Valdés-Martini et al. ] Cheminform (2017) 9:35 . .
DOI 10.1186/513321-017-0211-5 © Journal of Cheminformatics

SOFTWARE Open Access

QuBILS-MAS, open source multi-platform @
software for atom- and bond-based topological
(2D) and chiral (2.5D) algebraic molecular
descriptors computations

José R.Valdés-Martini', Yovani Marrero-Ponce?**>¢"®, César R. Garcia-Jacas’®°, Karina Martinez-Mayorga’,

Stephen J. Barigye'?, Yasser Silveira Vaz d'’Almeida'’, Hai Pham-The'?, Facundo Pérez-Giménez®
and Carlos A. Morell'?

Abstract

Background: In previous reports, Marrero-Ponce et al. proposed algebraic formalisms for characterizing topological
(2D) and chiral (2.5D) molecular features through atom- and bond-based ToMoCoMD-CARDD (acronym for Topo-
logical Molecular Computational Design-Computer Aided Rational Drug Design) molecular descriptors. These MDs
codify molecular information based on the bilinear, quadratic and linear algebraic forms and the graph-theoretical
electronic-density and edge-adjacency matrices in order to consider atom- and bond-based relations, respectively. These
MDs have been successfully applied in the screening of chemical compounds of different therapeutic applications
ranging from antimalarials, antibacterials, tyrosinase inhibitors and so on. To compute these MDs, a computational
program with the same name was initially developed. However, this in house software barely offered the functionali-
ties required in contemporary molecular modeling tasks, in addition to the inherent limitations that made its usabil-
ity impractical. Therefore, the present manuscript introduces the QuBILS-MAS (acronym for Quadratic, Bilinear and
N-Linear map$S based on graph-theoretic electronic-density Matrices and Atomic weighting$S) software designed to
compute topological (0-2.5D) molecular descriptors based on bilinear, quadratic and linear algebraic forms for atom-
and bond-based relations.

Results: The QuBiLS-MAS module was designed as standalone software, in which extensions and generalizations of
the former ToMoCoMD-CARDD 2D-algebraic indices are implemented, considering the following aspects: (a) two new
matrix normalization approaches based on double-stochastic and mutual probability formalisms; (b) topological con-
straints (cut-offs) to take into account particular inter-atomic relations; () six additional atomic properties to be used
as weighting schemes in the calculation of the molecular vectors; (d) four new local-fragments to consider molecular
regions of interest; (€) number of lone-pair electrons in chemical structure defined by diagonal coefficients in matrix
representations; and (f) several aggregation operators (invariants) applied over atom/bond-level descriptors in order
to compute global indices. This software permits the parallel computation of the indices, contains a batch processing
module and data curation functionalities. This program was developed in Java v1.7 using the Chemistry Development
Kit library (version 1.4.19). The QuBILS-MAS software consists of two components: a desktop interface (GUI) and an
APllibrary allowing for the easy integration of the latter in chemoinformatics applications. The relevance of the novel
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put screening of structure—activity data.

source software

extensions and generalizations implemented in this software is demonstrated through three studies. Firstly, a compar-
ative Shannon’s entropy based variability study for the proposed QuBiLS-MAS and the DRAGON indices demonstrates
superior performance for the former. A principal component analysis reveals that the QuBILS-MAS approach captures
chemical information orthogonal to that codified by the DRAGON descriptors. Lastly, a QSAR study for the binding
affinity to the corticosteroid-binding globulin using Cramer’s steroid dataset is carried out.

Conclusions: From these analyses, it is revealed that the QuBILS-MAS approach for atom-pair relations yields similar-
to-superior performance with regard to other QSAR methodologies reported in the literature. Therefore, the QuBILS-
MAS approach constitutes a useful tool for the diversity analysis of chemical compound datasets and high-through-

Keywords: ToMoCoMD-CARDD, QuBiLS-MAS, Linear, Bilinear and quadratic indices, Atom/bond-based molecular
descriptor, Non-stochastic, Simple stochastic, Double stochastic, Mutual probability matrices, QSAR, Free and open

If I have seen further it is by standing on the shoulders of giants.
Isaac Newton, 1676.

Background

The codification of chemical information using mathe-
matical-computational methods to accelerate small-mol-
ecule drug discovery constitutes one of the fundamental
tasks of mathematical chemistry [1, 2]. In recent years,
the number and diversity of molecular features, also
known as molecular descriptors (MDs), has significantly
increased and corresponding educational and commer-
cial computational implementations developed [3-9].
The absence of an ultimate universal chemical descriptor
emphasizes the need of defining alternative methods to
codify relevant and orthogonal chemical information.

In previous reports, Marrero-Ponce et al. proposed
algebraic formalisms for characterizing topological (2D)
and chiral (2.5D) molecular features through atom- and
bond-based ToMoCoMD-CARDD (acronym for Topo-
logical Molecular Computational Design-Computer Aided
Rational Drug Design) molecular descriptors [10-13]. These
MDs codify molecular information based on the bilinear,
quadratic and linear algebraic forms and the graph-theoret-
ical electronic-density and edge-adjacency matrices in order
to consider atom- and bond-based relations, respectively.
The ToMoCOMD-CARDD MDs have been successfully
applied in the screening of chemical compounds of differ-
ent therapeutic applications ranging from antimalarials [14],
trichomonacidals [15, 16], antitrypanosomals [17], param-
phistomicides [18], antibacterials [19], tyrosinase inhibitors
[20, 21] and others [22, 23]. To compute these descriptors,
a computational program with the same name was devel-
oped. However, this software barely offered the functionali-
ties required in contemporary molecular modeling tasks, in
addition to the inherent limitations that made its usability
impractical, for instance: (a) it did not support standard
input formats (i.e. MDL MOL/SDF files) and the only input
method for the chemical structures entailed the sketching

of molecular pseudographs using a built-in manual drawing
mode; (b) parameter configurations could not be exported
or saved for posterior experiments; (c) no option for batch
processing of descriptors was offered; (d) lacked the distrib-
uted computing functionality which permits the correct uti-
lization of current multi-core architectures; (e) could not be
used as a standalone library thus preventing the its integra-
tion in other applications; and (f) presented ambiguities in
the labeling of the descriptors’ names in the output file.

In addition, in several mathematical procedures
employed to compute MDs (e.g. GT-STAF [24, 25],
DIVATI [26] and QuBiLS-MIDAS [27-30]), the mol-
ecules are not analyzed as a whole, that is, these are par-
titioned in order to univocally characterize each atom
independently. In this way, several mathematical opera-
tors (also known as aggregation operators) may be applied
over the atom-level indices to compute different global/
local MDs. The use of several aggregation operators is
based on the idea that the most suitable global defini-
tion of a system may not necessarily be additive. In fact,
it is reported in the literature that operators other than
the sum could vyield better correlations with determined
chemical properties [24—28]. In this sense, in the present
report strategies are defined to generalize the procedure
of obtaining global or local QuBiLS-MAS (acronym for
Quadratic, Bilinear and N-Linear mapS based on graph-
theoretic electronic-density Matrices and Atomic weight-
ingS) indices using the so-called aggregation operators.
Moreover, several new atom-based properties, chemical
local-fragments (e.g. terminal methyl groups), distance-
based cut-offs (for the analysis of the most important
non-covalent or covalent interactions) and probabilistic
transformations of the matrix representations are intro-
duced. Furthermore, initiatives to deal with the compu-
tational and practical limitations inherent to the original
ToMoCoMD-CARDD program were carried out, with
the ultimate goal of improving its applicability in present-
day cheminformatics tasks.




