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Diabetic vascular complications (DVC) including macrovascular and microvascular
lesions, have a significant impact on public health, and lead to increased patient
mortality. Disordered intercellular cascades play a vital role in diabetic systemic
vasculopathy. Exosomes participate in the abnormal signal transduction of local
vascular cells and mediate the transmission of metabolic disorder signal molecules in
distant organs and cells through the blood circulation. They can store different signaling
molecules in the membrane structure and release them into the blood, urine, and tears. In
recent years, the carrier value and therapeutic effect of exosomes derived from stem cells
have garnered attention. Exosomes are not only a promising biomarker but also a
potential target and tool for the treatment of DVC. This review explored changes in the
production process of exosomes in the diabetic microenvironment and exosomes’ early
warning role in DVC from different systems and their pathological processes. On the basis
of these findings, we discussed the future direction of exosomes in the treatment of DVC,
and the current limitations of exosomes in DVC research.

Keywords: diabetic vascular complications (DVC), exosome, atherosclerosis, diabetic retinopathy (DR), diabetic
kidney disease (DKD), stem cells
INTRODUCTION

Diabetes is a chronic disease that threatens public health, and its incidence is increasing yearly. By
2045, the International Diabetes Federation estimates that there will be 700 million diabetic patients
worldwide (1). Cardiovascular complications are the leading cause of death among diabetic patients
(2). Due to a lack of early, precise diagnostic markers, many patients with diabetes do not receive
early diagnosis and treatment of cardiovascular complications (3). At the same time, many
symptomatic treatments for vascular complications are expensive and have unstable therapeutic
effects (4, 5). Therefore, it is important to find accurate diagnostic markers for DVC and further
improve related pathogenesis research.

Even with effective mitigation of existing cardiovascular risk factors, people with type 2 diabetes
have approximately twice the risk of developing cardiovascular disease as those without diabetes (6).
Studies indicate that more than 50% of diabetic patients die from vascular diseases, such as coronary
artery disease, stroke, and peripheral blood vessel disruptions (7). DVC involves macrovascular and
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microvascular disease (8). Macrovascular disease mainly involves
coronary arteries, of which atherosclerosis is the most common
(9). Microangiopathy is a vascular complication unique to
diabetic patients that mainly affects the vascular changes in the
retina and kidney (10). Previously, researchers believed that
hemodynamic changes, glucose metabolism disorders, local
hypoxia, and vascular dysfunction caused by inflammation
were the main causes of the vascular complications of diabetes
(11–13). But evidence demonstrates that the connection between
systemic cells and organs is also an indispensable part of diabetic
vascular damage (14). Exosomes (a type of small membrane
vesicles secreted by cells that deliver nucleic acids and proteins)
participate in the occurrence of many systemic diseases (15, 16)
by regulating inflammation and metabolism (17). They can also
mediate the direct communication between vascular endothelial
cells and other organs and cells with the help of blood
circulation. In addition to the above effects, the latest view is
that exosomes are a medium released by stem cells for systemic
therapy (18). Exosomes released by various types of stem cells
have been found to alleviate the progression of the disease of
diabetes (19). Exosomes are considered potential therapeutic
targets and valuable biomarkers for the treatment of DVC (20).

This article focuses on the possibility of exosomes as
biomarkers in various DVC in human and animal models. We
introduce the special pathological changes of exosomes in
diabetic microenvironments and their involvement in vascular
complications and summarize the value of exosomes in stem cell
therapy for DVC.
EXOSOME PRODUCTION PROCESS
AND MECHANISMS

Cell-to-cell and organ-to-organ communication are essential
during development, normal physiology, or in pathological
conditions. Vesicles secreted by cells under passive or active
conditions are imperative to signal transduction pathways. The
International Society for Extracellular Vesicles (ISEV) guidelines
propose extracellular vesicles (EV) as a general term for particles
that are naturally released from cells. These particles are defined
by a lipid bilayer and cannot be replicated, that is, they do not
contain a functional core. The subtypes of EV include endosome-
derived exosomes and plasma membrane-derived ectosomes
(microparticles/microvesicles) (21).

