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Abstract

Deconvolution of heterogeneous bulk tumor samples into distinct cellular populations is an

important yet challenging problem, particularly when only partial references are available. A

common approach to dealing with this problem is to deconvolve the mixed signals using

available references and leverage the remaining signal as a new cell component. However,

as indicated in our simulation, such an approach tends to over-estimate the proportions of

known cell types and fails to detect novel cell types. Here, we propose PREDE, a partial ref-

erence-based deconvolution method using an iterative non-negative matrix factorization

algorithm. Our method is verified to be effective in estimating cell proportions and expres-

sion profiles of unknown cell types based on simulated datasets at a variety of parameter

settings. Applying our method to TCGA tumor samples, we found that proportions of pure

cancer cells better indicate different subtypes of tumor samples. We also detected several

cell types for each cancer type whose proportions successfully predicted patient survival.

Our method makes a significant contribution to deconvolution of heterogeneous tumor sam-

ples and could be widely applied to varieties of high throughput bulk data. PREDE is imple-

mented in R and is freely available from GitHub (https://xiaoqizheng.github.io/PREDE).

Author summary

Tumor tissues are mixtures of different cell types. Identification and quantification of con-

stitutional cell types within tumor tissues are important tasks in cancer research. The

problem can be readily solved using regression-based methods if reference signals are

available. But in most clinical applications, only partial references are available, which sig-

nificantly reduces the deconvolution accuracy of the existing regression-based methods.

In this paper, we propose a partial-reference based deconvolution model, PREDE, inte-

grating the non-negative matrix factorization framework with an iterative optimization

strategy. We conducted comprehensive evaluations for PREDE using both simulation and
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real data analyses, demonstrating better performance of our method than other existing

methods.

This is a PLOS Computational BiologyMethods paper.

Introduction

Tumor tissues are heterogeneous and consist of different cell types including tumor cells (or

sub-clones) and various microenvironmental cell types such as infiltrating immune cells and

stromal cells [1–3]. The intra-tumor heterogeneity is reported to be closely related to clinical

outcomes such as tumor growth, metastasis, recurrence and drug resistance [4]. Therefore, it

is of great significance to accurately quantify the degree of tumor heterogeneity, including the

number of cell populations contained in tumor tissues, the molecular profile of each cell popu-

lation and their proportions.

With the rapid development of high-throughput sequencing technology, a large number of

genome, epigenome, transcriptome and proteome data of tumor samples have been profiled.

Such biomedical big data provide a possibility to study tumor heterogeneity from the molecu-

lar perspective by using computational methods. Although the recent emerging single-cell

sequencing technology strives to tackle these problems by measuring expression profiles of

thousands to millions of cells simultaneously, it is yet not feasible to be conducted for large

cohort studies due to, for example, expensive cost and extensive dropout events [5]. Therefore,

quantification of tumor heterogeneity from the bulk omics data is profoundly important, par-

ticularly in clinical situations.

In recent years, many computational methods have been proposed for bulk data deconvolu-

tion [6–10]. At present, these methods can be roughly divided into two categories: reference-

based methods [9,11], and reference-free methods [12–14]. The first type of methods requires

cell type-specific gene expressions (i.e., reference) as input, and the proportion of each cell

type can be analyzed by constrained projection algorithms such as constrained linear regres-

sion or support vector regression. However, for many practical reasons, it is virtually impossi-

ble to obtain gene expression profiles of all cellular components in tumor tissues [15]. As such,

reference-based methods are only applicable for special diseases such as blood or brain cancers

or only focus on specific cell types such as immune cells [10,16], where major cellular compo-

nents are clear and reference signals are available [17]. The second type of methods does not

rely on reference information and aims to estimate molecular profiles and compositions of all

cell types simultaneously [6,12,13,18,19]. Although these methods do not require cell-type

expression profiles as input, they rely on known cell-type proportions as prior information

[8,20,21].

However, in real clinical practice, only a fraction of cell types is known while the rest are

unknown so the deconvolution problem should be subject to partial reference. A straightfor-

ward way to deal with this problem is to use current available information of known cell types

as the reference to deconvolve the whole mixture signals, or assume all unknown proportion

to be from one cell type [22]. However, as will be illustrated in our simulation section, such a

strategy fails to account for new cell types, and is prone to overestimate proportions of known

cell types.

In this paper, we proposed a partial-reference based deconvolution (PREDE) model based

on the non-negative matrix factorization (NMF) framework using an iterative optimization

strategy to address the above challenges. Using the expression profiles of the available cell
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types as input, PREDE could simultaneously estimate both the proportions of all cell types and

the expression profiles of unknown cell types. We performed comprehensive evaluations for

the proposed deconvolution method in comparison with other existing methods using both

simulated data and real dataset of tumor samples. The results demonstrated that PREDE could

effectively deconvolve mixture tumor samples from partial reference signals and could reveal

novel insights into tumor heterogeneity and clinical prognosis.

