
Profiles of immune infiltration in abdominal aortic
aneurysm and their associated marker genes:

a gene expression-based study

Tan Li1 00 , Tianlong Wang2 00 , and Xin Zhao3 00

1Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang, China
2The First Clinical College of China Medical University, the First Hospital of China Medical University, Shenyang, China

3Department of Operation Room, the First Hospital of China Medical University, Shenyang, China

Abstract

Immune-mediated inflammation plays a key role in the pathology of abdominal aortic aneurysm (AAA). We aimed to use a
computational approach to profile the immune infiltration patterns and related core genes in AAA samples based on the
overexpression of gene signatures. The microarray datasets of AAA and normal abdominal tissues were acquired from gene
expression omnibus (GEO) database. We evaluated the composition of immune infiltrates through microenvironment cell
populations (MCP)-counter. Weighted gene correlation network analysis (WGCNA) was employed to construct the co-
expression network and extract gene information in the most relevant module. Functional and pathway enrichment analysis was
performed and immune infiltration related core genes were screened. AAA tissues had a higher level of infiltration by cytotoxic
lymphocytes, NK cells, T cells, fibroblasts, myeloid dendritic cells, and neutrophils than normal aorta. The red module was
strongly correlated with the infiltrating levels of T cells and cytotoxic lymphocytes. Gene ontology (GO) and pathway analyses
revealed that genes in the most relevant module were mainly enriched in T cell activation, regulation of lymphocyte activation,
cytokine-cytokine receptor interaction, and chemokine signaling pathway, etc. The expression of GZMK, CCL5, GZMA, CD2,
and EOMES showed significant correlations with cytotoxic lymphocytes, while CD247, CD2, CD6, RASGRP1, and CD48
expression were positively associated with T cell infiltration. In conclusion, we comprehensively analyzed profiles of infiltrated
immune cells in AAA tissues and their associated marker genes. Our data may provide a novel clue to indicate the underlying
molecular mechanisms of AAA formation in terms of immune infiltration.

Key words: Abdominal aortic aneurysm; Immune infiltration; Immune microenvironment; Genomics; Bioinformatics

Introduction

Abdominal aortic aneurysm (AAA) is a complicated
and multifactorial disease, which represents a pathologi-
cal expansion of the abdominal aorta with a diameter of
X3.0 cm or more than 50% of normal diameter. AAA is
considered one of the leading causes of mortality in
subjects aged over 65 years worldwide (1). Although there
are several identified biological features in AAA, compel-
ling evidence suggests that immune-mediated processes
play a prominent and defining role in the pathogenesis
of AAA (2,3). The immune-inflammatory responses are
mediated by a number of specialized immune cell types
that interplay in a highly coordinated manner and are
functionally critical to AAA initiation and progression (4).

Based on previous human and experimental AAA
studies, several exogenous immune cells, including lym-
phocytes, macrophages, neutrophils, natural killer (NK)
cells, and dendritic cells, have been found to infiltrate into

the aneurysmal tissues, evoking a series of inflammatory
reactions by releasing a wide range of pro-inflammatory
cytokines that contribute to the direct structural protein
degradation of the abdominal aorta (3,5,6). However, most
reports just focused on a narrow view of immune re-
sponse, generally discussing only one or two cell types
using immunohistochemistry (IHC), immunofluorescence,
or flow cytometry. Little is known about the composition
and diversity of infiltrative immune cells that collectively
influence the risk of AAA. To better understand the com-
plex network of immune cells acting in AAA, it is neces-
sary to simultaneously quantify multiple immune-related
infiltrates within a tissue specimen for determining their
specialized roles in AAA pathophysiology.

Advances in computational methods have reinvigo-
rated the potential for large public repositories for the
collections of genomic data, which serves to offer more
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comprehensive information about complex diseases like
AAA (7). Large-scale programs have allowed for the
identification of immune microenvironment and even the
performance of immune strategies in AAA, which increas-
ingly attracts researchers’ interests. The microenvironment
cell populations (MCP)-counter method measures the inter-
sample relative abundance of different cell groups in a
microenvironment and across simulated mixtures (8,9).
This method can simultaneously quantify ten cell types with
a single gene-expression assay. Compared to CIBER-
SORT algorithm, there is a conceptual difference. CIBER-
SORT is a flow cytometry-inspired computational method
and commonly used to estimate the intra-sample propor-
tions of immune cell subtypes within the leukocyte fraction
of simulated mixtures (8). So far, CIBERSORT algorithm
has been employed to evaluate the infiltration of immune
cells in AAA samples (10). Although MCP-counter analysis
is widely conducted in studies of tumor microenvironment
(11–14), its realistic application in AAA has not been
validated.

