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Purpose: Immune checkpoint inhibitors (ICI) have received the most attention for triple negative breast cancer (TNBC), while the 
response rate to ICI remains limited due to insufficient T cell infiltration. It is therefore essential that alternative strategies are 
developed to improve the therapeutic outcomes of ICI in non-responsive TNBC cases. The efficacy of pH-responsive nanomicelles (P/ 
A/B@NM) co-loaded with paclitaxel (PTX), CXCR4 antagonist AMD3100, and PD-1/PD-L1 inhibitor BMS-1 activating the T cell- 
mediated antitumor immune response were evaluated using a 4T1 antiPD-1-resistance breast tumor model.
Methods: In vitro, pH-responsive antitumor effect of P/A/B@NM was investigated by assessing cell viability, migration and invasion. 
In vivo, the distribution of P/A/B@NM was visualized in 4T1 orthotopic TNBC model using an IVIS spectrum imaging instrument. 
The efficacy of the co-delivery nanocarriers was evaluated by monitoring mouse survival, tumor growth and metastasis, cancer- 
associated fibroblasts (CAFs)-mediated tumor stroma and immunosuppressive microenvironment components, and the recruitment and 
infiltration of CD8+ T cells.
Results: The prepared P/A/B@NM in acid microenvironment demonstrates remarkable cytotoxicity against MDA-MB-231 cells, with 
an IC50 of 105 μg/mL. Additionally, it exhibits substantial inhibition of tumor cell migration and invasion. The P/A/B@NM based on 
co-delivery nanocarriers efficiently accumulate at the tumor site and release the drugs in a pH-responsive controlled manner. The 
nanomedicine-PTX, AMD3100, and BMS-1 formulation significantly inhibits tumor growth and lung/liver metastasis by inducing 
antitumor immune responses via CXCL12/CXCR4 axis blockade, and immunogenic cell death to reprogramme both tumor stroma and 
immunosuppressive microenvironment. As a result, CD8+ T cell infiltration is triggered into the tumor site, boosting the efficacy of ICI 
therapy synergistically.
Conclusion: These results demonstrate that combination therapy using P/A/B@NM reshapes CAFs-mediated tumor stroma and 
immunosuppressive microenvironment, which can enhance the infiltration of CD8+ T cells, thereby reactivating anti-tumor immunity 
for non-responsive TNBC cases.
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Introduction
Triple negative breast cancer (TNBC), the most aggressive subtype of breast cancer, is characterized by high intratumoral 
heterogeneity, a lack of established molecular targets, low overall survival rates, and high recurrence rates.1 While some 
metastatic TNBC patients have experienced clinical benefits from programmed cell death-1 (PD-1) or programmed cell 
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death-ligand 1 (PD-L1) inhibitors through the innovation of T cell-mediated immunotherapies, the overall response rate to 
immune checkpoint inhibitors (ICI) remains limited due to lack of known biomarkers, insufficient T cell infiltration, the 
immunosuppressive tumor microenvironment, and innate and acquired drug resistance.2,3 These limitations motivate the 
development of new or alternative strategies to improve the therapeutic outcomes of ICI in non-responsive TNBC cases.

Substantial evidence has established that the tumor microenvironment (TME) is a self-regulating ecosystem, where 
tumor cells, stromal cells, tumor vasculature, and immune cells are interwoven with noncellular components. This 
TME not only drives tumor progression but also profoundly alter the therapeutic response of tumors to ICI.4,5 

Currently, it is widely believed that the stromal matrix and suppressive immunocellular composition are the two 
primary factors causing immunosuppression in solid tumors.5,6 In invasive human breast cancer, CXCL12 secreted by 
cancer-associated fibroblasts (CAFs) and its specific receptor CXCR4, regulate tumor biological behaviors such as 
tumor angiogenesis, invasion and metastasis, and promote desmoplasia and solid stress in the tumor tissue, which 
serves as a physical barrier for the penetration of therapeutics and T cells.7–9 Furthermore, the CXCL12/CXCR4 axis 
leads to intra-tumoral recruitment of immunosuppressive lymphocytes, such as myeloid-derived suppressor cells 
(MDSCs), M2-phenotype macrophages, and regulatory T cells (Tregs).10,11 Preclinical trial results show that 
CXCR4 antagonists alone or in combination with ICI alter tumor-stroma interactions and reduce tumor growth and 
metastasis burden.12 However, this approach also leads to immune system risks and side effects of hematopoietic 
dysfunction in patients.

The utilization of nanotechnology to construct drug delivery systems is an effective approach in cancer 
treatment.13,14 Combining cancer immunotherapies using polymer nanocarriers has emerged as a promising 
strategy to enhance treatment efficacy while mitigating immune-related toxicity caused by off-target effects.15–17 

Polymer carriers offer various drug loading options, including covalent coupling to form polymer-drug conjugates, 
encapsulation of drugs within polymer micelles, incorporation of drugs into polymer vesicles, dispersion of drugs 
within polymer gels, and more. Among these approaches, polymer nanomicelles are particularly noteworthy, which 
are formed through the self-assembly of amphiphilic block copolymers, exhibiting a unique core-shell structure 
that provides excellent drug loading capabilities, as well as targeting ability, biodegradability, and stealth proper-
ties during circulation in the bloodstream. Furthermore, multifunctional nanomicelles can be designed by incor-
porating targeting ligands and sensitive chemical bonds/groups, enhancing their accumulation at tumor sites and 
internalization into specific cells. These nanomicelles can respond to endogenous/exogenous stimuli (such as pH, 
enzymes, redox, hypoxia, light, heat, and ultrasound) at the tumor site, allowing for controlled drug release.18