Valdés-Martini et al. J Cheminform (2017) 9:35

Theoretical scaffold: past and present

Brief history of algebraic maps-based indices

The algebraic forms-based topological MDs (0-2.5D)
are divided into three main families: quadratic, bilinear
and linear indices [12, 31, 32]. They are distinguished in
atom-based [33] and bond-based indices [10] depend-
ing on whether they are derived from the atom-based or
bond-based matrix, respectively. The main diagonal ele-
ments for the atom-based matrix [denominated as non-
stochastic (NS) when it doesn’t involve any normalization
procedure] describe the presence of loops on graph ver-
tices, which are used to characterize atoms in conjugated
systems having more than one canonical structure [31,
34]. Thus, the elements for the kth non-stochastic pseu-
dograph-theoretic electronic-density matrix (ML) are
labeled as ¥ m;j and defined as follows:

} Py ifi # j\3eje;eE
mj = Li]’ l_'fi=j/\5|€ij2 eijeE (D
0 otherwise

where, i and j represent two vertices (atoms) of the
molecular pseudograph G, k is the matrix power, E is the
set of edges of G, P;; is the number of edges (e;) between
the atoms i and j (e.g. P;j = 3 for a triple covalent bond
between i and j), and L;; is the number of loops in v; [12,
13, 31, 33, 35, 36]. Likewise, the coefficients correspond-
ing to the bond-based matrix, X, may be defined. In this
way, the entries e,,, belonging to £X are equal to 1 if the
edge v shares a common vertex with the edge w [37, 38].
Moreover, the NS matrix may be normalized by means of
the simple stochastic (SS) procedure [10], yielding matri-
ces whose row or column coefficients are non-negative
real numbers which sum up to 1. This mathematical pro-
cedure has been explained in detail elsewhere [13, 18,
39]. Let us take a simple example of the isonicotinic acid
structure, and consider its corresponding labeled molec-
ular pseudograph and atom-based matrix [31]. Table 1
shows the non-stochastic (NS) matrix for the isonicotinic
acid structure for k=0, 1, 2.

To compute the algebraic form-based indices, the
molecular vector concept is employed, which uses
atom-based properties as weighting schemes. Thus,
atomic properties (e.g. mass, polarizability, electron-
egativity according to Pauling’s scale and Van der
Waals volume) may be considered [11, 12]. In this
way, the molecular structures may be represented
as vectors. For instance, the Isonicotinic Acid mol-
ecule may be represented by the molecular vector
X = [XN1,%C2, XC35 XC4» XC55 XC6» XC75X08, X09)s where
% € R? (i.e. considering an H-atoms suppressed molecu-
lar graph). Table 1 shows the Pauling electronegativ-
ity-based molecular vector for Isonicotinic acid. The
weighting scheme for the bond-based molecular vector
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is built with values computed from the properties corre-
sponding to the atoms that each bond connects [10, 13,
20, 40]:
L wi Wj
Wij = 571 + E )

where, w;; constitutes the weighting scheme computed
for the edge e;, w; and w; are the atomic weights (e.g.
electronegativity) for atoms i and j forming the consid-
ered bond (e;), §; and §; are the corresponding vertex
degrees which also account for bond multiplicity. Moreo-
ver, in order to codify information on the 3D structure of
the molecule, a trigonometric 3D-chirality correction fac-
tor is applied to the molecular vectors aforementioned,
which has been comprehensively explained in several
reports [40-42].

From the previous molecular vectors and matrix for-
malisms, the algebraic calculation of the NS and SS total
(whole-molecule) bilinear indices may be condensed in
the following equations, for atom- (see Eq. 3) and bond-
based (see Eq. 4) indices, respectively:

nsssbk sz x‘y’ (x)T
i=1 j=1 (3)
x MK xy Vk=12,...,15
nsssbk Zze xly] (x) % gnsss

i=1 j=1 4)
xj Vk=1,2,...,15

where, # (or m) is the number of atoms (or bonds) in the
molecule, k = 1, 2, ...15 is the matrix power, mk i (or ek)
represents the elements of the Mﬁs s (or 5ns ) non—
stochastic (ns) and simple stochastic (ss) matrices, and
x' and y/ are the elements of the x and y atom-based (or
bond-based) property vectors. On one hand, when the
vectors x and y encode the same atomic property (i.e.
x =), the Egs. 3 and 4 define the NS and SS total atom-
based and bond-based quadratic indices, respectively. On
the other hand, if x is a vector with all entries equal to
1 and y an atom/bond-based property vector, then the
Eqgs. 3 and 4 define the NS and SS total atom-based and
bond-based linear indices, respectively.

In addition, local-fragment (group or atom-type) quad-
ratic, bilinear and linear atom/bond-based indices can be
defined to characterize a predetermined molecular frag-
ment (F) instead of the whole molecule (total indices).
These are computed using the kth local-fragment matrix
rMFE (£ EF), which is computed from the corresponding
kth total matrix M* (E¥) considering only those vertices
(or edges) belonging to the selected molecular fragment.
These fragments F may be heteroatoms (X), halogens (G)
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Table 1 The molecular structure and the atom adjacency stochastic (ss) and non-stochastic (ns) matrices for the k=0, 1, 2 corresponding

to the Isonicotinic Acid

O 0
o OH 8C3§§ //() ’ 13.047
2.55
?C7 2.55
Cs 2.55
/ C x =12.55
’ Ca 2.55
2.55
NS Ce c, 3.44
N -3.44
N,
Isonicotinic Acid Molecular Pseudograph Molecular column vector
Molecular Structure (Hydrogen Atoms Suppressed) based on Electronegativity
1 00 0 O0O0OOPO 1 00101000 310212000
010 0O0O0OTO0OTGO 01 1100O0O0O0 132210100
0 01 00 0OO0OTO 011010100 02 41 211 21
000100O0O0TO 110100000 221301000
0 00O1O0O0OO0TGO 001 0110O00O0 112032100
0 00 O0OO1O0OCO0TGO0 1 00011000 2 0112 3000
0 00 0OOT1O0TO0 0 01 0O0O0O0 21 0110106 00
0 00O0OOOOT1O0O0 0 00 O0OOOZ2O00O0 00 2 0 O0O0O0 4 2
0 00 0O OOUOG O1 0 00 O0OOOT1O0TGO0 0 01 0O0O0O0 2 1
- M =m0 1 L Mt . L mEs? .
033 0.00 000 033 000 033 0.00 0.00 0.00! (033 011 000 022 011 022 0.00 0.00 0.00
0.00 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.10 0.30 0.20 0.20 0.10 0.00 0.10 0.00 0.00
0.00 0.25 0.25 0.00 0.25 0.00 0.25 0.00 0.00 0.00 0.14 029 0.07 0.14 007 007 0.14 0.07
033 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00 022 022 011 033 000 0.11 0.0 0.00 0.00
0.00 0.00 0.33 0.00 033 033 0.00 0.0 0.00 0.10 0.10 0.0 0.00 030 0.0 0.10 0.00 0.00
0.33 0.00 0.00 0.00 033 0.33 0.00 0.0 0.00 022 0.00 011 0.11 022 033 0.00 0.0 0.00
0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.50 0.25 0.00 0.11 0.11 0.00 011 0.00 0.67 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.50 0.25
[0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00] [ 0.00 0.00 025 0.00 0.00 0.00 0.00 0.50 0.25 ]
M M;

and H-bond donors (N or O atoms sharing a bond with
an H-atom, labeled as D) [10, 34, 36]. Thus, NS and SS
local-fragment atom/bond-based bilinear, quadratic and
linear indices can be computed using the F MX and pEX
local-fragment matrices instead of the corresponding
total matrices in the Egs. 3 and 4.