Therefore, the present study mainly applied MCP
algorithm to calculate the infiltrating abundance of immune
cells in AAA samples. Then, gene co-expression network
was constructed to investigate the gene modules and
their associations with immune infiltrates in AAA, and we
further carried out functional annotation of genes in the
most relevant module and screened for immune infiltra-
tion-related core genes. Our findings provided some
significant insights into the complex association between
immune microenvironment and AAA formation.

Material and Methods

Data acquisition
The gene expression omnibus (GEO) database is a

public database of gene chip data. We searched for the
available datasets related to AAA in the GEO database.
Three chips (GSE47472, GSE57691, and GSE98278)
related to AAA were annotated with Illumina Human-
HT-12 v4.0 expression bead chip (www.illumina.com).
Relevant data were extracted from the three chips, in
which 8 normal cases were extracted from GSE47472,
49 AAA and 10 normal cases were extracted from
GSE57691, and 48 AAA cases were extracted from
GSE98278. Due to the batch effect between different
data, the original datasets underwent background cor-
rection and quantile normalization by ‘‘Limma’’ package
(https://bioconductor.org).

Evaluation of AAA-relevant immune infiltration
The MCP-counter package in R (https://github.com)

was applied to evaluate the immune infiltration of each
tissue sample from transcriptomic data. This method
quantifies the abundance of different immune cells on the
basis of specific molecular markers (8). Then, we appraised

the association degree between different infiltrates in AAA
and explored AAA-specific immune infiltrating components.
xCELL algorithm (https://xcell.ucsf.edu) was also utilized to
determine the abundance of each cell component within
tissues between AAA and normal aorta.

AAA-related gene co-expression network
construction by WGCNA analysis

Due to the noise in the second-generation sequencing
technology, median absolute deviation (MAD) approach
was employed to reduce the presence of noise. Gene co-
expression network was constructed by the weighted
gene correlation network analysis (WGCNA) R software
package (https://horvath.genetics.ucla.edu). In the WGCNA
technique, we used power value to calculate the co-
expression module among genes. The criterion of co-
expression weight 42.5 was used to select the candidate
network. We calculated the correlation between modules
and AAA risk-related immune infiltrating components.
Heatmap was applied to describe the strength of relation-
ship (strong or weak). Then, we selected the most relevant
module for the next analysis.

Functional and pathway enrichment analysis of genes
in the most relevant module

Gene ontology (GO) analysis (http://geneontology.org)
is a major bioinformatics tool for annotating gene and its
products. It contains terms for three categories: cellular
components, molecular functions, and biological pro-
cesses. The Kyoto encyclopedia of genes and genomes
(KEGG) is a database (https://www.genome.jp) with infor-
mation on genomes, biological pathways, diseases, and
chemicals. To investigate the potential biological themes
and pathways of genes in the most relevant module, we
used the clusterProfiler package in R (https://bioconduc
tor.org) for GO and KEGG analyses.

Immune infiltration-related core genes
Correlation analysis was conducted to determine the

association between genes in the most relevant module
and components of immune infiltration. The top 5 cor-
related genes were searched as core genes affecting the
immune infiltration of AAA.

Statistical analysis
All analyses were conducted with R version 3.5

(https://www.r-project.org/) and its several open packages.
Differences between groups of immune infiltrating com-
ponents were examined by nonparametric tests. The
detection of the core genes of immune infiltration was
assessed by Spearman’s correlation. For all the multiple
tests, we utilized Benjamini and Hochberg (BH) to correct
the P value. The two-sided P valueo0.05 was considered
statistically significant. Other used visual packages
included pheatmap, ggplot2, and corrplot.
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Results

Landscape of immune infiltration in AAA tissues
Eight immune (T cells, CD8 T cells, NK cells, cytotoxic

lymphocytes, B lineage, monocytic lineage, myeloid
dendritic cells, and neutrophils) and two stromal (endothe-
lial cells and fibroblasts) cell populations in AAA and
normal aortic tissues were discriminated by MCP-counter
method (Figure 1A). Through correlation analysis, we
found a relationship between different components in
AAA (Figure 1B). In particular, there was a strong positive
association of T cells with B lineage and cytotoxic
lymphocytes.