pH-responsive block polymer nanomicelles can co-deliver multiple drug combinations into tumor sites to 
achieve multi-targeted spatiotemporal and sequential drug release, thereby optimizing therapeutic effect.19,20 In 
this study, we propose a potential immunotherapeutic strategy based on three-drug co-delivery nanomicelles that 
respond to the acid tumor microenvironment. Paclitaxel (PTX), a chemotherapy drug, exhibits dual effects in the 
treatment of cancer. It not only effectively hinders the proliferation of cancer cells by stabilizing microtubules and 
inhibiting cell mitosis but also induces immunogenic cell death (ICD). AMD 3100, a CXCR4 antagonist, blocks 
CXCL12/CXCR4 axis to interfere with the cross-talk between CAFs, tumor cells, and immune cells, thereby 
exerting immunomodulatory effects that synergistically amplify the antitumor immunity of PD-1/PD-L1 inhibitor 
BMS-1, as illustrated in Scheme 1. The co-delivery nanomicelles (named P/A/B@NM) can reduce tumor 
angiogenesis, remodel extracellular matrix (ECM), decrease the chemotaxis and trafficking of immunosuppressive 
cells, and enhance the response of infiltrating CD8+ T cells, thus improving the therapeutic effect of TNBC.

Materials and Methods
Chemicals and Materials
PTX was procured from Shanghai Yuanye Bio-Technology Co., Ltd (Shanghai, China), while AMD3100 and BMS-1 
(with a purity of ≥ 98%) were obtained from MCE (NJ, USA). Amphiphilic block copolymer methyl-polyethylene 
glycol-hyd-poly (lactic-co-glycolic acid) (mPEG-hyd-PLGA) (PEG, Mw: 5000 Da; PLGA, Mw: 5000 Da) and Cy5- 
PEG5000-hyd-PLGA5000 were purchased from Xi’an Ruixi Biological Technology Co., Ltd (Xian, China). Polyvinyl 
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alcohol (PVA, Mw: 9000–10000Da, 80% hydrolyzed) was sourced from Sigma-Aldrich (MO, USA). Matrigel was 
obtained from Corning (NY, USA). Collagenase type I, collagenase type IV, DNAase I, and trypsin were purchased from 
Invitrogen (CA, USA). Purified water was produced using a Milli-Q system obtained from Millipore (MA, USA).

Preparation and Characterization of P/A/B@NM
Self-assembly-solvent evaporation method was used with minor modifications to prepare P/A/B@NM. Initially, 5 mg of 
block copolymer carrier mPEG-hdy-PLGA or Cy5-PEG-hdy-PLGA was mixed with PTX (1 mg), AMD3100 (1 mg), and 
BMS-1 (1 mg) in 1 mL of dichloromethane to form the oil phase. Simultaneously, 100 mL of 1% PVA solution was 
heated at 95 °C to form the water phase. Afterwards, the oil phase was slowly added to the water phase by ultrasonic 
emulsification under ice bath condition to form a uniform milky emulsion, of which the organic solvent was removed 
with magnetic stirrers for 4 h. Thereafter, the unincorporated PTX, AMD3100 and BMS-1 were removed by centrifuga-
tion at 3000 rpm for 30 min at 4 °C using ultrafiltration tubes (Millipore, USA) to obtain the nanomicelles (P/A/B@NM). 
The morphology, particle diameter, zeta potential and dispersion index (PDI) of prepared P/A/B@NM were measured by 
transmission electron microscope (TEM) and dynamic light scattering analyzer. The encapsulation efficiency (EE) and 
drug loading efficiency (DLE) of PTX, AMD3100, and BMS-1 were determined by high-performance liquid chromato-
graphy (HPLC) with a UV detector at a wavelength of 280 nm, 230 nm, and 280 nm, respectively.21,22

pH-Sensitive Drug Release of P/A/B@NM
The pH-sensitive drug release profile of P/A/B@NM under different conditions (pH 7.4, pH 6.5, and pH 5.0) was 
evaluated using the dialysis method in vitro. Briefly, three batches of fresh P/A/B@NM suspension were placed in 

Scheme 1 Schematic illustration of P/A/B@NM structure and strategy for enhancing antitumor immunity.
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cellulose dialysis bags (8000Da, Solarbio, Beijing, China). After tightening both ends of the dialysis bags, the test 
samples were placed in a corked conical flask containing 50 mL of dissolution medium and stirred at 37 °C, 120 rpm. At 
predetermined time points (0.5, 1, 2, 4, 6, 8, 12, 24, and 48 h), 1 mL of release solution was collected, and an equal 
volume of fresh dissolution medium was added. Then drug release of P/A/B@NM was analyzed by HPLC, and the 
cumulative release curves of PTX, AMD3100, and BMS-1 were calculated.

Cell Lines and Experimental Animals Model
The human TNBC cell line (MDA-MB-231) and the murine TNBC cell line (4T1) were both procured from the Chinese 
Academy of Sciences Committee on Type Culture Collection Cell Bank (Shanghai, China). MDA-MB-231 and 4T1 cells 
were cultured in DMEM and RPMI 1640 medium, respectively, and supplemented with 10% fetal bovine serum (FBS) 
and 1% penicillin-streptomycin. The cells were maintained in a 37 °C incubator with a 5% CO2 atmosphere.

Female BALB/C mice with a weight range of 16 ± 2 g and aged 6 to 8 weeks were obtained from Charles River 
(Beijing, China) and were housed and cared for at the Laboratory Animal Centre in accordance with the Animal Facility 
Guidelines of Ningxia Medical University. To establish the murine orthotopic TNBC model, 4T1 cells (5×105/mouse) 
were injected into the right fourth pair of mammary fat pads of BALB/C mice under isoflurane anesthesia. All animal 
procedures were performed in compliance with the Institutional Animal Care and Use Committee at Ningxia Medical 
University (Permit Number: IACUC-NYLAC-2021-156).