It is important to remark that for each partitioning of
a molecule into Z molecular exclusive fragments, there
will be Z local-fragment matrices. In this case, if a mol-
ecule is partitioned into Z molecular fragments, then the
original kth power of matrix Mf,s,ss (or 81,(,”3) is exactly
the sum of the kth power of the local-fragment matri-
ces. Consequently, the total algebraic form-based indices
are the sum of the exclusive contributions of the respec-
tive local-fragment algebraic form-based indices, as long
as there is not overlap among the fragments. Therefore,

taking into consideration the previous elements, the next
sections address in detail the improvements related with
the mathematical definition corresponding to the 2D
algebraic indices introduced by Marrero-Ponce et al. [10,
31, 32, 43, 44].

The QuBiLS-MAS MDs: new definitions, generalization

and extension of algebraic indices

As previously explained, up to date, the 2D atom/bond-
based algebraic indices have been computed as whole-
molecule (total) indices or from specific chemical groups
(local indices), where the simplest fragment could be the
atom itself, known as a LOcal Vertex Invariant (LOVI)
and in case of a bond as LOcal Edge Invariant (LOEI).
In this manuscript the LOVEIs term is adopted to refer
both LOVIs and LOEIs of a molecule, and is denoted as
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L. Therefore, if a molecule is comprised of # atoms or
m bonds then the kth total bilinear, quadratic and lin-
ear indices for each atom “a” (known as total atom-level
index) or each bond “e” (known as total bond-level index)
may be computed as two-linear algebraic forms (maps) in
R”, in a canonical basis set, and whose values are compo-
nents (entries) of the vector £ denoted as £, and L, for
atom- and bond-level indices, respectively. In this way,
the kth total atom-level and bond-level bilinear indices
are mathematically defined as follows, respectively:

DRI

i=1 j=1 (5)
=@ x M x5y Va=1,2,...,n

b[: bak

o= (25) = 303
i=1 j=1 (6)
:(o_c)T EKxy Ve=1,2,...,m
where x%, ..., " and y', ..., ") are the coordinates or

components of the molecular vectors x and y [45]. To
compute these molecular vectors the following atomic
properties have been selected: (1) atomic mass, (2) the
Van der Waals volume, (3) the atomic polarizability, (4)
atomic electronegativity according to Pauling scale, (5)
atomic Ghose—Crippen LogP, (6) atomic Gasteiger—
Marsili charge, (7) atomic polar surface area, (8) atomic
refractivity, (9) atomic hardness and (10) atomic soft-
ness. These properties are calculated using the CDK
library [9]. Note that when x =y atom- and bond-level
quadratic indices are obtained [ie. ,£, = q“’k (%, x) and
qLe = qe’k (x,%)], while if all coefficients of x are equal
to 1 then linear indices for atoms (or bonds) may be
obtained [i.e. (L, = f* (u y) and L. fek(u y)

The coefficients /k (see Eq. 5) are the elements corre-
sponding to the kth NS (or SS) total atom-level pseudo-
graph-theoretic electronic-density matrlx [NS(SS)-GEDM]
MK for atom “a”, while the entries e (see Eq. 6) belong-
ing to kth NS (or SS) total bond- level edge-adjacency
matrix [NS(SS)-EAM] £°* for bond “¢” These atom/bond-
level coefficients are obtalned from the entries »/ ; of the
M total matrix and X i K of the X total matrix, respectively,
using the described procedure to compute local-fragment
matrices but considering the fragment F as an atom “a” or
bond “e” of the molecule. Moreover, the diagonal coeffi-
cients »7; could have two distinct values in order to achieve
greater discrimination of molecular structures: (1) aromatic
ring sensibility for setting up aromatic atoms hooked on full
aromatic rings instead of mapping individual atom loops as
shown in the molecular pseudograph of the Table 1, and/or
(2) the number of lone-pairs for each atom. The eili entries
are always zero.
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It is important to highlight that as an extension of the
former ToMoCoMD 2D-MDs several local-fragments
have been aggregated: H-bond acceptors (A), carbon
atoms in aliphatic chains (C), H-bond donors (D), halo-
gens (G), terminal methyl groups (M), carbon atoms in
an aromatic portion (P) and heteroatoms (X). Thus, from
these local-fragments the kth NS (or SS) local-fragment
atom-level pseudograph-theoretic electronic-density
matrices M for atom “a” and the kth NS (or SS)
local-fragment bond-level edge-adjacency matrices pE°*
for bond “e”, may be computed. Consequently, local-frag-
ment atom- and bond-level bilinear, quadratic and lin-
ear indices are determined from the Eqgs. 5 and 6 using
pM“'k and pc‘:“’k as matrix forms, respectively. Note
that the coefficients pu;; ak o L Mok and Fee]k € Fé'ek
are calculated from the elements Fo ke FMk
pe]; € pEk,respectlvely

In addition, two normalization procedures are intro-
duced as novel extensions. The atom-based simple sto-
chastic scheme defined in the original ToMoCoMD
2D-MDs [18, 39, 43] describes changes in the electron
distribution over time throughout the molecular back-
bone. This SS matrix is not symmetrical and the prob-
ability for atom i to interact with atom j is different from
the probability for the atom j to interact with the atom i.
Therefore, with the aim of balancing the probabilities in
both senses a double-stochastic (DS) matrix is employed,
that is, a matrix with real non-negatives entries whose col-
umn and row sums are equal to one. In this way, the kth
total (or local-fragment) DS graph-theoretical electronic-
density (DS-GEDM, (F)M],fls) and edge-adjacency (DS-
EAM, (F)Sfls) matrix approaches can be calculated from
the corresponding Mk and Ek matrices, respectively,
using the Sinkhorn-Knopp algorithm [46]. Addition-
ally, the kth total (or local-fragment) mutual probability
(MP) graph-theoretical electronic-density matrix (MP-
GEDM, 5y MK, » and edge-adjacency matrix (MP-EAM,
&L p) are 1ntr0duced The mutual probability matrices
are obtalned dividing each entry between the total sum of
their elements, in this way, symmetrical matrices where
the total sum is equal to 1 are obtained. The Scheme 1
shows the steps followed in the computation of the NS-,
SS-, DS- and MP-GEDMs, while Tables 2 and 3 illustrate
the calculation of these matrices with and without taking
in consideration the lone-pair electrons.

Lastly, in order to obtain the global kth total (or local-
fragment) bilinear, quadratic and linear indices from the
corresponding atom-level (£,) or bond-level (L,) defini-
tions, the summation operator is used. The global indices
obtained using this operator over components of vector £
coincide with those indices calculated through the origi-
nal procedure vector—matrix—vector detailed in Egs. 3
and 4. Note that the summation operator is equivalent
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a )
The matrices SS¥, DSX and MPX are
computed from NS¥matrix
A
o O OH
2D structure I
N
N
0 .\\H/ 0 ;
] Each non-stochastic
ecular . ; .
I;IOI d ula h C [ > /’ NS1 ’ matnxis computcd
BRSO C ‘ through Hadamard
product between the
C C matrix NS¥™? and the
marix NS2.
C C & J
N J
Schema 1 The stages involved in the computation of the NS-, SS-, DS-, and MP-pseudograph-theoretical electronic-density matrices

to the Manhattan norm applied to elements of the vec-
tor L relative to the origin, which is in turn a specific
case of Minkowski norm when p = 1. Motivated by this
understanding, a generalization in which different p val-
ues are used, i.e. p = 2 and 3, where the former (p = 2) is
the Euclidean norm (see Additional file 1: Figure SI1 for
geometrical interpretation) was introduced. Additionally,
other operators (see Additional file 1: Table SI2) applica-
ble to the vector of LOVEIs were applied with the aim of
generalizing the use of the linear combination to obtain
global indices. It has been demonstrated in several reports
[24-28] that better correlations for bioactivities may be
attained when operators other than the sum are employed.