Furthermore, we confirmed the differences of immune
infiltrating components between AAA and normal tissues.
Results indicated that AAA tissues contained a higher
proportion of T cells, cytotoxic lymphocytes, NK cells,
fibroblasts, myeloid dendritic cells, and neutrophils com-
pared with normal tissues (all Po0.05) (Figure 1C). In
addition, based on xCELL analysis, we screened out
twelve cell types including CD4+ T cells with significant
differences between AAA and normal aorta (Supplementary

Figure S1). However, there were no significant changes in
other cell populations such as macrophages, Tregs, and
MSC (Supplementary Table S1).

AAA-related gene co-expression network
construction

The WGCNA analysis was used for describing the
correlation models among genes across microarray
samples. First, the MAD test was carried out on the data
and the top 25% expressed genes were selected for the
next step analysis. Then, 4726 genes were obtained for
further study. Through soft threshold selection, we used
soft threshold 7 for module building (Figure 2A). Finally,
11 modules were obtained, and there were 2240, 776,
499, 303, 285, 205, 112, 107, 78, 57, and 37 genes in the
modules, respectively (Figure 2B) (Supplementary Table
S2). In addition, we analyzed the relationship between
different modules and AAA risk-related immune infiltrates.
Interestingly, the results suggested that the red module
had a strong positive correlation with the infiltrating levels
of T cells and cytotoxic lymphocytes (r=0.90 and 0.84
respectively, all Po0.05) (Figure 2C).

Figure 1. The landscape of immune infiltration in abdominal aortic aneurysm (AAA) samples. A, The performance of microenvironment
cell populations (MCP)-counter for characterizing immune infiltration in AAA and normal aortic tissues. B, Correlation analysis between
cell components with significant results. C, The differences of immune infiltration between AAA and normal aortic tissues. Data are
reported as median and interquartile range. *Po0.05, **Po0.01, ***Po0.001 (Mann-Whitney U test).
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Functional and pathway enrichment analysis of genes
in identified module

We carried out the functional and pathway enrichment
analysis of genes in the identified module. GO analysis
revealed that genes in the red module mainly participated
in T cell activation, regulation of lymphocyte activation,
leukocyte cell-cell adhesion, lymphocyte and mononu-
clear cell proliferation, etc. Moreover, several pathways
linked to AAA were observed trough KEGG analysis,
including cytokine-cytokine receptor interaction, chemo-
kine signaling pathway, Th1 and Th2 cell differentiation,
and NF-kappa B signaling pathway (Figure 3) (Table 1).

Identification of core genes for the most relevant
immune infiltrates

We analyzed the relationship of genes in the red
module with the infiltration of T cells and cytotoxic lympho-
cytes. We selected five genes with the strongest correla-
tion as the core genes affecting immune infiltration in AAA.
Cytotoxic lymphocytes were positively associated with
the expression of granzyme K (GZMK), CCL5, granzyme
A (GZMA), CD2, and eomesodermin (EOMES), while
T cells showed significant correlations with CD247, CD2,
CD6, RAS guanyl-releasing protein 1 (RASGRP1), and
CD48 expression (Figure 4) (Table 2).

Discussion

Based on an integrative bioinformatics analysis, the
current study took the first step to establish the patterns
of immune infiltration in AAA using MCP algorithm. Six

differential infiltrating cells were identified in AAA tissues.
Then, we constructed gene co-expression network and
conducted the functional and pathway enrichment anal-
ysis of genes in the most relevant module. Finally, we
presented the immune-related core genes of T cells and
cytotoxic lymphocytes. Our findings unveiled the inner link
between profiles of immune infiltration and AAA risk, and
rendered possible therapeutic targets for AAA.

Studies have explored immune infiltrating cells present
in AAA tissues by IHC, which relied on a single surface
marker to discern a subpopulation. However, this ap-
proach was considerably less efficient for discriminating
closely relevant cell types, which could result in mislead-
ing and contradictory findings as many marker proteins
were expressed in diverse cell types (15). Whether it is
possible to break through a technical limitation to assess
the overall immune infiltration and further analyze which
subtype has a major effect in AAA formation is one
emerging question.