Exosome formation begins with the formation of early
endosomes when cell membranes recess inward and then
continue to mature and form late endosomes. Late endosomes
wrap specifically sorted nucleic acids, proteins, and other
substances in the cytoplasm to form multiple intraluminal
vesicles (ILVS) through inward budding. Multivesicular bodies
(MVB) are composed of multiple ILVs in late endocytosis (22–
24). MVBs mature process involves a specific sorting machine.
Endosomal sorting complex required for transport (ESCRT) is
an important driver of MVB membrane formation and rupture
(22, 23). The ESCRT system is mainly composed of a family of
protein complexes: ESCRT -0, - I, - II, and - III, coupled with the
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accessory proteins tumor susceptibility gene 101 protein and
vacuolar protein sorting-associated protein 4 (25, 26). ESCRT-0
subunits are involved in cargo clustering and the ubiquitination
of membrane proteins. ESCRT-I/II/III contribute to plasma
membrane budding and exosomes releasing events (27, 28).
Cells can also produce ILVs and MVB through lipids,
ceramides, or tetrapeptides independent of ESCRT (29–32).
The mature MVBs may fuse with lysosomes and degrade due
to their ubiquitinated cargo, or they may go toward the plasma
membrane and release their contents in the extracellular space
with the help of the Rab family and attachment protein receptor
(SNARE) complex (33).

The exosomes’ primary physiological role is to regulate
intercellular communication by transmitting their special
cargo, including proteins, lipids, and nucleic acids, in the
following three ways. First, exosome membrane proteins can
bind to the receptor on the target cell membrane to activate the
signal pathways in the target cell. Exosome membrane proteins
can be cleaved by some proteases, and the cleaved fragments can
bind to cell membrane receptors, thus activating intracellular
signaling pathways (34). Third, exosomes directly fuse with the
target cell membrane and nonselectively release their contents to
regulate target cell signaling (32, 35) (Figure 1).
EFFECTS OF EXOSOMES IN
DIABETES MELLITUS

There is accumulating evidence that exosome levels are elevated
in the blood of diabetic individuals and are involved in diabetes-
related pathophysiology, including vascular complications,
inflammation, and coagulation changes (36–38). In a cross-
sectional study of normoglycemic participants and patients
with prediabetes or diabetes mellitus, plasma extracellular
vesicles in diabetic patients were higher than those in
euglycemic control subjects. Exosome concentration was
positively correlated with insulin resistance index (HOMA-IR).
In vitro, insulin signaling was reduced, and EVs’ secretion
increased after the primary neurons long-term exposure to
insulin (36). New research has found that autophagy has the
same molecular mechanism as exosomes (39, 40). It has been
reported that ATG5-ATG12 and ATG16L1 complexes and LC3
have been detected in endosomes and phagosomes (41–43). The
function of these autophagy-related proteins is to ensure that the
vesicles are acidified and degraded in the lysosome. Using
bafilomycin A1 to inhibit the autophagy pathway can prevent
the fusion of endosomes and lysosomes, thereby facilitating the
release of exosomes (44). Autophagy pathway of multiple cells is
inhibited in the diabetic microenvironment, which may increase
exosomes in diabetic patients (45–47).