Results

Overview of PREDE

As the previous methods did [23], we assume that the considered heterogeneous samples com-

pose of fixed number of cell types whose expression profiles are relatively stable across samples

[24]. The deconvolution problem is usually formularized to Y =WH+�, where Y represents

expression matrix of heterogeneous samples,W is basis matrix representing the quantitative

expression profiles of constitutional cell types andH is the proportion matrix. If quantitative

profiles of cell types (i.e.W) are known, it is so-called reference-based deconvolution. Alterna-

tively, if both basis matrixW and proportion matrixH are unknown, it is so-called reference-

free deconvolution.

In real clinical practice, only a fraction of the cell types in tumor samples is available. We

denote the available portion of basis matrixW asW1, and the unknown portion asW2, i.e.,W
= (W1,W2). Given expression matrix Y for all tumor samples and basis matrixW1, PREDE

infers the basis matrixW2 for unknown cell types and overall proportion matrixH. The main

workflow of PREDE is briefly illustrated in Fig 1. We solve the above problem by iteratively

Fig 1. The workflow of partial reference-based deconvolution (PREDE). Given expression matrix of heterogeneous

samples Y and known reference matrixW1, PREDE aims to infer the proportion matrixH for all constituent cell types

and expression matrix for unknown partW2. The deconvolution problem is formulated to an NMF model which is

solved via an iterative Quadratic Programming procedure by fixingW1 in each iteration.

https://doi.org/10.1371/journal.pcbi.1008452.g001
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applying the constraint Quadratic Programming algorithm until convergence, withW1 fixed

in each iteration (see Materials and Methods for detail).

Our PREDE method can be viewed as a generalization of previous reference-based and ref-

erence-free deconvolution algorithms. If known referenceW1 are complete (i.e.,W1 =W),

PREDE is actually the typical reference-based deconvolution method. On the other hand, if

expression profile of any cell type is unavailable (i.e.,W1 is null), PREDE then becomes the

typical reference-free method.

Benchmarking PREDE with cell line mixture data

We conducted a series of simulations to comprehensively evaluate the performance of PREDE,

by considering three factors in the simulations: noise ratio, expression similarity between cell

lines and proportion of rare cell types. To this end, we downloaded gene expression profiles of

91 lung cancer cell lines from the CCLE dataset and selected some of them as referenceW.

Gene expression matrix Y for mixture samples is then obtained by multiplyingW with a ran-

domly proportion matrix H generated from the Dirichlet distribution, followed by an addi-

tional error matrix with Gaussian distribution. Y and available reference matrixW1 were used

as inputs of PREDE and Akaike information criterion (AICc) was employed to determine the

optimal number of cell types.

We first evaluated the accuracy of AICc in determining the number of cell types from mix-

ture samples. Following the above simulation procedure, we randomly selected 3, 6 and 10

lung cancer cell lines to generate 100 mixture samples respectively, and assumed only a frac-

tion of cell lines to be known. Fig 2A shows the AICc scores whenW consists of 3, 6 and 10 cell

types, but only 1, 4 and 8 of them are supposed to be known. As expected, AICc decreased first

and then gradually increased with the increase of numbers of cell types, and correctly achieved

the minimum values at K = 3, 6 and 10 respectively. We further investigated the accuracy of

AICc in determining the total number of cell types when different numbers of known cell

types were used for the input. When the total number of cell types was 6, AICc successfully

reaches the minimum value at K = 6, regardless of the numbers of known cell types (Fig 2B).

But when the total number of cell types increased to 10 and only a small number of cell types

was known (e.g., K1 = 1), the predicted number of cell types is slightly underestimated (Fig

2C).

Fig 2. Accuracy of AICc in identifying the number of cell types using simulated data. (A) AICc values when the total number of cell types is 3, 6 or 10, but only 1, 4

or 8 cell types are known, respectively. (B) AICc values when 1, 2, 3, 4 or 5 of total 6 cell types are known. (C) AICc values when the number of total cell types is 10

and the numbers of known cell types are 1, 3, 5, 7 and 9, respectively.

https://doi.org/10.1371/journal.pcbi.1008452.g002
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Based on the above simulation datasets, we compared our PREDE method with four exist-

ing methods, i.e., qprog (constrained linear regression solved by quadratic programing) [25],

dcq (digital cell quantification using elastic net regularization) [26], CIBERSORT (CBS, state-

of-the-art tool for inferring tumor-infiltrating immune cells using support vector regression)