In vitro Evaluation of Cell Viability, Migration and Invasion
For the cell viability assay, MDA-MB-231 cells were seeded and cultured overnight in 96-well plates. Subsequently, the 
cells were exposed to escalating concentrations of free PTX, free AMD3100, free BMS-1, and P/A/B@NM cultured 
solution under varying conditions (pH 7.4 and pH 6.5) for a duration of 48 h. The final concentrations of PTX, 
AMD3100, and BMS-1 in each group were set at 0.1, 0.25, 0.5, 1, 2.5, 5, and 10 µg/mL. Following this treatment, 
the cell viabilities were accessed according to the Cell Counting Kit-8 (CCK-8) standard protocol.

For the migration assay, firstly, MDA-MB-231 cells were cultured and treated with 20 μg/mL of P/A/B@NM 
(containing 0.65 μg/mL of PTX, 0.67 μg/mL of AMD3100, and 0.69 μg/mL of BMS-1) cultured solution under pH 
7.4 and pH 6.5 for 24 h. After that, 200 μL of cell suspension was added to the upper chamber of Transwell, while the 
lower chamber contained a medium containing 15% FBS and was cultured in an incubator for an additional 24–48 
h. Finally, the culture solution in the upper chamber was poured out, the cells in the upper chamber were gently wiped 
with a cotton swab, and the chamber was fixed in 4% paraformaldehyde and stained with crystal violet. The migrating 
cells at the bottom of the chamber were photographed and the number of migrating cells was counted using Image 
J software. For the invasion experiment, 100 μL of Matrigel matrix was coated on the upper part of Transwell chamber in 
advance and placed in an incubator for 12 h. The remaining steps were similar to the aforementioned migration assay.

In vivo Biodistribution Study
The 4T1 orthotopic TNBC model was utilized to investigate the distribution of P/A/B@NM through in vivo imaging. 
Tumor-bearing mice were administered intravenous injections of free Cy5 dye and Cy5-labeled nanocarriers (Cy5-P/A/ 
B@NM) (100 μL, 2 mg/mL). The mice were anesthetized and imaged at 2, 8, 12, 24, and 48 h using an IVIS spectrum 
imaging instrument (Caliper PerkinElmer, USA) with excitation/emission wavelengths of 630/680 nm. Subsequently, the 
mice’s major organs and tumor tissues were excised for ex vivo imaging, and the imaging system analysis software was 
used to analyze all of the results obtained.

In vivo Antitumor Efficacy Study
On the ninth day following the construction of the murine orthotopic TNBC model, the mice were randomized into five 
groups (n=6 per group): (i) Saline group; (ii) B@NM group (BMS-1 delivery nanomicelles); (iii) P/B@NM group (PTX 
and BMS-1 co-delivery nanomicelles); (iv) A/B@NM group (AMD3100 and BMS-1 co-delivery nanomicelles); and (v) 
P/A/B@NM group (PTX, AMD3100 and BMS-1 co-delivery nanomicelles). The mice were intravenously injected with 
200 μL of Saline or nanomicelles (containing 5 mg/kg of PTX, 5 mg/kg of AMD3100, and 5 mg/kg of BMS-1) on days 

https://doi.org/10.2147/IJN.S418100                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2023:18 4332

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


9, 12, 15, 18, 21 and 26, respectively. In the survival experiment, the time points for intravenous administration were 
extended to 33, 40, and 47 days. During treatment, tumor volumes were recorded every three days, and calculated using 
the formula V ¼ a�b2=2, where a and b represent the largest and the smallest diameter of the tumors. After day 30, the 
mice were sacrificed and the plasma was collected for further liver and kidney function analysis. The main organs and 
tumor tissues were excised, and tumor weights and lung metastatic tumor nodule counts were recorded. Some of these 
tissues were fixed in 4% paraformaldehyde, while others were stored at −80 °C for follow-up histological experiments.

Immunofluorescence (IF), Immunohistochemistry (IHC) and Multi-Color IHC (m-IHC) 
Assay
For IF analysis, 4T1 and MDA-MB-231 cells were cultured and treated with 40 μg/mL of P/A/B@NM cultured solution 
under pH 7.4 and pH 6.5 for 24 h, while 1.3 μg/mL of free PTX was applied as positive control. Afterwards, the treated 
cells were incubated with the primary antibody against calreticulin (CRT) (1:200, Proteintech) and FITC-conjugated 
secondary antibody. Finally, the cells were stained with 4′, 6-diamidino-2-phenylindole (DAPI) and imaged using 
a fluorescence microscope.

For IHC and m-IHC assay, the paraffin sections of tumor tissues were first dewaxed and the antigens were repaired 
with sodium citrate (pH 6.0) using a microwave. The samples were then incubated with primary antibodies, including Ki- 
67 (1:100, Affinity Biosciences), CXCL12 (1:200, Proteintech), CXCR4 (1:200, Proteintech), VEGF-A (1:200, 
Proteintech), CD31 (1:1500, Proteintech), CRT (1:250, Proteintech), α-SMA (1:1000, Proteintech), Collagen Type Ι 
(1:800, Proteintech), CD8a (1:2000, Abcam), and FoxP3 (1:500, Abcam). The sections were then incubated with the 
horseradish peroxidase-conjugated secondary antibodies. For IHC assay, diaminobenzidine was used as the chromogen 
and the sections were counterstained with hematoxylin. For m-IHC analysis, the sections were incubated with TSA® 

substrate conjugated with fluorophores (Absin, Shanghai, China), and then the sections were sealed with DAPI- 
containing sealing solution before imaging with a confocal laser scanning microscope.