The abnormal exosomes of stem cells are also an essential
factor in DVC. Mesenchymal stem cells (MSCs) can be recruited
around blood vessels under normal and pathological conditions.
They secrete many factors through the exosome pathway to
promote the formation of new blood vessels. Therefore, they
are considered an essential part of regulating vascular
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regeneration (48, 49). In aging or diabetic conditions, the
production process of MSC exosomes presents significant
changes (50). The Jafar Rezaie team exposed human
mesenchymal stem cells to diabetic serum for 7 days. It was
observed that the levels of exosomal-related genes CD63, Alix,
Rab27a, Rab27b and Rab8b increased significantly. In diabetic
patients, the activity of acetylcholinesterase is enhanced, the
exocrine volume increases and the zeta potential decreases.
Ultrastructural examination revealed that more cytosolic lipid
vacuoles accumulated in diabetic cells. The reduction in the zeta
potential of exosomes is mainly related to the glycosylation of
exosomes, such as lactosamine, mannose and N-linked glycans. It
indicates that the abnormal glucose and lipid metabolism of stem
cells in the diabetic microenvironment may mediate the
modification and content alteration of exosomes (51). More
importantly, Jafar Rezaie found that the angiogenesis and
recovery ability of human bone marrow mesenchymal stem
cells decreased after treated with serum from patients with type
2 diabetes. The survival rate of human bone marrow
mesenchymal stem cells and their chemotaxis to vascular
endothelial growth factor decreased after 7 days of serum
culture in patients with type 2 diabetes. After diabetic serum
treatment, the expression of cadherin and NG2 in vascular
endothelial cells and the uptake capacity of low-density
lipoprotein decreased. The cell migration rate and the activity
of matrix metalloproteinase-2 and -9 decreased (52). Another
interesting study found that metformin, a common drug used to
treat diabetes, increased the production of human glioblastoma
cell (U87 MG) exosomes. Metformin reduces the activity of U87
MG human glioblastoma cells and inhibits the expression of
Frontiers in Endocrinology | www.frontiersin.org 3
cancer-promoting genes related to angiogenesis, carcinogenesis
and chemoresistance molecules (53). However, previous reports
found that the expression of CD63, Alix, and Rab27A decreased
in human endothelial progenitor cells (EPCs) cultured in diabetic
serum (54). This suggests that the effect of the diabetic
microenvironment on exosome production of different types of
stem cells may differ.

Evidence shows that inflammatory system disorders in diabetes
induce and accelerate various vascular diseases (55–57). The
researchers observed that EVs from diabetic patients were
preferentially internalized by circulating monocytes. Further
studies have shown that co-incubation of diabetic EVs with
monocytes could reduce the expression of genes related to
apoptosis and oxidative stress in monocytes (36, 58). It also
increased the expression of many proinflammatory cytokines (58–
60). These findings suggest that EVs in diabetic patients promote
monocyte survival and promote monocyte inflammatory activation.
Therefore, an abnormal exosome internalization and activation
mechanism may be a significant target in the study of diabetic
inflammation activation.
EXOSOMES ARE INVOLVED IN
DIFFERENT VASCULAR COMPLICATIONS

Atherosclerosis
Atherosclerosis is a disease in which abnormal metabolism or
blood coagulation causes thickening and hardening of the arterial
walls, resulting in narrowing and obstruction of the vascular
lumen (61, 62). Diabetes plays a crucial role in accelerating
FIGURE 1 | Schematic diagram of exosomes production and reception. Exosomes are originated from the MVBs, referring to double invagination of the plasma membrane.
Early sorting endosomes (ESEs) are formed by plasma membrane invagination, which can be fused with the endoplasmic reticulum (ER) and trans-Golgi network (TGN) to
produce late sorting endosomes (LSEs). The second invagination in LSE leads to the formation of intraluminal vesicles (ILV). MVBs are formed from LSEs with several ILVs
under two mechanisms, ESCRT-dependent and ESCRT-independent pathway. Some MVBs can be degraded by fusion with autophagy or lysosome, while others can be
transported to the plasma membrane and released to the extracellular environment. Exosomes are composed of various proteins, lipids, DNA, and RNA. The released
exosomes are mainly uptaken by recipient cells through three pathways, including endocytosis, direct fusion, and receptor-ligand interaction.
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atherosclerosis, with an augmented inflammatory state, more
diffuse atherosclerosis, and larger necrotic core areas in the
lesion (63). Endothelial and smooth muscle cell dysfunction,
attributing to hyperglycemia and insulin resistance, are the
major characteristics of diabetic vasculopathy, favoring a pro-
inflammatory/thrombotic state that results in atherothrombosis.
In the early stage, lipids or glycoproteins are deposited on the
arterial intima, and the damaged endothelium recruits blood-
circulating mononuclear cells. These differentiate into
macrophages that engulf lipids and transform into foam cells.
Subsequently, activated endothelium and macrophages release
several chemokines and growth factors, leading to smooth muscle
proliferation and extracellular matrix protein synthesis. With the
accumulation and denaturation of lipids, fibrous cap tissue
necrosis, progressive structural remodeling, and inflammatory
cell infiltration, the atheromatous plaques begin to form (62, 64).
In recent years, numerous investigations suggest that the
exosomes in the diabetic microenvironment promote the
progression of atherosclerosis via endothelial function,
inflammatory pathways, and lipid metabolism (65–67).