In this study, we simultaneously quantified the relative
proportions of ten subsets of infiltrating cells in AAA and
normal tissues through MCP analysis, which was valid to
compare the abundance of immune cells across multiple
samples based on a rigorous set of markers (8,14). The
results showed markedly elevated proportions of T cells,
cytotoxic lymphocytes, NK cells, fibroblasts, myeloid
dendritic cells, and neutrophils in AAA cases compared
to normal aorta, indicating a promising role of these
infiltrating subtypes in the risk of AAA. T cells, a hetero-
geneous group of lymphocytes with a diverse classi-
fication system and multiple physiologic actions, were

Figure 2. Weighted gene correlation network analysis (WGCNA) analysis for abdominal aortic aneurysm (AAA)-related gene co-
expression network construction. A, Soft threshold selection. B, Gene dendrogram obtained by average linkage hierarchical clustering.
Each color represents a gene module. C, Correlation analysis of WGCNA modules with AAA-related immune infiltrates. The numbers
represent the correlation coefficient (P value) on the horizontal and vertical coordinates.
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observed to be a dominant population in AAA (16). The
high prevalence of T cells in AAA patients suggested a
critical role of adaptive immune cells in AAA pathophysiol-
ogy (17). Cytotoxic lymphocytes were involved in the
pathogenesis of AAA via the production of cytotoxic
mediators, such as interferon-gamma and perforin, which
resulted in the cytoskeletal destruction and smooth
muscle cell (SMC) apoptosis (18,19). The balance of T
cells and cytotoxic lymphocytes in acquired immunity is
considered important in the process of aneurysm growth
(20). Amin et al. (21) showed that Tcell inhibitory molecule
has the capacity to attenuate vascular inflammation
and the content of several cell types including cytotoxic

lymphocytes in aortic wall of AAA. Among innate immune
cells in AAA patients, infiltrating NK cells can produce a
high level of pro-inflammatory cytokines and perforin that
might cause or exacerbate aortic tissue damage and
increase the cytotoxicity against aortic SMCs (22). Den-
dritic cells are the most potent antigen-presenting cells
that come in contact with T cells within lymphoid follicles
and have a role in regulating the functional activity of
immune response in AAA (23). Neutrophils appear to be
one of the early contributors in AAA formation through
secreting some specific ECM-degrading enzymes and
neutrophil protease (3,24). Fibroblasts have also been
implicated in AAA risk via influencing the secretion of

Figure 3. Functional and pathway enrichment analysis of genes in identified module. GO: Gene ontology; KEGG: Kyoto encyclopedia of
genes and genomes.

Table 1. Functional and pathway enrichment analysis of genes in identified module.

Terms/ID Description GeneRatio P value Padjusted Count

GO

GO: 0042110 T cell activation 36/183 1.55E-22 3.62E-19 36

GO: 0007159 Leukocyte cell-cell adhesion 28/183 1.90E-18 2.22E-15 28

GO: 0051249 Regulation of lymphocyte activation 30/183 4.04E-16 2.41E-13 30

GO: 0050863 Regulation of T cell activation 25/183 4.12E-16 2.41E-13 25

GO: 0050870 Positive regulation of T cell activation 21/183 9.22E-16 4.32E-13 21

GO: 0046651 Lymphocyte proliferation 23/183 1.79E-15 7.00E-13 23

GO: 0032943 Mononuclear cell proliferation 23/183 2.12E-15 7.07E-13 23

GO: 1903039 Positive regulation of leukocyte cell-cell adhesion 21/183 2.98E-15 8.71E-13 21

GO: 0022409 Positive regulation of cell-cell adhesion 22/183 6.74E-15 1.75E-12 22

GO: 0070661 Leukocyte proliferation 23/183 8.10E-15 1.89E-12 23

KEGG

hsa04640 Hematopoietic cell lineage 14/101 1.59E-11 1.57E-09 14

hsa04672 Intestinal immune network for IgA production 11/101 1.80E-11 1.57E-09 11

hsa04514 Cell adhesion molecules (CAMs) 14/101 4.11E-09 2.38E-07 14

hsa04060 Cytokine-cytokine receptor interaction 17/101 1.66E-07 7.23E-06 17

hsa04062 Chemokine signaling pathway 13/101 8.29E-07 1.80E-05 13

hsa04658 Th1 and Th2 cell differentiation 9/101 2.44E-06 3.26E-05 9

hsa04662 B cell receptor signaling pathway 8/101 3.12E-06 3.87E-05 8

hsa04659 Th17 cell differentiation 8/101 6.52E-05 0.00054055 8

hsa04650 Natural killer cell mediated cytotoxicity 8/101 0.0002687 0.0017981 8

hsa04064 NF-kappa B signaling pathway 7/101 0.0002866 0.00184668 7

GO: Gene ontology; KEGG: Kyoto encyclopedia of genes and genomes.
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inflammatory mediators and recruitment of immune cells
to the aortic wall (25).