[10], and a reference-free deconvolution using NMF (RF) [19]. Two iterative methods, i.e., RF

and PREDE, adopted the same condition for convergence. CIBERSORT was implement by the

‘svm’ function from the e1071 package, where the hyperparameter μ is optimally selected by

cross-validation. All above methods take the top 1000 genes with the largest coefficient of vari-

ation as input. We calculated the mean absolute error (MAE) between true and predicted pro-

portions of available cell types for all four methods at different levels of noise (Gaussian

distributions with mean 0 and standard deviation of c×m, where c ranges from 0.1 to 0.5 with

step 0.1,m is the mean expression for each gene in mixing samples). PREDE obtained the low-

est biases and relatively stable results at all levels of noise, compared to qprog, dcq and CIBER-

SORT (Fig 3A). In addition, we evaluated the performance of four methods in estimating cell-

type proportions when unknown cell fractions increase from 0.1 to 0.5 (Fig 3B). Our method

also showed constantly the lowest MAE at different unknown fractions, especially when

unknown fractions exceed 0.2. Similar conclusion can be drawn when using Pearson correla-

tion coefficients between true and predicted cell proportions as measurement for proportion

estimation (S1 Fig).

Fig 3. Comparing different deconvolution methods for estimating cellular proportions and expression profiles from mixture

data. (A-B) Mean absolute errors between the true and predicted cellular proportions by four methods from the simulated data with

different levels of noise (A) or different proportions of unknown cell types (B). (C-D) Correlations between true and predicted

expression profiles of unknown cell types by PREDE or reference-free methods under different levels of noise (C) or proportions of

unknown cell types (D). All simulations were repeated 20 times.

https://doi.org/10.1371/journal.pcbi.1008452.g003
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Besides proportion estimation, our partial reference deconvolution method (as well as RF)

is also capable of inferring gene expression profiles of unknown cell types. Fig 3C and 3D show

correlation coefficients between predicted and true expression profiles derived from the two

methods at different levels of noise (Fig 3C) and unknown cell fractions (Fig 3D). Our method

exhibited consistently higher accuracy compared to the reference-free method.

We also evaluated the performance of our method when one unknown cell type is highly

similar to known cell types. To this end, we constructed two simulation datasets by selecting

different sets of lung cancer cell lines from the CCLE dataset. The first is ‘low similarity set’,

which consists of 6 cell lines (4 known and 2 unknown) with relatively low Pearson correlation

coefficient (PCC) (0.75~0.8) between each pair of cell lines. The second is ‘high similarity set’,

which also consists of 4 known and 2 unknown cell types but one unknown cell line is highly

correlated with a known one (with PCC about 0.95). For both datasets, PREDE and RF were

used to infer proportions of unknown cell lines, where prediction accuracies were measured

by MAE and Pearson correlations between predicted and true proportions. We found that for

both criteria, PREDE showed relatively lower biases and higher Pearson correlations in recov-

ering the proportions of unknown cell type compared with RF (S2 Fig).

We then evaluated the performance of PREDE on recovering rare populations that may be

of biological importance. We mixed tumor samples from the 6 CCLE lung cell lines including

one rare type with proportion varying from 0.01 to 0.15. We first examined whether AICc

could infer the number of total cell types from the mixture samples. When proportion of the

rare cell type was small (e.g., less than 0.05), AICc achieved its minimal value at K = 5 (S3 Fig).

This indicates that when the proportion of a cell type was too small, AICc failed to recognize it

as an independent cell type but treated it as noise or merged it into other major cell types. But

if its proportion was moderately large, i.e., exceeds 0.07, AICc could successfully identify the

total number of cell types (K = 6). Then we sought to evaluate the performance of the PREDE

and RF in inferring proportion and expression profile of the unknown rare population when K
was given. PREDE showed a consistently lower proportion bias and higher profile correlation

than RF when proportions of the rare cell type changed from 0.07 to 0.10 (S4 Fig). Similarly,

we also performed simulations for the situation that the proportion of a known cell type was

rare in the total mixture. Our method also showed constantly the lowest MAE compared with

three other methods (S5 Fig).

Estimation of immune and cancer cell expression and proportion from cell

line mixtures

We next tested our method in a situation that is more relevant to cancer immunology study.

Gene expressions of 8 cell lines (including 3 breast cancer cell lines, 3 immune cell lines and 2

normal cell lines, see Method section for details) were mixed together to simulate 100 tumor

samples with roughly 60% cancer cells, 20% immune and 20% normal cells for each sample.