Endothelial dysfunction is the basic mechanism of early
atherosclerosis in diabetes mellitus. An analysis of patients
with atherosclerosis showed that cargo proteins levels in
plasma endothelial cell-derived exosomes (EDEs), such as
VCAM-1, vWF, PDGF-BB, angiopoietin-1, were significantly
higher relative to those of matched control subjects. This is
related to the different functions of endothelial cells, such as
adhesiveness, antithrombosis, survival and proliferation,
transport, metabolism, and the vascular collagen structure (68).
Moreover, reduced nitric oxide (NO) bioavailability enables
hyperglycemia to impair vascular endothelial function (69).
Furchgott and Lgnarro proposed that NO can be used as an
endothelial vasodilator to reflect the vascular endothelium function
(70, 71). In the early stageof atherosclerosis,NOsecretiondecreases
after vascular endothelial injury, which leads to the increased
expression of adhesion molecules, the adhesion of macrophages,
LDL oxidation, and smooth muscle proliferation to accelerate
atherosclerosis progression (72, 73). Huina Zhang et al.
transferred exosomes from the blood of db/db diabetic mice into
db/m+ non-diabeticmice and found that exosomes can be delivered
to the aortic endothelial cells of non-diabetic db/m+ mice and
damage endothelial cell function. Further analysis on exosomal
proteins in the endothelial cells of diabetic mouse aortas found that
exosome protein signals played a major role in this process.
Proteomics analysis showed that arginase 1 in the exosomes of
the db/db group was significantly increased (74). The main
substrates for NO synthesis are L-arginine and hydroxyl L-
arginine. Arginase 1 can specifically degrade NO substrates and
reduce NO production in endothelial cells (75). This study
demonstrated that lesions in the aortic endothelium could affect
other normal cell parts via certain regulatory proteins carried
by exosomes.

A disordered local microenvironment is an important
condition for plaque formation. Exosomes from mature
dendritic cells (DCs) are involved in increasing endothelial
inflammation and atherosclerosis via the NF-kB pathway
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mediated by tumor necrosis factor-a (TNF-a) located in the
exosome membrane (76). Naive and M2-polarized macrophage-
derived exosomes, which carry and transfer miR-146b-5p, miR-
378-3p, and miR-99a-5p, have a protective role in the
suppression of the inflammatory response via NF-kB and
TNF-a signaling. They also reduce necrotic lesion areas in the
atheroma (77).