Enzyme-Linked Immunosorbent Assay (ELISA)
After fully homogenizing the isolated tumor tissues with a homogenizer, the samples were centrifuged for 20 min at 
2000 rpm to collect the supernatant, which was passed through a 400-mesh cell sieve to perform content detection of 
cytokines and proteins, including CXCL12 (RK00168, ABclonal), CCL2 (EK287, MULTISCIENCES), VEGF-A 
(EK283, MULTISCIENCES), fibronectin (FN1) (EK03516, BOSTER), osteopontin (OPN) (EK2135, 
MULTISCIENCES), MMP9 (EK0466, BOSTER), HMGB1 (SEKM-0145, Solarbio), INF-γ (EK280, 
MULTISCIENCES), IL-2 (EK0932, BOSTER), IL-4 (EK0405, BOSTER), IL-10 (EK210, MULTISCIENCES), and 
TGF-β1 (EK981, MULTISCIENCES) using ELISA, according to the manufacturer instructions.

Flow Cytometry Analysis
For flow cytometry analysis, tumor tissues and spleen tissues from the mice were harvested, cut up and digested in hank’s 
balanced salt solution with collagenase type I (200 U/mL), collagenase type IV (200 U/mL), and DNAase I (100 μg/mL) 
to generate a single cell suspension. The resulting cells were stained with fluorescence-conjugated antibodies after the 
lysis of red blood cells and incubated with FcR Block (553141, BD Pharmingen) following the manufacturer’s protocol. 
For cell surface staining, the single cell suspension was incubated with fluorescence-conjugated antibodies including 
CD3-PerCP-Cy5.5 (551163, BD Pharmingen), CD4-PE (557308, BD Pharmingen), CD8a-FITC (553030, BD 
Pharmingen), CD25-BV421 (562606, BD Pharmingen), CD11b-FITC (557396, BD Pharmingen), Gr-1-PE (553128, 
BD Pharmingen), F4/80-PE (123110, Biolegend), CD86-PE-Cy7 (105014, Biolegend), and CD206-Alexa Fluor 647 
(141712, Biolegend). For intracellular FoxP3 staining, cells were fixed and permeabilized in Cytofix/Cytoperm solution 
(562574, BD Pharmingen) for 15 min at 4 °C and then stained with FoxP3-Alexa Fluor 647 (560401, BD Pharmingen) in 
the dark for 30 min in staining buffer. Afterwards, the distribution and infiltration of immune cells including lympho-
cytes, MDSCs, macrophage subsets and Tregs cells in tumor tissues and spleen tissues were analyzed on flow cytometry. 
And all the data were analyzed using FlowJo software.
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Statistical Analysis
All experiments were conducted in triplicate, and representative results are presented as mean ± SEM. Data analysis was 
performed using Origin 8.0 or SPSS 24.0 software. A P-value less than 0.05 (*), 0.01 (**), or 0.001 (***) was considered 
statistically significant.

Results
Characterization and Anti-Tumor Evaluation of P/A/B@NM in vitro
The preparation of P/A/B@NM was carried out by a one-step self-assembly-solvent evaporation method with optimized 
process conditions. The pH-responsive polymer micelles successfully encapsulated three hydrophobic drugs (PTX, 
AMD3100, and BMS-1) in their core. The size and morphology of the obtained P/A/B@NM were determined by 
TEM with a uniform spheroid shape and a size of 145 ± 4.5 nm (Figure 1A), while the size of unloaded nanomicelles 
presented 46 ± 5.4 nm (Figure 1B). Moreover, the hydrodynamic diameter of P/A/B@NM determined by dynamic light 
scattering was 202 ± 5.6 nm, with zeta potential of −1.14 ± 0.20 mV and PDI of 0.197 ± 0.007 (Figure 1C and D). P/A/ 
B@NM exhibited good colloidal stability, maintaining their diameter within 24 h in RPMI1640 medium containing 10% 
FBS. The EE of PTX, AMD3100, and BMS-1 was calculated by HPLC analysis and reached 65.90 ± 1.47%, 66.03 ± 
0.42%, and 67.00 ± 1.14%, respectively, for P/A/B@NM. The DLE of PTX, AMD3100, and BMS-1 was 3.92 ± 0.13%, 
4.03 ± 0.05%, and 4.17 ± 0.03% for P/A/B@NM, respectively (Figure 1E).

The acid tumor microenvironment can be used as endogenous stimulation to make drugs controllably release. Accordingly, 
we investigated the pH-sensitive drug release of P/A/B@NM in vitro at pH values of 7.4, 6.5, and 5.0. As depicted in Figure 1F– 
H, the release rates of PTX, AMD3100 and BMS-1 from P/A/B@NM were significantly affected by the pH values. Compared to 
23.1% at pH 7.4, the cumulative release of PTX from P/A/B@NM was 49.9% at pH 6.5 and 58.7% at pH 5.0 after 48 h release. 
Similarly, the cumulative release of AMD3100 and BMS-1 from P/A/B@NM at pH 6.5 was 82.4% and 83.4%, respectively, with 
a lower release rate at pH 7.4, and no burst release was observed, indicating comparative stability under neutral conditions. The 
release of PTX, AMD3100, and BMS-1 was accelerated upon reducing the pH values to 6.5 and 5.0, suggesting that hydrazone 
bond breakage occurred in acidic conditions. Moreover, the pH-responsive antitumor effect of P/A/B@NM on MDA-MB-231 
cells was assessed. As depicted in Figure 1I, compared to the cell viability of approximately 64.1 ± 1.5% observed with free PTX 
treatment, P/A/B@NM at pH 7.4 and pH 6.5 reduced cell viabilities to 49.8 ± 1.9% and 40.1 ± 0.8%, respectively, following 48 
h of incubation at an equivalent PTX concentration of 10 μg/mL. These findings suggest that the nano-delivery system effectively 
increased the intracellular concentration of PTX, while the acidic microenvironment promoted the cytotoxicity mediated by 
AMD3100. In contrast, when compared to the cell viability of approximately 39.2 ± 1.3% observed with P/A/B@NM (pH 6.5) 
treatment, the diminished cytotoxic effects of free AMD3100 and P/A/B@NM (pH 7.4) were attributed to the concentration 
saturation effect of AMD3100 at a dosage of 10 μg/mL. Additionally, BMS-1 did not exhibit significant cytotoxic effects on 
MDA-MB-231 cells due to the absence of immune cells. Based on the aforementioned results, it can be concluded that P/A/ 
B@NM, in an acidic microenvironment, demonstrates the most potent cytotoxicity against MDA-MB-231 cells, with an IC50 