We considered the following two scenarios of the deconvolution: i) expressions of three types

of tumor cells are unavailable; ii) expressions of immune cells are unavailable. AICc curves (S6

Fig) showed that our method correctly predicts the total number of cell types (i.e., 8) for both

two scenarios based on the mixture data. We then used PREDE to infer the proportions and

expression profiles of the unknown cell types. PREDE could correctly recover the expression

profiles of missing cell types and their respective proportions in tumor samples (Fig 4). For

comparison, we also applied reference-free deconvolution method to the mixed samples (S7

Fig). Given the true number of cell types as input, the reference-free deconvolution method

resulted in much lower accuracies in profile and proportion estimations than PREDE, in con-

sistent with the above results (Fig 3).
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Validation of PREDE using rat tissues mixture data

To better mimic the real biological scenario, we further evaluated our method on a gene

expression dataset [21] consisting 30 samples mixed from liver, brain and lung tissues that

were derived from a rat with known proportions. We evaluated our method under the follow-

ing two scenarios: 1) one of three tissues (brain, liver, and lung) was assumed to be unknown

(Fig 5A and 5B); 2) two of three tissues were assumed to be unknown (Fig 5C and 5D).

We compared our method with two state-of-the-art methods for the same problem, i.e.,

DeMixT [27] and ISOpure [28]. DeMixT is a three-component statistical model for the decon-

volution of tumor sample heterogeneity, an updated version of the previously developed

DeMix [29]. ISOpure is a two-step statistical model to estimate tumor purities and individual

cancer profiles using tumor mixture profiles and normal profiles as input. Note that DeMixT

and ISOpure can estimate the profile of the remaining one cell type when expression profiles

of K-1 cell types are available (K is the total number of cell components). If the number of

known cell types is less than K-1, they will treat the remaining cell types (>1) as a merged sin-

gle cell type. Thus, both DeMixT and ISOpure work when only one tissue in the above rat tis-

sue mixture data is unknown (i.e., scenario 1), but only PREDE works even when two tissues

are unknown (i.e., both scenarios 1 and 2).

When the profile of one tissue was assumed to be unknown, PREDE outperformed DeMixT

and ISOpure in proportion estimation in the case that liver or lung profile was unknown (Fig

5A) and in profile estimations under all the three conditions (Fig 5B). In the case that two of

the three tissue profiles were unknown, DeMixT and ISOpure were not applicable as men-

tioned above, while our PREDE method still got favorable results (Fig 5C). Fig 5D shows the

prediction of expression profiles when two tissue types (i.e., brain & lung, liver & brain, as well

Fig 4. Estimating expression profiles and cellular proportions of cancer cells and immune cells using PREDE. Eight cell lines including three breast cancer cell lines,

three immune cell lines, and two normal cell lines were mixed with proportions 60%, 20%, and 20% respectively to mimic tumor immune microenvironment. Shown

are accuracies of profiles and proportion estimations when (A-B) expressions of cancer cells are missing and (C-D) expressions of immune cells are missing.

https://doi.org/10.1371/journal.pcbi.1008452.g004
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as liver & lung) were unknown. Overall, our method exhibited robust and improved perfor-

mance in terms of both tissue proportion and expression profiles estimations based on the rat

tissue mixture data.

Since DeMixT and ISOpure are designed specifically for tumor tissue deconvolution, in

addition to rat-tissue mixture data, we further evaluated DeMixT, ISOpure and our method

based on a synthetic dataset used in Fig 4, i.e., 100 mixture samples mixed from 3 cancer cell

lines, 2 normal cell lines and 3 immune cell lines. In our evaluation, each of the three cell types

was assumed to be homogenous for applying DeMixT and ISOpure. Mean expression profiles

of one cell types (for example, cancer cells) were treated as unknown cellular components and

expression profiles of the rest two cell types (i.e., normal cells and immune cells) were used as

input for all the three methods. S8 Fig shows the estimations of cellular proportion and expres-

sion profile for the unknown cellular component by all methods. We found that PREDE exhib-

ited overall lower MAEs (S8A Fig) in proportion estimation and higher correlations (S8B Fig)

with true profiles for unknown cell components.