Additionally, recent studies have revealed that inflammasome
activation is one of the pathologic mechanisms of diabetic
vascu lar endothe l ia l dys funct ion (78–80) . NLRP3
inflammasome is activated in the coronary endothelial cells of
early diabetic mice (81). The NLRP3 inflammasome is a
multimeric protein complex that mediates caspase-1 activation
and the secretion of pro-inflammatory cytokines IL-1b/IL-18 in
response to a stimulation (82). Inflammatory body products are
not secreted through specific Golgi-mediated direction and
transportation, but they are segregated by the membrane and
secreted in extracellular vesicles. Exosomes mediate the release of
inflammatory body products into the extracellular space (82, 83).
In a diabetic mouse model induced by streptozotocin (STZ),
endothelial-specific lysosomal acid ceramidase (AC) knockout
mice (Asah1fl/fl/ECcre) significantly elevated the formation of
NLRP3 inflammasomes and activation in coronary artery ECs
(CECs). A metabolic enzyme of ceramide, AC is involved in the
transportation of MVBs to lysosomes, thereby regulating the fate
of MVBs. In in vitro experiments, AC knockout CECS can
reduce the interaction between MVB and lysosomes, promote
exosome production, increase the release of IL-1b exosomes
under high glucose stimulation, and promote an inflammatory
reaction, which leads to vascular inflammation and
atherosclerosis (84). Therefore, regulating inflammatory
responses mediated by exosomes may be an effective way to
treat diabetic atherosclerosis.

Improving the plaque stability of advanced plaque and
reducing the core of necrosis are the main goals of the current
treatment of atherosclerosis. Studies have shown that
atherosclerotic plaques in subjects with type 2 diabetes are
more likely to rupture. As a hedgehog (hh) signaling molecule,
sonic hedgehog (shh) plays a critical role in normal embryonic
development and the maintenance of adult vasculature and
neovascularization (85). Hh signaling contributes to the
progression of atherosclerosis, and its inhibition resulted in a
reduction in the plasma cholesterol content. These effects were
related to a reduced uptake of modified lipoproteins mediated by
scavenger receptors on plaque macrophages (86). Adipocytes are
an important endocrine cell involved in controlling appetite and
satiety, regulating energy metabolism, and effecting insulin
sensitivity (87). Adipocyte dysfunction regulates multiple
diabetic complications via insulin resistance and tissue
inflammation (88). Insulin resistance adipocyte-derived
exosomes contribute to vasa vasorum angiogenesis via the shh
signaling pathway in endothelial cells ex vivo, and further
promote plaque burden and plaque vulnerability in diabetic
ApoE-/- mice (66). Generally, exosomes play an important role
in regulating endothelial injury, inflammatory activation, and
plaque instability during atherosclerosis development.
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MICROVESSELS

Diabetic Retinopathy (DR)
DR is a common complication of diabetes. Pathological
angiogenesis and leakage of the blood-retinal barrier are
characteristic changes in diabetic patients (89). Diabetic
retinopathy is usually asymptomatic in its early stages. As the
disease progresses, patients experience decreased vision due to
macular edema, vitreous hemorrhage, and pathological
neovascularization. In severe patients, fibrous tissue
proliferation in the vascular scar can cause detachment by
pulling the retina (90). Current studies on the molecular
mechanisms of DR have revealed the critical role of
neurovascular crosstalk disorders in retinal injury (91, 92). As
an important carrier of cell crosstalk, the role of exosomes in DR
is gradually being recognized.

Müller cells are the most abundant glial cells in the retina, and
they play an irreplaceable role in maintaining the blood-retinal
barrier and the function of neurons (93). Müller cells have a dual
role in DR. On the one hand, high glucose can damage the normal
transport function of Müller cells and affect retinal homeostasis
(94). On the other hand, the angiogenic factors released by Müller
cells and the excessive proliferation of Müller cells are considered
to be the central effector cells of the proliferative diabetic retina
(95). It is well known that the pathogenesis and progression of
diabetes are related to the dysfunction of pancreatic beta cells
(96). Tengku Ain Kamalden et al. found that the level of miR-15a
in the plasma of diabetic patients is positively correlated with the
severity of retinopathy. miR-15a is a crucial molecule that
regulates insulin secretion by pancreatic b cells. The exosomes
released by pancreatic b cells carry miR-15a into the retina and
activate Müller cell apoptosis through the Akt3 pathway (97). In
contrast, Zhang Wei’s team found that exosomes isolated from
the plasma of diabetic rats can promote the migration and
proliferation of Müller cells. In further mechanism studies, it
was confirmed that diabetic plasma exosomes enhanced
fibronectin and connective tissue growth factor (CTGF)
expression in Müller cells, activated Yes-related proteins and
jointly promoted the proliferation and fibrosis of Müller cells.
These results suggest that exosomes regulate the functions of
Müller cells through very complex and delicate pathways. To
clarify the specific pathway requires more careful sorting and
identification of exosomes.