Neighborhood topological constraints in the
graph-theoretical electronic-density and edge-adjacency
matrix

The (5 MK and () EX matrices contain information on
the connectivity for all atoms and bonds that consti-
tute a molecule, respectively. However, some biological
properties do not depend on the chemical structure as

a whole but rather on interactions at particular topo-
logical distances, for example, short-, middle- and
large-range contacts. Thus, with the aim of consider-
ing interactions that satisfy specific topological criteria,
three graph-theoretical constraints (cut-offs) are intro-
duced: (1) keeping only the diagonal elements of the
matrix, denoted as “Self-Returning Walks” (SRW), (2)
keeping only the off-diagonal elements of the matrix,
denoted as “Non-Self-Returning Walks” (NSRW), and
(3) keeping only the elements within a given interval,
based on the topological distance for a path cut-off,
denoted as Lag p.

The application of these cut-offs over the matrices

MK and () EF yields the following representations: the
Self-Returning Walks matrices (i.e. i}”)’Mk and f}“)’gk),

nsrw

the non-Self-Returning Walks matrices (i.e. {F) MK and

?lsrr)wgk)y and the topological path cut-off matrices (i.e.

fF)Mk and fp)gk), respectively. The coefficients ‘(’F)m1

and fF)el belonging to these last matrices, respectively,
are defined as follows:
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Table 2 The molecular structure considering lone-pair electrons (n) for the first and second powers of the molecular pseudograph'’s
atom adjacency mutual probability (mp), non- (ns), double (ds)- and stochastic (ss) matrices for Isonicotinic Acid

0.50
0.00
0.00
0.33
0.00
0.33
0.00
0.00
0.00

0.43
0.10
0.00
0.30
0.10
0.30
0.00
0.00
0.00

N
. 0

[u]

@

®) /

O

0.00
0.33
0.25
0.33
0.00
0.00
0.00
0.00
0.00

k=1
Mss,n

0.07
0.30
0.14
0.20
0.10
0.00
0.07
0.00
0.00

Nao
.o

Isonicotinic
Lone-pairs Electrons

0.00
0.33
0.25
0.00
0.33
0.00
0.25
0.00
0.00

oH”

@

0.25
0.33
0.00
0.33
0.00
0.00
0.00
0.00
0.00

Acid

0.00 0.25
0.00 0.00
0.25 0.00
0.00 0.00
0.33 0.33
0.33 0.33
0.00 0.00
0.00 0.00
0.00 0.00

0.00

0.25
0.00
0.00
0.00
0.00

0.33

displaying

0.00

0.00
0.00
0.00
0.00
0.50

0.00

0.00

0.00
0.00
0.00
0.00
0.25

0.67

OCO0OO0OO0ORRRO

OoOrORORRO

0.00

0.22
0.00
0.28
0.00
0.22

0.00

1 0 1 0 0 0 6 1 0 3 1 3 0 0 0
1 0 0 0 0 0 1 3 2 2 1 0 1 0 0
0 1 0 1 0 0 0 2 4 1 2 1 1 2 1
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Table 3 The zero, first and second powers of the molecular pseudograph’s atom adjacency double stochastic and mutual probability
matrices for Isonicotinic Acid
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where, pj; is a user-defined topological distance thresh-
old, and min and max are the minimum and maximum

cut-off values (rank). Table 4 shows an illustrative exam-
ple where three topological constraints are calculated for
an atom-level matrix. A custom cut-off allows to distin-
guish the interaction types, for example, when a topo-
logical graph-theoretical cut-off is applied, then atomic
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Table 4 First, second and third order NS—matrices for Isonicotinic Acid, obtained by applying three types of topological constraints
(cut-off): Self-Returning Walks (SRW), Non-Self-Returning Walks (NSRW) and a topological path cut-off distance from 2 to 5 (LAG [2-5])
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indices could be calculated for atoms separated by 1 step
(covalent interactions) or for those atoms separated by
more than 1 step (p > 2). The present approach could be
viewed as a threshold that generalizes the use of lag p in
2D-Moreau—Broto autocorrelations [1]. Likewise, these
matrices based on cut-offs may be employed to deter-
mine the corresponding atom-level and bond-level repre-
sentations to be used in the calculation of QuBiLS-MAS
2D-MDs. In Scheme 2, a complete workflow to compute
the QuBiLS-MAS indices is represented.

The QuBiLS-MAS module

The QuBiLS-MAS module was designed as standalone
software, with the extensions and generalizations dis-
cussed in “The QuBiLS-MAS MDs: new definitions, gen-
eralization and extension of algebraic indices” section.
This software was developed in Java v1.8 and the Chem-
istry Development Kit (CDK) library (version 1.4.19) [9]
was used in the manipulation of the chemical structures,
as well as in determining the atom- and fragment-based

chemical properties involved in the calculation process.
The QuBiLS-MAS software is comprised of a front-end
and back-end. The front-end is composed of a desktop
and command-line user interface, while the back-end is
developed as an Abstract Programming Interface (API)
to enable its use as an independent Java library in the
development of other cheminformatics applications or
in the implementation of other user-friendly interfaces
either graphical or command-line based. With these two
components, independence between the software pres-
entation layer and the processing logic implemented
in the back-end is achieved and thus, any modification
in the latter does not provoke changes in the front-end
(GUI), and vice versa.

Back-end: the QuBiLS-MAS molecular descriptors
library-computational complexity of algorithms

All the requests performed by the users through the GUI
are processed by the QuBiLS-MAS library. This compo-
nent is structured in packages according to the goals of
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the functionalities (see Additional file 1: Figure SI3 for
UML diagram). The main package is tomocomd.cardd.
qubils which contains the packages descriptors, matri-
ces, metrics and workers that encapsulate the main con-
cepts utilized in the definition of the QuBiLS-MAS MDs.
The descriptors package includes the classes related to
the calculation of the total and local-fragment bilin-
ear, quadratic and linear algebraic maps. The matrices
package contains the objects responsible for building
the pseudograph-theoretic electronic-density matrix and
the edge-adjacency matrix corresponding to atom- and
bond-based representations, respectively. Additionally,
the simple-stochastic, double-stochastic and mutual
probability normalization strategies, as well as the topo-
logical constraints (cut-offs) are defined in this package.
The tools package includes classes for the identification
of the local-fragments, as well as the considered aggrega-
tion operators. Lastly, the workers package comprises the
classes for the configuration and control of the algebraic
MDs calculation process.

