically valid findings. Interestingly, out of 63 top DNA methylation sites in our 
ranking only 2 were present on both 27 k and 450 k methylation arrays, which confirmed that selecting a larger 
dataset was reasonable. We described their putative role in molecular processes by assignment to specific genomic 
regions, genes, and described local molecular landscape. Among the most interesting findings, we reported the 
MYADM gene related to multiple methylated sites as well as TBR1. This also applies to the RIN1 gene whose 
expression had the highest correlation with β-value of the CpG (the 10th position in the ranking) and overlapped 
with both REST and POLII of U87 glioma cells.

Summarizing, we demonstrated a proof of principle that MCFS-ID was able to find a number of significant 
features (Fig. 1) that with a high accuracy predicted patient’s survival. It is worth to notice that all significant 
features discovered in our pipeline were better predictors than the previously reported ones, e.g. IDH1/2 status. 
Moreover, these significant features were mapped to functionally active genomic regions (Figs 2 and 3) and the 
biological function of the most top one was confirmed with a biochemical gel shift assay (Fig. 4). Finally, our 
top-most DNA methylation site - cg15072976 - was validated in an independent set of 79 samples from TCGA, 
and was found to predict accurately patients with better prognosis (Fig. 5). Importantly, first and second top DNA 
methylation sites had relatively high and narrow distribution of the β-values. It could be a reason why commonly 
used discretization methods28 would overlook these putative prognostic markers. All values would be assigned as 
“high” losing the inner variability. We have to keep in mind that tumor is a mixture of different cells with different 
DNA methylation and expression patterns. The experimental results reflect their cumulative effect.

In a long-term perspective, we would like to test the utility of selected DNA methylation sites as markers of 
response to treatment. A limiting factor in our analysis is that patients from TCGA have been treated in a number 
of clinical trials with different combinations of drugs and this affects patients OS. Despite of that, we were able 
to find relevant prognostic DNA methylation site that may affect REST transcription repressor binding to DNA 
(Figs 4 and 5). It would be desirable to discover methylation-based signatures that predict patient’s survival or 
recurrence as had been done e.g. for colorectal cancer using gene-expression signatures29. Unfortunately, in the 
case of significant methylations that we have found there is not enough data to detect valid signatures. Hopefully, 
new large next generation sequencing projects will supply data needed to reach this aim

Final conclusions.  In conclusion, we demonstrated the effectiveness of MCFS-ID approach in finding bio-
logically/clinically relevant features, such as cg15072976 DNA methylation site, which was proved to be a good 
predictor of patient’s survival. It was experimentally evidenced that methylation of this site most likely affects 
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binding of the REST transcription factor to DNA. As our most important features were found in the 450 k methyl-
ation dataset, but not within the k27 methylation dataset, we propose that larger datasets containing non-classical 
CpG methylation sites may reveal important clinical features and we should be careful not to overlook them by 
simplifying analyses.

Methods
All methods were carried out in accordance with relevant guidelines and regulations.

(MCFS-ID).  Given a set of objects, each of which is described by a vector of features and is known to belong 
to a particular class out of an a priori determined set of classes, the main task is in building a classifier capable of 
properly assigning yet unseen objects into proper classes. Monte Carlo Feature Selection and Interdependencies 
Discovery (MCFS-ID) algorithm is a novel method for ranking features from high dimensional data according to 
their importance for a given classification task, regardless of a classifier to be later used, as well as for discovery of 
linear and nonlinear feature interdependencies. This goal is achieved through constructing thousands of decision 
trees (Supplementary Fig. S10). The trees are constructed on randomly selected subsets of features and objects. A 
particular feature is considered to be important, if it is likely to play a significant role in the process of classifying 
objects into classes “more often than not”. This “readiness” of a feature to take a part in the classification process, 
termed relative importance (RI) of a feature, is measured via structure analysis of the constructed decision trees11. 
If the data contains a set of features that can be used for successful classification, the algorithm returns them at the 
top of the ranking after having performed a number of iterations needed for the algorithm’s convergence. Since 
the ranking as such does not enable one to discern between important or informative and not important features, 
a cutoff between these two types of features has been proposed12.

The structure analysis described above enables making the algorithm return a directed graph of feature inter-
dependencies12. In short the algorithm identifies features that “cooperate” in determining that some objects 
belong to one class, another objects to another class, and so on. Thus, our way to discovery of feature interde-
pendencies rests on determining multidimensional dependence between the classes and sequences of features (as 
stated in the Introduction, the interdependencies sought can be termed contextual or predictive).