value of 105 μg/mL. Furthermore, P/A/B@NM at pH 6.5 significantly inhibited the migration and invasion ratio of MDA-MB 
-231 cells with 41.3 ± 3.8% and 35.9 ± 4.1%, respectively, compared to 75.4 ± 1.3% and 76.8 ± 2.6% of P/A/B@NM at pH 7.4 
(Figure 1J). These results demonstrate the prepared P/A/B@NM has pH-sensitive drug release properties, providing a foundation 
for its application in vivo to respond to the acidic tumor microenvironment.

Co-Delivery Nanomicelles Based P/A/B@NM Inhibited Tumor Growth and Metastasis 
with Therapeutic Safety
Efficient delivery of nanomedicine to tumor sites is a crucial factor in evaluating their therapeutic efficacy. Thus, we first 
examined the distribution and accumulation of Cy5-P/A/B@NM at tumor sites over time. As depicted in Figure 2A and B, 
the fluorescence intensity or relative radiant efficiency of Cy5-P/A/B@NM increased significantly with time compared to 
free dye Cy5, indicating that Cy5-P/A/B@NM selectively accumulated in solid tumors through enhanced permeability and 
retention effect, while Cy5 alone had difficulty accumulating at the tumor site due to its free molecular diffusion. 
Furthermore, the images and relative radiant efficiency of Cy5-P/A/B@NM in isolated organs and tumor tissues highly 
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Figure 1 Characterization and anti-tumor evaluation in vitro of P/A/B@NM. (A and B) TME observation of P/A/B@NM and unloaded nanomicelles. (C and D) Size 
distribution, zeta potential and PDI determination by dynamic light scattering (n=3). (E) Encapsulation efficiency and drug loading efficiency measure by HPLC (n=3). (F–H) 
pH-responsive release of PTX, AMD3100 and BMS-1. (I) Cell viability assay of free PTX, free AMD3100, free BMS-1, and P/A/B@NM in normal physiological environment 
and acidic microenvironment (n=5). (J) Acidic microenvironment-responsive cell migration and invasion assay of P/A/B@NM (n=3). Error bars represent means ± SEM. 
***P < 0.001.
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demonstrated major accumulation in the tumor site, albeit with some nonspecific distribution in the liver due to undergoing 
opsonation (Figure 2C and D).

Furthermore, we evaluated the therapeutic efficacy of P/A/B@NM based combination therapy using a murine 4T1 
orthotopic tumor model (Figure 3A). The percent survival results revealed that P/B@NM, A/B@NM and P/A/B@NM 
based combination therapy significantly prolonged the survival time of tumor-bearing mice, with percent survival of 20%, 
40%, and 70% at 51 d, respectively. In contrast, the percent survival of B@NM based monotherapy was 20% at 45 d and 0% at 
51 d (Figure 3B). In comparison to the Saline group and the B@NM-treated group, treatment with P/A/B@NM exhibited 
a substantial inhibition of primary tumor growth. Notably, the tumor volume and tumor weight of mice in the P/B@NM- 
treatment group and the A/B@NM-treatment group were 1.6-fold, 1.4-fold, 1.5-fold, and 1.2-fold higher, respectively, than 
those in the P/A/B@NM group (Figure 3C–F). Moreover, the results of tumor histopathological analysis showed that tumor 
cells in the Saline and B@NM-treated groups exhibited pleomorphism with an imbalance of nucleoplasmic ratio and 
hyperchromatic nuclei, while tumor cells in the P/A/B@NM-treated group showed typical apoptosis characteristics, such 
as cytoplasmic shrinkage and nuclear chromatin condensation, with the lowest cell proliferation index by Ki-67 analysis 
(Figure 3G and H). In comparison to the Saline group and the B@NM-treated group, treatment with P/A/B@NM exhibited 
a significant suppression of metastasis formation in the lung tissues of tumor-bearing mice (Figure 4A and B). Remarkably, the 
number of pulmonary metastatic nodules in the P/B@NM-treatment group and the A/B@NM-treatment group was 2.5-fold 
and 2-fold higher, respectively, than that in the P/A/B@NM-treated group. Additionally, histopathological analysis demon-
strated a significant reduction in the size of metastatic lesions in the lungs, as well as the number and size of metastatic lesions 
in the liver upon treatment with P/A/B@NM combination therapy (Figure 4C). Notably, pathological analysis of the heart, 
spleen, and kidney in P/A/B@NM-treated groups showed no remarkable pathological lesions compared to those in the Normal 
group (Figure S1A). Moreover, a serum biochemical analysis indicated that after treatment with P/A/B@NM, all of the major 
indicators of liver and kidney function, including glutamic aminotransferase (ALT), aspartate aminotransferase (AST), serum 

Figure 2 Distribution and in vivo imaging of Cy5-P/A/B@NM in 4T1 orthotopic TNBC mice. (A and B) Distribution and relative radiant efficiency of free dye Cy5 and Cy5- 
P/A/B@NM at various times in 4T1 orthotopic TNBC mice (n=3). (C and D) Ex vivo imaging and relative radiant efficiency of Cy5 and Cy5-P/A/B@NM in isolated major 
organs and tumor (n=3). Error bars represent means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
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creatinine (SCR), and blood urea nitrogen (BUN), remained within the normal range (Figure S1B). These results demonstrate 
that P/A/B@NM combination therapy achieves optimal therapeutic efficacy with high therapeutic safety.