The algorithms responsible for performing the multi-
plication based on bilinear, quadratic and linear algebraic
forms constitute the principal procedures to compute the
QuBiLS-MAS indices. This procedure consists of a loop

that iterates for each atom of the molecule to determine
the corresponding atom- or bond-level matrix. Next the
atom/bond-level matrices are multiplied by the corre-
sponding property vectors in order to obtain the atom/
bond-level indices. The corresponding sequential imple-
mentations have a computational complexity of O(1>).
Nonetheless, when the atom/bond-level matrices are
computed according to the mentioned procedure, it is
noted that the only entries with values different from
zero correspond to the atom with respect to which the
atom/bond-level matrix is built. Therefore, instead of
iterating for each atom in order to build the atom/bond-
level matrix used posteriorly to determine the corre-
sponding index, it is more suitable to compute the atom/
bond-level indices at the same time as the original matrix
is analyzed. Taking this into account, the algorithms have
been optimized to an inferior polynomial order, achiev-
ing a complexity of O(#2) in the computation of the atom/
bond-based contributions for the QuBiLS-MAS indices.

Graphic user interface of the QuBiLS-MAS software

To facilitate the calculation of the QuBiLS-MAS MDs,
a friendly Desktop GUI was developed in order to
provide a simple and intuitive way to configure the
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different parameters used, such as: algebraic forms,
matrix approaches, atomic properties, topological cut-
offs and so on. Figure 1 shows the main GUI and the
dialog windows designed to configure some of these
parameters. These configuration sections allow the users
to personalize the bilinear, quadratic and linear indices
according to their necessities and thus predefined MDs
are not calculated.

In the “Algebraic Form” panel, the specific algebraic
maps to be used in the computation of the MDs are cho-
sen according to the selected option in the “Constraints”
panel, which could be atom-based or bond-based. Also,
chirality detection may be configured in the “Constraints”
panel. The matrix normalization formalisms (MP, NS,
SS, and DS) used in the algebraic forms are configured
in the “Matrix Form” panel, as well as the maximum
order (k value) to which the coefficients of the matrices
are raised. In the “Cut-Oft” panel the option to “keep all”
(KA) atomic interactions is selected by default, but other
options [i.e. “Self-Returning Walks” (SRW), “Non-Self-
Returning Walks” (NSRW) and/or the value-rank(s) of
threshold p] may be considered to take into account only
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the non-covalent interactions according to the estab-
lished criterion. The “Local-Fragments” panel contains
the options to configure the seven chemical groups (or
atom-types) that may be employed to compute either the
total or local-fragment indices. Likewise, in the “Proper-
ties” panel the atomic properties used to setup different
weighting schemes are chosen. Finally, the mathemati-
cal operators used to compute the global total or local
indices from the atomic contributions are selected in the
“Invariants” panel.

It is important to highlight that the selected options
to compute the descriptors can be exported into an
XML configuration file, called the project file, which can
be used to calculate the same QuBiLS-MAS indices for
other datasets when the software is run again. Another
important feature is that the software can be executed
on computer clusters using a command-line interface,
which uses the project files to obtain the configuration of
the indices to be computed. Also, the QuBiLS-MAS soft-
ware has incorporated the “On/Off H-Atoms” option to
consider (or not) the H-atoms during the calculation, the
“On/Off Lone-Pair Electron” option to consider (or not)
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tion operators (b), atom properties (c) and local-fragment chemical groups (d)
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the number of lone-pairs for heteroatoms and the “Show
Debug Report” option to track the algebraic processes
that take place during the calculation (see Additional
file 1: S14).

The supported input file format for the chemical struc-
tures to be analyzed is the MDL MOL/SDF format and
these are sequentially read in order to employ suitable
memory allocation according to the size of the molecule.
Moreover, the path of the output file may be specified
where the values of the computed MDs are saved. To this
end, the QuBiLS-MAS software supports the following
output file formats: CSV, ARFF, and TXT (space- and tab-
separated ASCII format) which are easily interpretable in
popular statistical and/or machine learning software.

The calculation procedure is monitored in real time
through the main interface and controlled with the inter-
active mode of the GUI. Indeed, more than one project
file can be calculated over different datasets. This is a fea-
ture implemented in the QuBiLS-MAS software encap-
sulated into a batch processing module, which is useful
for carrying out high-throughput and routine MD calcu-
lations. This module is designed to manage the configu-
ration of up to eight independent tasks (see Additional
file 1: SI5), where each task consists of one or several
datasets for which one or several projects files previ-
ously saved with the QuBiLS-MAS GUI may be com-
puted. Finally, a module for chemical structure curation
tasks was incorporated, taking into account Tropsha’s
guidelines [47]. Table 5 shows a comparison between
the old [48] ToMoCOMD software and the present one
(QuBiLS-MAS module), highlighting the numerous
functionalities incorporated. Table 6 compares the char-
acteristics for common molecular descriptor calculating
software and including the QuBiLS-MAS program, spec-
ifying the respective strengths and weaknesses.

Assessment of the performance of the QuBiLS-MAS
descriptors

Information content analysis based on Shannon’s entropy
Shannon’s entropy (SE) quantifies the information con-
tent codified by molecular indices, according to the
principle that variables that effectively discriminate all
molecules in a dataset possess high entropy values, while
redundant variables have low entropy values. To perform
this study, the Spectrum dataset (http://www.msdiscov-
ery.com/spectrum.html) comprised by 1963 structures
was used. The highest SE for this dataset is equal to 10.93
bits (log,N, where N is the number of compounds). In the
following subsections the novel QuBiLS-MAS 2D-MDs
are analyzed taking into account the proposed internal
generalizations, as well as with respect to well-known
MDs computed by other software. For this study, the
IMMAN software was used [49].
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Comparative variability analysis according to the matrix
formalisms

The four matrix schemes defined in the present report
are analyzed. To this end, 880 MDs are calculated for
each matrix. Figure 2 shows similar entropy distribu-
tions for the non-, double- and simple-stochastic matrix
approaches, while the best behavior is obtained with the
mutual probability approach. The superior performance
of the mutual probability formalism with respect to the
other three matrix transformations justifies the theoreti-
cal contribution of this scheme in the computation of the
QuBiLS-MAS 2D-MDs.

Analysis of variability according to the aggregation
operators

The aim of this section is to evaluate the variability of the
QuBiLS-MAS 2D-indices according to the mathematical
operators used over the vector of LOVEIs. In this study,
the aggregation operators classified as norms, means
and statistical invariants are compared. To this end, 110
atom-based linear indices for each operator were calcu-
lated and the results are shown Fig. 3. As it can be noted,
the best results are achieved by the Potential Mean,
Quadratic Mean and Standard Deviation operators with
71, 67, 66 and 65% of the total variables having entropy
values greater than 9.0 bits (82% of the maximum
entropy), respectively. Moreover, the indices based on
the Manhattan (sum of LOVEIs) and Minimum opera-
tors present the worst performance, while the remaining
distributions have similar behavior. This result suggests
that the generalization of the linear combination of
LOVIEs to consider other aggregation operators yields
variables with greater information content, and thus, it
should contribute to a greater modeling capacity for the
QuBiLS-MAS MDs.