Validation of PREDE using PBMC samples

We further evaluated our method on a gene expression dataset of PBMC samples (n = 20)

downloaded from the GEO database (GSE65136) where the corresponding flow cytometry

measurement of proportions are available [10]. In deconvolution of the mixture PBMC sam-

ples, expression profiles of nine cell types from LM22 matrix are chosen as reference (W), and

3, 5 and 7 of them are selected as the known referenceW1 to test PREDE as well as four other

Fig 5. Application of PREDE to rat tissue mixture data. (A) Estimated proportions of three tissue types by PREDE, DeMixT, and ISOpure when one tissue is

unknown, in comparison with true proportion. The mean absolute error (MAE) between true and predicted proportions is used to evaluate the accuracy of the

proportion estimation. (B) Correlations between true and predicted expression profiles of unknown cell types when one tissue is unknown. (C) Estimated proportions

of three tissue types by PREDE when two of three tissue types are unknown, in comparison with true proportions. (D) Correlations between true and predicted gene

expression profiles of unknown tissues by PREDE when two of three tissue types are unknown.

https://doi.org/10.1371/journal.pcbi.1008452.g005
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immune cell deconvolution tools, i.e., RF, CIBERSORT [10], dcq [26] and qprog [25]. Note

that TIMER is designed specifically for estimating the abundance of six tumor-infiltrating

immune cell types (B cells, CD4 T cells, CD8 T cells, neutrophils, macrophages, and dendritic

cells) [16]. It does not accept subset of references as input, thus cannot ensure a fair compari-

son. Therefore, TIMER was not included in the comparison. Cell proportions measured by the

flow cytometry were used as ground-truth to benchmark all the four methods.

The Pearson correlation coefficients (PCCs) between the predicted and the true propor-

tions were shown in Fig 6A. Overall, PREDE outperformed the other three methods when a

small number of cell types were available. For example, when 3 cell types were known (Fig 6A,

left panel), the PCCs between the true and the predicted proportions by RF, CIBERSORT,

qprog and dcq for Naïve_B were 0.64, 0.51, 0.42 and 0.56, respectively, but that by PREDE

achieved 0.81. When number of known cell types increased to 5 and 7, PREDE showed compa-

rable (or even slightly better in some cases) performance with the other three methods. This is

anticipated because when more cell components are known, PREDE is generally identical to

the reference-based methods, as mentioned above.

Another superiority of PREDE is the ability to infer proportions of unknown cell types (Fig

6B). When only 3 cell types are known, the correlations between proportions estimated by

Fig 6. Application of PREDE to the PBMCs dataset. Deconvolution results by PREDE, RF, CIBERSORT, dcq and qprog when 3, 5 and 7 of 9 cell types were selected

as the known reference. (A) Pearson correlations between estimated proportions by four methods and flow cytometry fractions for each known cell type. (B)

Accuracies of PREDE in terms of proportion estimations for unknown cell types.

https://doi.org/10.1371/journal.pcbi.1008452.g006
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PREDE and flow cytometry measurement is 0.8 for Mono, 0.55 for De_ga_T, and mean corre-

lation for the remaining 6 unknown cell types is 0.36. When the number of known cell types

increased from 5 to 7, the mean correlation increased from 0.52 to 0.71. All above results con-

firmed that PREDE could not only infer the proportions of known cell types, but also satisfac-

torily identify expression profiles of unknown cell types.

Applications of PREDE to BRCA, SKCM and BLCA samples in TCGA

Tumor tissues are mixtures of different cell types including mostly subclonal cancer cells as

well as a fraction of infiltrating immune cells, stroma and blood vessel cells [30]. In this section,

we further applied our method to TCGA tumor samples of three tumor types with the gene

expressions of seven immune cells as partial reference. Based on these data, PREDE identified

that the total numbers of cell types in BRCA, SKCM, and BLCA were 13, 10 and 12, respec-

tively, according to the lowest AICc values. As expected, different subtypes of tumor samples

showed distinct immune cell infiltrating patterns (Fig 7A). Macrophages account for the larg-

est proportion of immune cells in all five subtypes of breast cancer and bladder cancer samples,

which is consistent with previous experimental studies that high infiltration of tumor-associ-

ated macrophages is a hallmark of inflammatory breast cancers [31]. But the result for skin

cutaneous melanoma was quite different, i.e., dendritic cells constituted the most part in

SKCM samples, followed by macrophage and B cells. Interestingly, the proportion of CD8 T

cells was significantly higher in Neuronal samples of bladder cancer compared with the other

four subtypes, which may explain the best overall survival rate compared with other subtypes

[32,33].