Co-Delivery Nanomicelles Based P/A/B@NM Potentiated TNBC Immunotherapy by 
Reshaping CAFs-Mediated Tumor Stromal Microenvironment
Abundant CAFs in TME play a dual role in promoting tumor metastasis and inhibiting immune cell function by secreting 
various cytokines. As depicted in Figure 5A, P/A/B@NM-based combination therapy significantly downregulated the 
expression of CXCL12, CXCR4, and VEGF-A, which is extensively secreted by CAFs to trigger and magnify tumor 

Figure 3 In vivo antitumor efficacy and survival study of co-delivery nanomicelles based combination therapy. (A) Establishment of murine orthotopic TNBC model and 
drug treatment. (B) Survival time monitoring of tumor-bearing mice after treatment. (C–F) Tumor volume and weight measure in different treatment groups (n=6). (G) 
Histological change of tumor tissues in different treatment groups. (H) Proliferation of tumor cells by Ki-67 of tumor tissues in different treatment groups. Error bars 
represent means ± SEM. **P < 0.01, ***P < 0.001.

International Journal of Nanomedicine 2023:18                                                                                   https://doi.org/10.2147/IJN.S418100                                                                                                                                                                                                                       

DovePress                                                                                                                       
4337

Dovepress                                                                                                                                                           Zhang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=418100.docx
https://www.dovepress.com
https://www.dovepress.com


angiogenesis. Consequently, the nanomedicine-PTX, AMD3100, and BMS-1 formulation markedly reduced tumor 
microvascular density, as evidenced by CD31 analysis (Figure S2). Moreover, the ELISA results revealed that the 
production of CXCL12, CCL2, and VEGF-A originating from CAFs was significantly decreased in the P/A/B@NM- 
treated group compared to the Saline group and B@NM-treated group (Figure 5B).

Furthermore, we investigated whether targeting the CXCL12/CXCR4 axis could improve ICI responsiveness by reshaping 
the dense collagen matrix produced by CAFs. The results of Masson staining and Sirius Red staining in Figure 5C showed that 
the volume and density of collagen fibers were significantly decreased after administration of P/B@NM, A/B@NM, and P/A/ 
B@NM, compared to Saline group and B@NM-treatment group. Additionally, the content of FN1, OPN, and MMP9 in 
primary tumor stroma of P/A/B@NM was downregulated, with 4.8-fold, 3.3-fold, and 4.3-fold lower levels than those in the 
B@NM-treated group, respectively (Figure 5D). To further investigate the role of CAFs on tumor-infiltrating CD8+ T cells, we 
assessed whether P/A/B@NM based combination therapy could revitalize CD8+ T cells by reducing α-SMA+ CAFs. As 
presented in Figure 6, the TME in the Saline group presented abundant α-SMA+ CAFs and strong deposition of Collagen I, 
which resulted in a CD8+ T cell exclusion phenomenon. Even after B@NM treatment, CD8+ T cell infiltration did not 
improve. Although treatment with P/B@NM and A/B@NM lowered the expression levels of ECM components (Collagen I) 
and increased the expression of CD8a, P/A/B@NM based combination therapy significantly enhanced the infiltrating level of 
CD8+ T cells by decreasing the activation of α-SMA+ CAFs.

Figure 4 Co-delivery nanomicelles based combination therapy inhibit the lung and liver metastasis of tumor cells in 4T1 orthotopic TNBC mice. (A) The representative 
photographs of tumor metastasis in lungs of mice. (B) Effect of co-delivery nanomicelles on lung metastasis nodules in mice (n=6). (C) Pathological analysis of metastasis in 
lung tissues and liver tissues after co-delivery nanomicelles treatment in orthotopic TNBC mice. Error bars represent means ± SEM. **P < 0.01, ***P < 0.001.
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The data above illustrates that combination therapy using P/A/B@NM has the ability to reshape stromal microenvir-
onment by disturbing the secretion and functions of CAFs. This is evidenced by a reduction in tumor stroma formation, 
and decompression of blood vessels. As a result, there is a decrease in immunosuppression and an increase in the 
infiltration of CD8+ T cells into the TME, thereby reactivating anti-tumor immunity.

Co-Delivery Nanomicelles Based P/A/B@NM Potentiated TNBC Immunotherapy by 
Reprogramming the Immunosuppressive Microenvironment
In TNBC, tumor progression and therapeutic outcome are influenced by complex immunosuppressive microenvironment. 
To investigate whether the nanomedicine-PTX, AMD3100 and BMS-1 formulation could promote immune infiltration of 
CD8+ T cells into the tumor, we first observed distribution of regulatory T cells and effector T cells. As illustrated in 
Figure 7A, the m-IHC analysis revealed a significant increase in the recruitment and infiltration of CD8+ T cells 
accompanied by a visible reduction infiltration of FoxP3+ Tregs cells in P/A/B@NM-treated group. Additionally, 
compared to B@NM-treated group, the percentage change of CD8+ T cells and FoxP3+ Tregs cells followed the same 
trend after P/A/B@NM-based combination therapy, as observed in the flow cytometry analysis (Figure 7B). Moreover, 
PTX, often used in combination with PD-1/PD-L1 inhibitors in the treatment of metastatic TNBC, has been reported to 