Variability analysis of QuBiLS-MAS 2D-indices

versus DRAGON descriptor families

The purpose of this analysis is to compare the entropy
of the QuBiLS-MAS 2D-MDs with the DRAGON
descriptor families. To perform this study some
DRAGON descriptor-blocks were clustered into bigger
families: (1) OD_others for molecular properties, con-
stitutional and charge descriptors, (2) 1D-fragment for
functional group counts and atom-centered fragments,
(3) 2D-conn_autocorr_inf for 2D autocorrelations, con-
nectivity and information indices, (4) 2D-edge_walk
for edge adjacency indices, walk and path counts, (5)
2D-eigenvalues for Burden -eigenvalues, topological
charge and eigenvalues-based indices, and (6) 3D-Ran-
dic_geometrical for Randic molecular profiles and geo-
metrical descriptors. The remaining DRAGON families
were kept with the same denominations. The maximum
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Table 5 Comparison between the old software (TOMOCOMD) and the new one proposed in this report (QuBiLS-MAS)

Features Computer program

TOMOCOMD QuBiLS-MAS

Description level

Theoretical

Algebraic form maps 3 (quadratic, bilinear and linear)

Atom and Bond level Yes Yes

Matrices 2(NS, SS) 4 (NS, SS, DS, MP)

Atom Weightings 4(M,V,PE) 10 (M,V, P E, A, C, PSA, R H,9S)

Local-fragments 3D, G X) 7 (A, C, D, G M,PX)

Chirality YES, ¢ ==£1 YES, extended to ¢ = 0.25 to &3 with a 0.25 step

Lone-pair electrons - Yes

Topological constraints - Yes, three cut-off types (SRW, NSRW, Lag P)

H-atoms consideration - Yes, permits inclusion or removal

Invariants or aggregation operators - Yes, 21 aggregation operators classified in four major groups
Computational

Open source - Yes, under LGPL

Availability Shareware Freeware

Programming language Borland Delphi Java

Clear Object-oriented source code design - Yes

Canonical namespace packages structure  — Yes, under com.tomocomd.qublis.

Target operating system(OS) Microsoft Windows Platform-independent

Graphical user interface Yes Yes

Command line - Yes

Portable MDs library - Yes, as pre-compiled Java JAR file

Supported input format In-house file format mol/sdf MDL

Output format Text File (TSV) Text File (TSV, SSV, CSV), Weka (ARFF)

Structure curation and cleaning - Yes, available under Structure menu item (with 10 check/cleaning tasks,

H-atoms handling, and function for chemical formats conversion)

Built-in example data - Yes, six chemical datasets

Unique MD header - Yes, identifying the codification scheme

Batch Processing mode - Yes

Parallelized computing - Yes, using the Fork/Join framework

Configurable projects - Yes

Import/export configuration - Yes, using a XML file format

Calculation progress - Yes, for descriptors and molecules

Real-time memory monitor - Yes, with garbage collection option when desired

Events logging - Yes, accessible through the History Tab

Calculation report - Yes

Runtime help accessibility - Yes

User owner’s manual - Yes

Online webpage - Yes http://www.tomocomd.com/qubils

Matrices Non-stochastic (NS), simple stochastic (SS), double stochastic (DS) and mutual probability (MP). Atom weightings (atomic properties) (1) atomic mass (M),

(2) the Van der Waals volume (V), (3) the atomic polarizability (P), (4) atomic electronegativity according to Pauling scale (E), (5) atomic Ghose-Crippen LogP (A), (6)
atomic Gasteiger-Marsili charge (C), (7) atomic polar surface area (PSA), (8) atomic refractivity (R), (9) atomic hardness (H), and (10) atomic softness (S). Local-fragments
(atom-type and/or group-type) H-bond acceptors (A), carbon atoms in aliphatic chains (C), H-bond donors (D), halogens (G), terminal methyl groups (M), carbon atoms
in an aromatic portion (P) and heteroatoms (X). Chirality trigonometric 3D-chirality correction factor (c). Topological constraints (cut-offs) (1) keeping only the diagonal
elements of the matrix, denoted as “Self-Returning Walks” (SRW), (2) keeping only the offdiagonal elements of the matrix, denoted as “Non-Self-Returning Walks”
(NSRW), and (3) keeping only the elements within a given interval, based on the topological distance for a path cut-off, denoted as Lag p

number of descriptors considered for each family is 91, As it can be observed in Fig. 4, the QuBiLS-MAS
which corresponds to the 0D_others family that has the 2D-MDs show the best overall performance with
least number of MDs. all the considered indices presenting entropy values
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Fig. 3 In-house comparison of Shannon’s entropy distribution for the QuBILS-MAS 2D-Indices considering the norms, the statistical operators of

above 9.55 bits (87% of the maximum entropy). As
for the DRAGON MD families, the 2D-edge walk,
3D-GETAWAY and 2D-conn_autocorr_inf indices
show the best behavior with 63, 21 and 15 variables
presenting SE values greater than 8.70 bits (80% of the
maximum entropy), respectively, although all these

distributions are inferior to the one corresponding
to the QuBiLS-MAS 2D-indices. This is a promising
result bearing in mind that the DRAGON MD families
are obtained from a diverse range of theoretical and
practical considerations, encompassing over 30 years
of research.
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informatics studies
. J
Variability comparison for QuBiLS-MAS 2D-indices other programs used in cheminformatics tasks, such
with respect to other descriptor computing software as: DRAGON (3], MOLD2 [4], PADEL [7], _ENREF_70

The variability distribution of the QuBiLS-MAS MDs CDK Descriptor Calculator [9], MODESLAB [50],
was computed and compared to MDs calculated with BLUECAL [51] and POWER MV [52]. To this end, the
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DRAGON’s example data comprising 42 structurally
diverse chemicals was used. The cut-off number of vari-
ables for this study was 170 MDs, determined by the
BLUECAL software as it possesses the least number of
indices. As it can be observed in Fig. 5, the QuBiLS-MAS
topological indices achieve superior performance than
other software considered, with the former presenting all
its values above 4.62 bits [86% of the maximum entropy
(logo41 = 5.35)], while the indices of the remaining
approaches practically have all their indices inferior to
this threshold. The high entropy distribution obtained for
the QuBiLS-MAS topological indices demonstrates the
relevance of these MDs, in the sense that they are sen-
sitive to progressive structural modifications and should
therefore be valuable in different cheminformatics tasks.

Linear independence of the QuBiLS-MAS algebraic
descriptors

In this section, the possible orthogonality of the QuBiLS-
MAS 2D-Indices with respect to the DRAGON 0D-2D
MDs is examined, using the Principal Component Analy-
sis (PCA) [53, 54]. The PCA is a mathematical technique
that converts several correlated variables into a reduced
number of non-correlated variables, called principal
components. The extracted components have the follow-
ing features: (1) the first component will explain the high-
est possible variance of all determined components, (2)
the successive components will explain the variance that
the previous components did not explain, and (3) vari-
ables loaded in each component are linearly independent
to the ones loaded in the remaining components. For all
the studies performed in this section, the curated Spec-
trum Collection dataset (1963 molecules) was employed.

To perform this analysis, two sets of descriptors were
calculated using QuBiLS-MAS MDs and the DRAGON
(824 MDs) software, respectively, with the latter compris-
ing of the following families: OD-others (BO1 Constitu-
tional, B19 Charge and B20 Molecular Properties) with
91 indices, 1D-fragment (B17 Functional Groups Counts
and B18 Atom-centered Fragments) with 274 indices,
2D-conn_autocorr_inf (B04 Connectivity, BO5 Informa-
tion and B06 2D-AutoCorrelations) with 176 indices,
2D-edge walk (BO3 Walk-Path Counts and B07 Edge
Adjacency) with 154 indices, 2D-eigenvalues (B08 Bur-
den, B10 Eigenvalue-based and B09 Topological Charge)
with 129 indices, and finally the B02 2D Topological with
119 indices.