Data analysis.  Our analysis pipeline included the Illumina’s Infinium Human Methylation k450 BeadChip 
data as well as RNA-seq and clinical records provided by the TCGA for 88 glioma patients (tumors were diag-
nosed as WHO grades II, III gliomas and grade IV glioblastomas) (Supplementary Table S1). Data from TCGA 
were uploaded as normalized Level 3 data for both RNAseq and methylation data, FPKM values were used for 
RNAseq, and β-values for methylation; no additional data processing regarding technical batch correction was 
applied. After elimination of zero variance features, our decision system consisted of gene expression levels for 
19943 genes and pseudogenes, β-values of 396065 DNA methylation sites and clinical records including tumor 
grade, gender, and age of a patient. Additionally, binary decision for each patient was added depending on his or 
her days to death information (Supplementary Fig. S1). They were grouped as those who survived up to 400 days 
(n = 38) hereafter ≤400 patients and those who survived at least 401 days (n = 50) hereafter 400+ patients. The 
achievement of project objectives required a reduction of the original data complexity without loss of informative 
features. To this end we performed feature selection using the MSFS-ID method implemented in the rmcfs pack-
age: (https://cran.r-project.org/web/packages/rmcfs/index.html). When running rmcfs we chose the following 
parameter settings: number of feature subsets (s) equal to 50,000; number of features (m) in each subset equal to 
500; number of decision trees (t) built for each subset equal to 5. The remaining parameters remained set to their 
default values.

Experimental verification of TF binding sites and Electrophoretic Mobility Shift Assay (EMSA).  
To assess whether the top feature cg15072976 methylation might have functional implications for binding a pro-
tein to DNA, we examined transcription factors (TFs) that were reported to bind to DNA at this position. From 
the Encyclopedia of DNA Elements (ENCODE) we learnt that in the U87 astrocytoma cell line there has been 
reported a REST binding site overlapping with our top feature DNA methylation. Using Find Individual Motif 
Occurrences (FIMO) v. 4.11.220 we confirmed that there are possible REST motifs overlapping with cg15072976. 
In view of these results the oligonucleotide sequences were designed for the purpose of further molecular analysis 
using Electrophoretic Mobility Shift Assay (EMSA).

Nuclear extracts from U87 and LN18 human cells were prepared as previously described30. The Bradford 
method was used to determine protein concentration. DNA probes containing REST consensus motif with meth-
ylated, unmethylated or mutated (CG to AT nucleotide substitution) CpG site were generated by annealing sense 
and antisense oligonucleotide (synthesized by Genomed, Poland) in the order as presented in the Supplementary 
Table S3 (95 °C to 25 °C room step-down).

Nuclear extracts (2 µg of nuclear proteins) and 200 fmol of biotin labeled probe were incubated in a bind-
ing buffer (10 mM TRIS pH 7.5, 50 mM KCl, 1 mM DTT, 2.5% glycerol, 5 mM MgCl2, 1 µg Poly (dI·dC), 0.05% 
NP-40) for 20 min at room temperature. For the competition assays, 40 pmol of unlabeled probes were added to 
the binding reaction (or 2 pmol, if applicable). Reaction was stopped by adding a gel loading buffer, then sam-
ples were electrophoresed in non-denaturing 6% polyacrylamide mini gel (8 × 8 × 0.1 cm) in TBE buffer and 
electro-transferred to nylon membrane (Thermo Scientific, cat. no 77016). Complexes of DNA and proteins were 
cross-linked to the membrane using UV-light crosslinking instrument (Ultra Lum) and detected by chemilumi-
nescence using LightShift Chemiluminescent EMSA Kit (Thermo Scientific).

Peak-calling and curation of glioma ChIP-seq experiments.  Here, our starting point was a thorough 
review of literature on ChIP-seq experiments performed in glioma-related cell lines. The goal was to accumulate 
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all the TF binding sites and histone modification signals that co-occurred with methylation sites discriminat-
ing between ≤400 and 400+ glioma patients. We curated 40 ChIP-seq experiments for 5 different cell lines 
(Supplementary Table S4). For the quality control and the peak calling we used the ENCODE3 pipeline31 as 
implemented by Kundaje Lab. Due to the lack of at least two replicates per experiment and/or controls we did not 
use the irreproducible detection rate (IDR) option, but the simple overlap. For the curation of ChIP-seq experi-
ments from different cell lines we implemented a simple voting algorithm32.

Kaplan-Meier analysis.  Patients from both training and test sets were divided according to their cg15072976 
methylation status to 3 classes: High meth (β-value > 0.96), Low meth (β-value < 0.85), Medium meth 
(0.85 ≤ β-value ≥ 0.96). Difference between survival curves was calculated by survdiff function from survival R pack-
age33. P-value was calculated between High meth and Low meth groups by log-rank test from the survdiff function.
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