Figure 5 Co-delivery nanomicelles based combination therapy disturbed the function of CAFs by reducing the cytokines and reshaping ECM. (A) Representative images of 
CXCL12, CXCR4, and VEGF-A by IHC in different treatment groups. (B). ELISA result showing intratumoral content of CXCL12, IL-6, and VEGF-A in different treatment 
groups (n=3). (C) Representative images of collagen fibers by Masson and Sirius red staining in different treatment groups. (D) ELISA result showing intratumoral content of 
FN1, OPN, and MMP9 in different treatment groups (n=3). Error bars represent means ± SEM. **P < 0.01, ***P < 0.001.
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induce ICD of tumor cells, which may enhance the sensitivity of tumors to immunotherapy. Our results indicate that P/A/ 
B@NM not only promotes the release of adenosine triphosphate (ATP) and high mobility group protein B1 (HGMB1) 
(Figure S3A and S3B), but also promotes the exposure of calreticulin (CRT) to the surface of 4T1 and MDA-MB-231 
cells (Figure S3C). Similarly, P/A/B@NM significantly increased the exposure of CRT to the surface of tumor cells in 
primary tumor tissue, compared to the Saline group and B@NM group (Figure S3D). These biomarkers suggest that ICD 
induced by P/A/B@NM may promote the recruitment and activation of CD8+ T cells.

Furthermore, we investigated the infiltration of immune cells and the secretion of key immunomodulatory 
cytokines. As illustrated in Figure 8A, there was a notable reduction in the proportion of M2-TAMs and MDSCs 
among total live cells in the group treated with P/A/B@NM, compared to the Saline and B@NM-treated groups. In 
contrast, the populations of CD4+ T and M1 macrophages (F4/80+CD86hi) in tumors treated with B@NM were 
significantly lower than in the P/A/B@NM-treated group. These changes in the immune cell infiltration also led to 
decreased secretion levels of downstream cytokines, such as TGF-β1, IL-10, and IL-4, which can inhibit antigen 
presentation and T cell activation. Additionally, the secretion levels of IFN-γ and IL-12, which promote antitumor 
immune responses, were increased in tumor tissues after P/A/B@NM treatment (Figure 8B). The significant increase 
in IL-12 expression was consistent with the abundance of CD8+ T cells (Figure 7). Similarly, we observed 
a comparable proportion change of immunosuppressive cells (Tregs and MDSCs) and effector cells (CD8+ T and 
CD4+ T) in spleens after P/A/B@NM administration (Figure S4A and S4B).

Figure 6 Co-delivery nanomicelles based combination therapy disturbed the function of α-SMA+ CAFs to increase intratumoral infiltration of CD8+ T cells.
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Figure 7 Co-delivery nanomicelles based combination therapy decreased the number of FoxP3+ Tregs cells to increase intratumoral infiltration of CD8+ T cells. (A) 
Representative images of FoxP3 and CD8a using m-IHC analysis in different treatment groups. (B) Representative cytometric dot plots of FoxP3+ Tregs cells and CD3+CD8+ 

T cells in tumors (left) and percentage of intratumoral Tregs cells and CD8+ T cells in different treatment groups (right) (n=3). Error bars represent means ± SEM. **P < 0.01, 
***P < 0.001.
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These findings demonstrate that P/A/B@NM-based combination therapy efficiently reverses the immunosuppressive 
tumor microenvironment and activates the T cell-mediated antitumor immune response.

Discussion
Combinatorial cancer immunotherapies using tumor microenvironment responsive nanocarriers have emerged as 
a promising strategy to achieve potentiated treatment efficiency. Our prepared co-delivery nanomicelles (P/A/B@NM) 
has pH-sensitive drug release properties, which is evidenced by the accelerated release of PTX, AMD3100, and BMS-1 
upon reducing the pH values to 6.5 and 5.0, and the enhanced capabilities of inducing cytotoxicity and inhibiting cell 
migration and invasion under pH 6.5 culture condition. pH-responsive polymer micelles containing hydrazone bonds 
remain stable in blood circulation, but their nanocarrier structure breaks down in the acidic microenvironment of tumors 
(pH 5.8~7.2), leading to effective drug release at tumor sites and improved therapeutic efficacy.23,24

Furthermore, we evaluated the antitumor efficacy of P/A/B@NM using a murine 4T1 orthotopic tumor model, which 
is reported to be resistant to anti-PD-1/PD-L1-immunotherapy.25 Our findings revealed that B@NM-based monotherapy 

Figure 8 Co-delivery nanomicelles based combination therapy reprograms the tumor immunosuppressive microenvironment to enhance intratumoral T-cell infiltration and 
effector T-cell function. (A) Representative cytometric dot plots of CD3+CD4+ T cells, F4/80+CD86+M1-TAMs cells, F4/80+CD206+M2-TAMs cells, and CD11b+Gr-1+ 

MDSCs in tumors (left) and the proportions of CD4+ T cells, M1-TAMs cells, M2-TAMs cells, and MDSCs in tumors in different treatment groups (right) (n=3). (B) ELISA 
results showing TGF-β1, IL-10, IL-4, INF-γ, and IL-12 content in the tumors (n=3). Error bars represent means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
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has a disadvantage in inhibiting primary tumor growth and metastasis, while P/A/B@NM-based combination therapy 
significantly improves the survival time and inhibits tumor growth and lung/liver metastasis. Clinical data shows that 
TNBC is more sensitive to ICI therapy than other breast cancer subtypes. However, ICI monotherapy is not recom-
mended due to its low therapeutic response rate.26 Therefore, combination therapy with ICI and chemotherapy or targeted 
therapy is preferred to enhance the efficacy of TNBC immunotherapy.27 Our co-delivery nanomicelles were designed to 
achieve optimal therapeutic efficacy with high therapeutic safety by combining PTX, AMD3100, and BMS-1 therapies to 
produce much stronger antitumor effects through multitarget synergism.