We then used proportions of all cell types to cluster breast cancer samples. All 980 breast

cancer samples were categorized into the following five intrinsic subtypes, i.e., 508 Luminal A

samples, 190 Luminal B samples, 78 HER2 samples, 169 Basal-like samples, and 35 Normal-

like samples, based on gene expression profiles of PAM50 marker genes. Using the expression

profiles of the 980 BRCA tumor samples and 7 immune cell types as the input of the PREDE,

we obtained the proportion estimation of all cell types for each sample. The distance between

two tumor samples is measured by the Bray-Curtis coefficient [34] between proportions of all

cell types. We found that the Basal and Normal-like subtypes were well recognized by propor-

tions of newly detected cell groups 4 and 6, separately (Fig 7B). Note that these newly detected

cell types are not necessarily cancer cell types, but may be altered versions of known cell types,

such as the infiltrating immune cells with new characters compared to those sorted from nor-

mal blood samples. This hypothesis could be tested by comparing single-cell expression pro-

files between certain types of infiltrating immune cells and their normal counterparts. To

further examine the relationship between cell-type proportion and tumor subtype, we defined

the heterogeneity score of each tumor sample as the Shannon index of its constituent cell type

proportions. As shown in S9 Fig, different subtypes of tumor samples showed significant dif-

ference in heterogeneity score for all three cancer types (p = 2.6e-86, 3.6e-08 and 8.3e-11 for

BRCA, SKCM and BLCA, respectively).

We next investigated whether the predicted proportion of cell type was associated with the

survival of cancer patients (Fig 7C–7H). We first sorted tumor samples from one cancer type

according to the estimated proportion of specific cell types (including known immune cells

and estimated cancer cells), then calculated survival between the top 20% and the bottom 20%

samples using Cox proportional hazards regression. We found that, for BRCA and BLCA,

patients with a high level of macrophage infiltration show worse overall survival (p = 0.0381

and 0.0045) than those with low level of macrophage infiltration (Fig 7C and 7E), which indi-

cates important roles of macrophage cells in prognosis and treatment of breast and bladder
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Fig 7. Application of PREDE to TCGA tumor samples. (A) Relative proportions of seven immune cell types in different subtypes of BRCA, SKCM, and BLCA.

(B) Heatmap shows the absolute proportions of several types of cancer cells and immune cells in breast cancer samples. (C-H) Kaplan-Meier survival curves for

BRCA stratified by abundances of infiltrated Macrophage (C) and newly detected cell 3 (F), SKCM stratified by abundances of neutrophil (D) and newly detected

cell 2 (G), and BLCA stratified by abundances of Macrophage (E) and newly detected cell 2 (H). Patients with the top 20th percentile of immune/cancer cells were

compared with those with the bottom 20th percentile. P-values are obtained by the Log-rank test.

https://doi.org/10.1371/journal.pcbi.1008452.g007
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cancers. This result is also supported by two independent studies using immunohistochemistry

experiments [35,36], i.e., larger numbers of CD68 macrophages were significantly associated

with worse overall survival in breast cancer patients. Also, the meta-analysis showed that

increased macrophage density was associated with poor prognosis in more than 80% of breast

cancer cases [37]. In skin cancer, a higher level of neutrophil infiltration is associated with

favorable survival (p = 0.0278, Fig 7D), consistent with the previous discovery by Li et al. [16].

Besides immune cells, we also found that the proportions of several newly detected cell types

were significantly associated with survival rate of patients (Fig 7F–7H).

Discussion

In this paper, we proposed PREDE, a partial-reference based deconvolution method for het-

erogeneous samples by integrating an iterative constraint quadratic programing algorithm

into the NMF framework. Our approach generalized previously developed reference-based

and reference-free deconvolution methods. We showed, through comprehensive simulations

and real data analyses, that PREDE could recover expression profiles of unknown cell types

and proportions of all cell types in mixed samples under a reasonable parameter setting. One

major advantage of PREDE over existing methods is its ability to infer proportions of new cell

types other than known references, which could be useful for downstream analyses. For exam-

ple, for solid tumor tissues that consist of subclonal cancer cells and infiltrating immune cells,

expression profiles of immune cells are usually available, but the subclonal cancer cells are

largely unknown. We showed from real TCGA tumor samples that the proportions of newly

detected cell types are closely associated with tumor subtypes, and are also good indicators of

patient survival (Fig 7F–7H).

Despite its merit, our study still suffers from the following limitations. First, our method

needs the number of cell components as input, which can be correctly inferred by minimizing

the Akaike information criterion in the simulation study. However, for tumor mixture tissues,

the problem was far more complicated because every two cells in tumor tissue can be different.

Cells in a tumor tissue can be classified into different numbers of groups at different levels of

similarity thresholds. In other words, all cells in a tumor tissue form a hierarchical structure

where one can get any number of clusters depending on ‘similarity’ between cells within each

group. Therefore, we encourage the users to try different Ks in their applications, and to

choose the K which yields the reasonably distinct decomposed profiles for downstream analy-

sis. Second, our PREDE method, which detects the number of constitutional cell types based

on AICc, is only applicable when rare populations are moderate in proportion (more than 7%

according to our simulation). In addition, our method (as well as other deconvolution meth-

ods) fails to separate cell types that evolve on a continuum. It is our future work to integrate

time-course data or to incorporate single-cell expression profiles as pseudo-time reference for

more reliable deconvolution. Third, our method (as well as qprog and RF) assumes the error

to be independently and identically Gaussian distributed across different genes, which may

not hold for other types of biological data such as DNA methylation or RNA-seq counts data.