In this analysis, 12 principal components were selected,
which explain approximately 74.60% of the cumulative
variance (see Additional file 1: SI6 and Additional file 1:
SI7). As it can be observed, Factors 1 (27.83%), 2 (13.06%),
8 (2.47%) and 9 (1.99%) exhibit strong loadings for some
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QuBiLS-MAS indices and some 0D-2D descriptors of
the DRAGON software. On the other hand, exclusive
loadings are obtained for the QuBiLS-MAS descriptors
in the Factors 3 (8.6%), 4 (6.26%), 5 (3.86%), 6 (3.51%), 7
(2.71%), 11 (1.42%) and 12 (1.20%), explaining 27% of the
total variance. Factor 10 (1.62%) is important for some
0-2D DRAGON MDs as these are exclusively loaded in
this factor, and these indices include: TI2 (B02 2D Topo-
logical), PW2 (B02 2D Topological), RBF (0D-others)
and EEig01r (2D-edge_walk) [for details on these descrip-
tors, see Additional file 1: SI8]. On the whole, much of
the information codified by the 0D-2D DRAGON MDs
is equally captured by the QuBiLS-MAS indices, con-
sidering that negligible variance (1.62%) is explained by
the factor exclusive for the former (F10). Moreover, the
numerous factors (i.e. F3, F4, F5, F6, F7, F11 and F12)
exclusive for the QuBiLS-MAS MDs suggest that orthog-
onal information is codified and thus demonstrating the
theoretical contribution of the generalization schemes
adopted in this framework.

QSAR modeling of the binding affinity to corticosteroid
binding globulin (CBG) of Cramer’s steroid dataset

In what follows, the predictive ability of the QuBiLS-
MAS approach is assessed. To accomplish this objec-
tive, QSAR models for predicting the “binding affinity to
the corticosteroid-binding globulin (CBG) of the popu-
lar Cramer’s steroid database” (see Additional file 1: SI9
for names and CGB values of compounds) were built.
This dataset has been used as a “benchmark” to evalu-
ate the quality of novel procedures. A total of 1455 vari-
ables were computed for each algebraic form (quadratic,
bilinear and linear maps). The prediction models were
built using Multiple Linear Regression (MLR) as the fit-
ting method, coupled with the Genetic Algorithm (GA)
as variable subset selection strategy and the statisti-
cal parameter Qf,, (“leave-one-out” cross validation) as
the fitness function. Throughout the study, regression
models of 2—6 variables were developed and the best
model in each case retained for posterior validation.
The GA was setup with the following configurations:
population size—100, crossover/mutation rate—0.7,
selection operator was fixed at 60 and the number of
iterations—500,000. In addition, the tabu list option was
configured to remove those MDs with correlation equal
or greater than 0.95. The MLR-GA based model building
was performed using the MobyDigs [55] computer pro-
gram. The best models built were also assessed with the
bootstrapping [56] (Q%mt) and Y-scrambling [57] (a(Q?))
validation methods in order to assess the predictive
power and the possible chance correlation with respect
to the activity modeled.
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Examination of matrix formalisms

In order to assess the performance of the NS, SS, DS
and MP matrix-based approaches in QSAR modeling,
46 variables for each formalism were calculated. Fig-
ure 6a shows the statistical parameters achieved in this
experiment, where the SS approach (Qf, = 81.85%,
Qioot = 77.89%) presents the best behavior, followed
by MP (Q}, = 79.05%, Qpox = 74.85%). The indices
based on NS (Qf,, = 73.48%, Qfo,c = 68.09%) and DS
(Qh, = 72.01%, Q}, = 65.4%) matrices present a much
lower performance. This result is in agreement with the
variability analysis, where the highest entropy indices
involved the SS and MP matrix formalisms.

Analysis of the aggregation operators

The following study evaluates the predictive power of
the aggregation operators proposed as a generaliza-
tion scheme for the linear combination of LOVEIs as
method for obtaining global (or local) indices. As it can
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be observed in Fig. 6b, all Q% , values are superior to 50%,
with the best performances corresponding to the statisti-
cal operators, followed by the mean operators and lastly
by the norms. Regarding the evaluation of the operators
classified as “classical algorithms” (Fig. 6c) it is observed
that Kier—Hall (KH), Total Sum (TS), Gravitational (GV)
and Autocorrelation (AC) algorithms yield comparable
to superior performance with respect to the remaining
operators. It may therefore be concluded that the incor-
poration of the aforementioned generalization scheme
improves the performance of the QuBiLS-MAS indices
in modeling tasks and thus demonstrating its practical
contribution.

The QuBiLS-MAS MDs versus literature reports

To evaluate the earnest contribution of the QuBiLs-MAS
approach, it is necessary to assess its performance in
correlation studies with determined molecular proper-
ties and compare the results with the existing methods.
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Table 7 Statistical parameters for the best models for 2-6 variables for the physicochemical property log K, considering

the 31 structures as the training set

Size R? Qb QZoot a(@) F

Models Equations

2 0.778 0.734 0.738 —0.208

3 0.863 0.826 0.820 —0.259

0.887 0.879 —0.324

5 0932 0.902 0.890 —-0376

0914
(0.937)

0.898
(0.925)°

—-0414
(—=0465)°

6 0942
(0.960)°

49.16

57.14

70.59

68.53

65.26 (91.74)°

log K= 1.596 (£0.885) + 3.809 (£0.582) (19)

TS[1]_MX_B_AB_nCi_2_SS12_T_KA_a-h — 0.118
(£0.011)

KH[1]_MX_F_AB_nCi_2_MP2_T_KA_h
log K= —32.132 (£3.841) — 75.624 (£9.789) (20)

TS[1]_RA_F_AB_nCi_2_MP2_T_KA_h 4 135484
(£13.179

TS[4]_PN_Q_AB_nCi_2_MPO_T_KA_h + 1782.101
(£257.835)

KH[2]_PN_B_AB_nCi_2_SS8_T_KA_v-h
log K= —66472 (£6.939) — 0.223 £+ 0.021) (1)

AC[2]_MX_B_AB_nCi_2_SS7_T_KA_r-h 4+ 0407
(£0.089)

TS[5]_HM_B_AB_nCi_2_SS8_T_KA_v-h + 131.848
(£10.928)

TS[4]_PN_Q_AB_nCi_2_MPO_T_KA_h + 3323451
(£355.509)

KH[2]_PN_B_AB_nCi_2_SS8_T_KA_v-h
log K= —70.522 (£6.342) — 0.246 (£0.020) (22)

AC[2]_MX_B_AB_nCi_2_SS7_T_KA_r-h 4+ 0422
(£0.081)

TS[5]_HM_B_AB_nCi_2_SS8_T_KA_v-h + 144.507
(£9.991)

TS[4]_PN_Q_AB_nCi_2_MPO_T_KA_h + 4616.536
(£15.439)

GV[2]_MX_Q_AB_nCi_2_MP3_X_KA_h + 3536.215
(£324.863)

KH[2]_PN_B_AB_nCi_2_SS8_T_KA_v-h
log K= —81.005 (£6.216) — 0.233 (£0.020) (23)

AC[2]_MX_B_AB_nCi_2_SS7_T_KA_r-
h —39,144.250 (£4.757)

AC[2]_MN_B_AB_nCi_2_MP2_A_KA_c-h 4+ 0.572
(£17.485)

TS[5]_HM_B_AB_nCi_2_SS8_T_KA_v-h 4 120.683
(£1.681)

TS[4]_PN_Q_AB_nCi_2_MPO_T_KA_h + 0.804
(£0.354)

TS[6]_HM_Q_AB_nCi_2_SSO0_A_KA_h 4 3979.089
(£310.376)

KH[2]_PN_B_AB_nCi_2_SS8_T_KA_v-h

2 Compound 31 excluded, taken as outlier, is not taken into account in the training set

Different QSAR models for predicting the binding affin-
ity to CBG of the 31 structures of Cramer’s steroid data-
base (1-31 or also 1-30 with compound 31 as outlier)
have been reported in the literature, which will be com-
pared here with the models obtained using the QuBiLs-
MAS 2D-MDs. In this experiment, the best 3—5 variable
models were selected according to the quality of the sta-
tistical parameters Qf,, and Q? .. Table 7 shows the best
regression models and their corresponding statistical

parameters, based on the QuBiLs-MAS 2D-indices.
Comparisons with other QSAR methodologies reported
in the literature are presented in Table 8 according to the
Q}, statistic.