In TME, stromal cells interact with immune cells and ECM to promote the formation and stability of immunosup-
pressive microenvironment. As an important part of TME, CAFs participates in ECM remodeling and stimulates the 
differentiation and function of immune cells by secreting cytokines, ultimately affecting the immune response process.28 

Previous studies have suggested that the exclusion of T lymphocytes by CAFs may be driven in part by CXCL12/ 
CXCR4 signaling axis.9,29 Our results confirmed that targeting the CXCL12/CXCR4 axis using P/A/B@NM co-delivery 
nanomicelles increased the infiltration of CD8+ T cells into the TME through disturbing the secretion function of CAFs. 
It is found that CAFs secrete CXCL12, TGF-β and VEGF-A to promote Tregs recruitment, migration, and FoxP3+ Tregs 
differentiation, while FoxP3+ Tregs promote CD8+ T cell dysfunction by secreting IL-35 and IL-10.30 Additionally, CAFs 
produces CXCL12 and CCL2 to promote monocyte recruitment and induce TAMs to differentiate into M2 phenotype, 
which damages effector T cell function.31 Moreover, the complete infiltration of T cells into tumors depends not only on 
the recruitment of appropriate chemokines but also on the regulation of tumor blood vessels. Excessive production of 
VEGF-A by tumors and CAFs stimulates endothelial cell proliferation, leading to new angiogenesis, often accompanied 
by impaired tissue perfusion and increased vascular permeability, ultimately preventing T cell migration to TME.32,33

Furthermore, the dense collagen matrix produced by CAFs may act as a physical permeability barrier to the 
infiltration of T lymphocytes, reducing the efficacy of tumor immunotherapy.9,34 CAFs secretes TGF-β, collagen, 
MMPs and hyaluronic acid to reshape ECM, thereby increasing rigidity.35 It has been reported that excessive pressure 
of ECM components on blood vessels may hinder T-cell infiltration and interaction with tumor cells in space.36 

Moreover, activated fibroblasts that produce dense matrix are indicative of a poor response to ICI in cancer patients.37 

Our results verified that treatment with P/A/B@NM lowered the expression levels of ECM components and increased the 
infiltrating level of CD8+ T cells by decreasing the activation of α-SMA+ CAFs. These results confirmed that targeting 
the CXCL12/CXCR4 axis using P/A/B@NM can enhance ICI responsiveness by a reduction in tumor stroma formation, 
decompression of blood vessels and a decrease in immunosuppression.

The complex tumor immunosuppressive microenvironment is coordinated by multiple immunosuppressive signals in 
the regulatory network. The presence of immunoregulatory cytokines in the TME can recruit immunosuppressive cells. 
Tregs, TAMs, and MDSCs are the primary sources of regulatory cytokines. Studies have shown that Tregs inhibit DC 
antigen presentation and CD4+ T helper cell function, while TAMs restrict CD8+ T cell motility from infiltrating into 
tumor islets through long-lasting contact.38,39 MDSCs inhibit the trafficking of effector T lymphocytes into the tumors 
and release reactive oxygen species that remove the key nutrients necessary for T cell proliferation, thereby suppressing 
T cell function.40 Among various immunosuppressive cytokines, TGF-β, IL-10 and IL-4 play a significant role in the 
TME, primarily responsible for suppressing the immune response. In our study, combinatorial cancer immunotherapies 
using P/A/B@NM facilitates M1 macrophages polarization, eliminates immunosuppressive cells (such as Tregs and 
MDSCs), downregulates the expression of immunosuppressive cytokines (TGF-β1, IL-10, and IL-4), and upregulates the 
expression of immunostimulatory cytokines (IFN-γ and IL-12). Altogether, the prepared nanomedicine-PTX, AMD3100 
and BMS-1 formulation, in which PTX enhances cytotoxicity and induces ICD, AMD 3100 blocks CXCL12/CXCR4 
axis to alter the TME and revert the tolerogenic polarization of the TME by interfering with the cross-talk between CAFs, 
tumor cells and immune cells, and BMS-1 blocks PD-1/PD-L1 signaling to reduce T cell depletion, synergistically 
activates and amplifies the T cell-mediated antitumor immunity.

Conclusion
To overcome the poor therapeutic outcomes of ICI in non-responsive TNBCs, we designed and prepared pH-responsive 
nanomicelles (P/A/B@NM) co-loaded with PTX, AMD3100, and BMS-1. The P/A/B@NM demonstrates a pH- 
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responsive antitumor effect in vitro by effectively inhibiting the proliferation of tumor cells, with an IC50 value of 105 
μg/mL. Additionally, it significantly suppresses the migration and invasion of tumor cells, achieving inhibition ratios of 
57% and 65%, respectively. The co-delivery nanomicelles efficiently accumulate at the tumor site and release the agents 
in a controlled manner. Our in vivo findings unequivocally illustrate that P/A/B@NM notably prolongs the survival time, 
effectively inhibits tumor growth with a remarkable tumor inhibition rate of approximately 57%, and suppresses lung 
metastasis by an impressive inhibition rate of 83%. These outcomes are attributed to the induction of robust antitumor 
immune responses in a murine model of 4T1 breast tumors. Importantly, our study shows that the blockade of CXCL12/ 
CXCR4 axis and induction of ICD via the nanomedicine-PTX, AMD3100, and BMS-1 formulation leads to the 
reprogramming of both stromal and immune microenvironments, subsequently triggering CD8+ T cell infiltration into 
the tumor site. This synergistically enhances the efficacy of PD-1/PD-L1 therapy.
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