So further attention should be paid on developing new methods free of such error assumption

for partial reference-based deconvolution.

Materials and methods

Data preparation

We simulated three synthetic datasets to comprehensively evaluate our method. First, gene

expression profiles of 91 lung cancer cell lines are downloaded from the Cancer Cell Line

Encyclopedia database (CCLE, https://portals.broadinstitute.org/ccle) to generate mixed
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samples with different mixing proportions. Second, a benchmark dataset for cancer immunol-

ogy study is generated by mixing 3 breast cancer cell lines from CCLE, 3 types of immune cells

(including CD4 T cells, CD8 T cells and B cells) from GEO with accession number GSE22886

[38], and 2 primary breast epithelial cell lines (MCF10A and HMEC) with GEO accession

number GSE101921 [39]. The total 8 cell types were quantile normalized and mixed into 100

tumor samples with proportions of tumor cells, immune cells, and normal epithelial cells to be

roughly 3:1:1. Third, our method was further tested on the mixed RNA-seq data of three rat

tissues (i.e., Brain, Lung and Liver) (GSE19830 [21]).

In addition, we employed gene expression data of peripheral blood mononuclear cells

(PBMCs) of 20 samples (GSE65136) as well as the corresponding flow cytometry measure-

ments [10] to benchmark PREDE with other existing methods.

Furthermore, for real data application, we downloaded level 3 gene expression data of all

Breast invasive carcinoma (BRCA), Skin cutaneous melanoma (SKCM) and Bladder urothelial

carcinoma (BLCA) samples from GDC data portal (https://gdc.nci.nih.gov). Expression pro-

files of seven immune cells (including B cells, CD4 T cells, CD8 T cells, NK, neutrophils, mac-

rophages, and dendritic cells) are available from the Human Primary Cell Atlas (HPCA)

database [40], which were used as reference for PREDE deconvolution. As suggested by [16],

we used ComBat [41] remove the batch effect between the above TCGA RNA-seq data and

HPCA microarray data for normalization. For further analysis, we also downloaded subtype

and survival information of those tumor samples from GDC using TCGAquery_subtype and

TCGAanalyze_survival functions in the R package TCGAbiolinks [42].

Feature selection

In order to reduce computational cost, we selected a fixed number of genes which are most

informative for deconvolution. Coefficient of variation (CV), a standardized measure of dis-

persion of a probability distribution, has been commonly used in feature selection for various

high-throughput data [43,44]. In this study, we calculated the CV for each gene from the bulk

gene expression matrix and selected top 1000 genes with the highest CVs as input features for

PREDE.

The PREDE model

The main workflow of PREDE algorithm is briefly illustrated in Fig 1. Given an n×mmatrix Y
as the expression profiles of n genes inm tumor samples, we assume that these tumor samples

are mixtures of K cell types with different mixing proportions. Denote the basis matrixW as

expression profiles for these n genes in K cell types, and the proportion matrix H as propor-

tions of the K cell types inm samples. The observed data Y is assumed to be a linear combina-

tion of cell type-specific expression profiles, i.e., Y =WH+�, where � is an n×m error matrix.

We aim to solveW and/orH from Y. If the basis matrixW is known, the problem is the typical

reference-based deconvolution, which can be readily solved by the constrained linear regres-

sion (e.g., qprog [25]). If both the basis matrixW and the proportion matrixH are unknown,

the problem is so-called reference-free deconvolution, which can be solved by the following

NMF algorithm [19],

ðŴ ; ĤÞ ¼ arg min
W;H
kY � WHk2

F: ð1Þ

However, in real clinical practice, only a fraction of the cell types in the tumor samples

might be known. We denote the known portion of basis matrixW asW1, and unknown por-

tion asW2, i.e.,W = (W1,W2). Given expression matrix Y for all tumor samples and known
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reference matrixW1, we aim to infer the overall proportion matrixH and unknown basis matrix

W2. Thus the above partial-reference based deconvolution problem can be formulized to

ðŴ2 ; Ĥ1 ; Ĥ2Þ ¼ argminW2 ;H1 ;H2
kY � ðW1W2Þ

H1

H2

 !

k
2

F ¼ arg min
W2 ;H1;H2

kY � W1H1 � W2H2k
2

F ð2Þ

subject to the following constrains: (a) nonnegativity ofW2,H1 andH2; (b) column sum ofH1

andH2 is less than 1.