In general, when the 31 steroids are taken into account
as training set, the models based on QuBiLS-MAS indi-
ces yield comparable-to-superior performance relative
to other methods reported in the literature according
to the Q3 statistic. Up to now, the best model reported
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Table 8 Comparison of Q7 statistics of nD-QSAR methods for the property log K (CGB)* for 31 (or 30)

nD-QSAR method PCs/var. Statistical method Q%00 Equations/references

31/30 Steroids (all dataset)

Combined electrostatic and shape similarity matrix 6 Genetic NN 0.941 [59]
QuBILS-MAS® 6 MLR and GA 0.937 Equation 23
QuBILS-MAS 6 MLR and GA 0.914 Equation 23
Hodking SM 6 Genetic NN 0.903 [59]
QuBILS-MAS 5 MLR and GA 0.902 Equation 22
QuBILS-MAS 4 MLR and GA 0.887 Equation 21
Fragment QS-SM 4 PLS 0.886 [60]
MEDV-13 5 MLR and GA 0.882 [61]
MiDSASA—"template” 2 "‘compounds” - 0.88 [62]
some 3 - R?0.85 (63]
Tuned-QSAR 6 MLR and PCA 0.842 [64]
Autocorrelation vector 30 - - 0.84 [65]
CoMMA 3 PLS 0.828 [66]
QuBILS-MAS 3 MLR and GA 0.826 Equation 20
Similarity Indices (ESP MC matrix 30) 1 PLS 0.820 [65]
SOMFA/esp + ALPHA - SOR 0.82 [67]
Combined electrostatic and shape similarity matrix 6 MLR and GA 0.819 [59]
EEVA 4 PLS 0.81 [68]
SOM-4D-QSAR 4 SOM neural network 0.80 [69]
Charges and Properties from MEPS-AM1 5 MLR 0.80 [70]
HE State/E-State®” 3 - 0.80 (711
E-State®® 3 - 079 (711
CoSA 3"Bins” PLS 0.78 [72]
QSAR/E-State 3"atoms” - 0.78 [73]
TQSI 4 MLR 0.775 [64]
EVA 5 PLS 0.77 [74]
CoMSA 1 PLS 0.76 [75]
MQSM 5 MLR and PCA 0.759 [64]
EVA 4+ ALPHA - SOR 0.75 [67]
GRIND - PLS 0.75 [76]
SEAL 3 PLS 0.748 [77]
SOMFA/esp 6 PLS 0.74 [67]
CoSCoSA® 3 - 0.74 [78]
CoSASA 3"atoms” PLS 0.73 [72]
E-State and kappa shape index 4 MLR 0.72 [79]
TARIS 2 - 0.71 [80]
MQSM 3 MLR 0.705 [64]
Combined electrostatic and shape similarity matrix 5 PLS 0.70 [59]
SAMFA-RF - RF 0.69 [81]
SAMFA-PLS 4-5 PLS 0.69 [81]
4D-QSAR 2 PLS 0.69 [69]

(82]

CoMMA (ab initio) 6 PLS 0.689
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Table 8 continued
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nD-QSAR method PCs/var. Statistical method Q%0 Equations/references
QSAR? 3 - 0.68 [83]
SOM-4D-QSAR SOM Neural Network 0.68 [69]
Wagener's (AMSP Method) - k-NN and FNN 0.630 [84]
SAMFA-SVM - SVM 0.60 [81]
ALPHA 2 PLS 0.57 [67]
Italic values indicate the results of QuBiLS-MAS approach

@ When it is applicable, specifies the number of components (PCs)

® 1.0 A models

¢ Compound 31 excluded, taken as outlier, is not taken into account in the training set

' Logarithm of the binding affinity to the corticosteroid-binding globulin (CBG)

has been the one based on the “Combined Electrostatic ~ Futures outlooks

and Shape Similarity Matrix” (Qf, = 0.941, var = 6),
which is an alignment- and grid-based method known to
be computationally expensive. Additionally, this model
employs the Genetic Neural Network (GNN) as the fit-
ting method, which generally yields more robust and
better optimized models compared to other linear meth-
ods. Even then, comparable performance is obtained
with QuBiLs-MAS models [(Q%, = 0.937 (compound
31 excluded), var = 6), (Q}, = 0.914 (compound 31
included), var = 6)] based on the MLR-GA, which is a
much simpler technique than GNN. Therefore, based on
the results obtained in this study, it can be claimed that
the QuBiLs-MAS MDs proposed offer a considerable
advantage over well-known traditional methodologies.

Conclusions

The QuBiLs-MAS approach for atom-pair relations,
in its diverse generalizations and extensions, seems
to renew the prospect of achieving 2D-QSAR models
with good predictive power. Inspired by the “No Free
Lunch” theorem [58], which postulates that there is no
unique best alternative for tackling optimization prob-
lems, the different extensions constitute an innovative
undertaking to suitably characterize the different phe-
nomena that affect the molecular configuration and
intermolecular interactions, and thus affecting their
biological activity. Variability and Principal Component
analyses of the QuBiLs-MAS indices demonstrated that
the proposed generalizations yield indices with supe-
rior variability compared to other indices defined in the
literature and capture chemical information not codi-
fied by the DRAGON MD families. Also, it was demon-
strated that suitable gains are obtained in the predictive
ability of the QSAR models with the QuBilLs-MAS
approach. Therefore, the QuBiLs-MAS 2D-indices
constitute a relevant tool for the diversity analysis of
compound datasets and high-throughput screening of
structure—activity data.

Future tasks include the development of a version of the
QuBiLs-MAS module to compute molecular indices on a
distributed computing system for high-throughput calcu-
lation, as well as, a version to use the Graphical Process-
ing Units (GPU) present in several personal computers
nowadays. Moreover, various (dis-)similarity multi-met-
rics to consider relations for more than two atoms (multi-
linear forms) are to be introduced, in addition to a new
set of multi-metrics based cut-offs.

Additional file

Additional file 1. The mathematical definitions of the norms, means

and statistical invariants as generalizations of the linear combination of
LOVIs as global (and/or local) MDs aggregation operator, as well as clas-
sical algorithms which generalize the first three groups are presented as
Figure SI1-Table S12. The UML diagram (Figure SI3), a debug report file
content (Figure SI4), a batch process manager dialog window (Figure
SI5) are also listed. Some results of the factor analysis by the principal
component method are shown as Table SI6-Table SI8, and finally, the
names of structures for Cramer’s steroid database and their corresponding
values for the binding affinity to the corticosteroid-binding globulin (CBG)
is in Table SI9.
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