When correlation analysis of different modules with
AAA-related immune infiltrates was performed, we found
that the red module was strongly correlated with infiltrating
levels of T cells and cytotoxic lymphocytes in the context
of AAA. Further GO and KEGG analyses for genes in the
most relevant module revealed a wide range of biological
themes and pathways. Biological processes were partic-
ularly related to T cell activation, regulation of lymphocyte
activation, leukocyte cell-cell adhesion, lymphocyte and
mononuclear cell proliferation, and positive regulation
of cytokine production. In addition, some pathways were

associated with cytokine-cytokine receptor interaction,
chemokine signaling pathway, T cell differentiation, and
NF-kappa B signaling pathway. T cell activation and
proliferation should be very central in the regulation of
immune reactions in AAA (26). Cytokines in the aortic wall
mainly secreted by T cells and cytotoxic lymphocytes
could drive the aggregation of lymphocytes and their
differentiation towards some effective phenotypes, further
facilitating the adaptive immune response in AAA wall
(27,28). Moreover, the trigger for immune cell recruitment
may incorporate the elevated local production of chemo-
kines, such as IL-8 and MCP-1 (29). The activation of
NF-kappa B signaling pathway has been demonstrated to
increase the expression and release of pro-inflammatory
cytokines as well as proteases in AAA (6).

The activation of immune cells has been linked to the
dynamic changes in gene expression, and related gene
expression products can promote the inflammatory reac-
tions in cells and tissues (30). We observed that enriched
cluster of cytotoxic lymphocytes was characterized by a
high expression level of GZMK, CCL5, GZMA, CD2, and
EOMES genes, and there was a significant association of
T cell infiltration with CD247, CD2, CD6, RASGRP1, and
CD48 expression. GZMK and GZMA are members of
the serine protease family detected in the granules of
cytotoxic lymphocytes and have the ability to induce target
cell apoptosis (31). Chemokine CCL5 is a target gene of
NF-kappa B and plays an active part in recruiting a variety
of leukocytes into inflammatory sites (32). As a T-box
transcription factor, EOMES is expressed by activat-
ed cytotoxic cells and regulates the development and

Figure 4. Correlation analysis of core genes with the most relevant immune infiltrates in abdominal aortic aneurysm (AAA).

Table 2. Core gene correlation analysis results.

Type/Gene r P value Padjusted

Cytotoxic lymphocytes

GZMK 0.815 1.58E-28 3.24E-26

CCL5 0.812 3.28E-28 3.37E-26

GZMA 0.781 8.23E-25 5.62E-23

CD2 0.774 3.25E-24 1.67E-22

EOMES 0.770 7.80E-24 3.20E-22

T cells

CD247 0.939 4.41E-54 9.05E-52

CD2 0.937 2.59E-53 2.65E-51

CD6 0.928 2.43E-50 1.66E-48

RASGRP1 0.905 8.57E-44 4.39E-42

CD48 0.900 1.82E-42 7.47E-41
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differentiation of certain effector cells (18). CD2 is a
transmembrane glycoprotein located on T lymphocytes
and cytotoxic cells with essential roles in immune recog-
nition (33). CD247 is part of the T cell receptor complex
and CD6 serves as a cell surface antigen, and both of
them participate in the regulation of signal transduction in
T cells (34,35). CD48 is a costimulatory receptor and
contributes to T cell activation and proliferation through
its interaction with CD2 (36). RASGRP1 is a guanine-
nucleotide exchange factor known to control key immune
cell functions, and its reductions are associated with
immunodeficiency and even life-threatening immune
dysregulation (37). Although the above factors have
been found to exert immune regulatory effects in many
diseases, their implications in AAA have never been
defined. Our observations were indicative of the potential
importance of these molecules in regulating the activation
and differentiation of cytotoxic lymphocytes or T cells in
AAA disease.

There were several limitations in our study. First,
although we eliminated the imbalance of different micro-
array datasets by batch effect, heterogeneity of data in the
public domain still existed in some level. Second, public
datasets for analyzing gene expression profiles were
limited, especially for normal abdominal tissues. Third,

there was a lack of AAA-associated clinical information
and current findings only relied on bioinformatics analysis.
Thus, further in vitro and in vivo experiments are required
to confirm our results and clarify the detailed mechanism.

In summary, the present study reflected a higher
infiltration of T cells, cytotoxic lymphocytes, NK cells,
fibroblasts, myeloid dendritic cells, and neutrophils in
AAA. Functional annotation of genes in the most relevant
module were carried out through GO and KEGG enrich-
ment analysis. Furthermore, we identified marker genes
strongly associated with the immune infiltration of cyto-
toxic lymphocytes and T cells. Our data may be beneficial
to direct future research and the development of risk
stratification and therapeutic options for AAA patients.
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