We term the above problem (i.e., Eq (2)) as an iterative NMF model which could be solved

through an iterative optimization strategy by developing a modified Quadratic Programming

algorithm (Fig 1). More specifically,

i. Start with a random initialization ofW2;

ii. FixW1 and estimate Hnew ¼
Hnew

1

Hnew
2

 !

¼ arg minH1 ;H2
kY � W1H1 � W2H2k

2

F subject to

the constraints 0�hij�1 and
PK

j¼1
hij � 1;

iii. EstimateWnew
2
¼ arg minW2

kY � W1Hnew
1
� W2Hnew

2
k

2

F subject to the constraints wij�0;

iv. Repeat steps (ii) and (iii) until convergence or a specific number of times.

Determining the number of cell types using Akaike information criterion

(AIC)

We used Akaike information criterion (AIC) [45] to determine the optimal number of cell

types in mixture tumor samples. As a criterion widely used in statistical inference, AIC mea-

sures the goodness of fit of a model by balancing the tradeoff between loss function and model

complexity. Since the number of samples is much fewer than the number of features, we used

another version of AIC that is more suitable for small sample sizes (termed as AICc). The basic

formula of AICc is [46]:

AICc ¼ Nln
SSR
N

� �

þ 2pþ
2pðpþ 1Þ

N � p � 1
ð3Þ

where N is the sample size, p is the number of model parameters, and SSR is the sum of

squared residuals between true and estimated gene expression profiles for all mixture samples.

In the NMF framework (include PREDE as well), the samples size should be counted in the

level of genes, i.e., N = n×m, and p = K(n+m)−nK1, where n,m, K, K1 are numbers of mixture

samples, features, all cell types and known cell types, respectively. Compared with the original

AIC, the AICc imposes a higher penalty when sample size is small, and approximates AIC

when samples size increases. We calculated AICc for a reasonable range of potential cell type

numbers (e.g., from 1 to 50) and the predicted optimal number of cell types were determined

by the minimum AICc value.

Deconvolution accuracy evaluation

We evaluated the performance of PREDE from the following two aspects: the estimation accu-

racy of basis expression matrix (W) and the estimation accuracy of cellular proportion matrix

(H), which were assessed by Pearson correlation coefficient and the mean absolute error

(MAE) between true and predicted cell type proportions.
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Supporting information

S1 Fig. Correlation between true and predicted cell proportions using different methods.

Pearson correlation of predicted cell proportions by five methods (A) at different levels of

noise and (B) at different proportions of unknown cell types.

(TIF)

S2 Fig. Performance of PREDE on different expression similarities of unknown cell type to

known cell types. Accuracies of (A) proportion estimation and (B) profile estimation of our

method based on ‘low similarity set’ and ‘high similarity set’.

(TIF)

S3 Fig. Determining the number of cell types with rare population. AICc values at different

numbers of K when proportion of rare cell types increases from 0.01 to 0.15.

(TIF)

S4 Fig. Performance of PREDE for unknown rare cell type. Accuracies of (A) proportion

and (B) profile estimations by PREDE and RF when proportion of rare cell type increase from

0.07 to 0.10.

(TIF)

S5 Fig. Accuracy of proportion estimation for known rare cell type. Proportion estimations

for rare cell type by four methods at (A) different proportions of the rare cell type and (B)

noise ratios.

(TIF)

S6 Fig. Accuracy of AICc in determining number of constitutional cell types. Blue line or

red line show AICc values at different numbers of cell types when cancer cells or immune cells

are unavailable, respectively.

(TIF)

S7 Fig. Application of reference-free deconvolution method to cell line mixing data. Eight

cell lines including three breast cancer cell lines, three immune cell lines and two normal cell

lines were mixed together with proportions 60%, 20% and 20% respectively. (A-B) Accuracies

of profile and proportion estimations when cancer cell lines are unknown; (C-D) Accuracies

of profile and proportion estimations when immune cell lines are unknown.

(TIF)

S8 Fig. Evaluation of PREDE, DeMixT and ISOpure on cancer, normal and immune cell

line mixture data. Eight cell lines including 3 breast cancer cell lines, 3 immune cell lines, and

2 normal cell lines were mixed to simulate 100 tumor samples. Mean expression profiles of

cancer cell lines, normal cell lines and immune cell lines were respectively treated as unknown

cell components to validate all three methods using the rest cell lines as input. Estimations of

(A) cellular proportion and (B) expression profile for the unknown cellular component by the

three methods.

(TIF)

S9 Fig. Shannon indexes of predicted proportions of cell types for each subtype of BRCA,

SKCM and BLCA tumor samples.

(TIF)
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