The retinal pigment epithelium (RPE) is located between the
choroid and the retina, forming an external blood-retinal barrier.
RPE regulates the translation of epithelial cells and the stability of
tight junctions. The regulation of retinal pigment epithelium in
diabetic retinopathy is a direction that cannot be ignored (98).
Researchers exposed retinal pigment epithelial cell line-19
(ARPE-19) to a high-glucose (HG) medium and detected
many exosomes carrying VEGF and ROS. Melanin receptor 5
(MCR5) agonist treatment can significantly reduce the
production of ROS and VEGF-carrying exosomes in the retinal
pigment epithelium and reduce the angiogenesis caused by
ARPE19 induced by high glucose (99). Nevertheless, in
another study, Shun Gu et al. found that the release of miR-
202-5p-containing exosomes from ARPE19 cells treated with
Frontiers in Endocrinology | www.frontiersin.org 5
HG can effectively prevent proliferative diabetic retinopathy. The
ingestion of these exosomes inhibited the growth, migration and
tube formation of human umbilical vein endothelial cells. The
miR-202-5p in exosomes can also inhibit endothelial-
mesenchymal transition through the TGF/Smad pathway (100).

Vascular inflammation and activation of the complement
system play an important role in vascular barrier leakage (101,
102). Complement can be activated by a classical pathway,
selective pathway, and lectin pathway. All complement
pathways can activate the production of C3/C5 invertase and
form a membrane attack complex (MAC) (103). Previous studies
in DR patients and diabetic rat models have found that MAC is
extensively deposited in retinal endothelial cells, leading to
retinal endothelial cell death and increased retinal vessel
leakage (104, 105). Huang C et al. found that the content of
exosomes in the plasma of diabetic patients increased
significantly. Exosomes carry IgG bind Clq to activate the
classical complement pathway to form MAC attack retinal
blood vessels. This study makes up for the limitations of
previous studies on exosomes in DR (106).

Diabetic Kidney Disease (DKD)
The incidence of Diabetic kidney disease (DKD) is increasing
globally, and 20-40% of diabetic patients suffer from DKD. DKD
is a major cause of chronic kidney disease and end-stage kidney
disease (107, 108). During the 10-20 years from hyperglycemia to
renal failure, a variety of mechanisms are involved in damage to the
vascular system and the glomerulus (109). Disorders of glucose and
lipid metabolism, podocyte injury, basement membrane thickening,
mesangial dilatation, and glomerulosclerosis are the characteristic
manifestations of DKD (110, 111). The American Diabetes
Association defines DKD as a progressive kidney disease related
to diabetes with a glomerular filtration rate < 60 or with
proteinuria (112).

Early identification and intervention can reduce and delay the
progression of diabetic nephropathy into end-stage renal disease
(113). There was no obvious clinical manifestation during an
early-stage renal injury in diabetic patients (114). Although
proteinuria is the gold standard for a renal disease diagnosis, it
is affected by many factors (115). Most patients have irreversible
renal damage when they have apparent clinical manifestations
(116), and renal replacement therapy may be the only option
once the disease progresses to end-stage renal disease (117).
Accurate, early biomarkers of DKD are important.

Urine is a noninvasive body fluid that reflects kidney function
(118). In previous studies, many markers (including proteins and
RNA) reflecting renal function and DKD progression have been
found in the urine (119). However, recent studies have found
that the detection of urine exosome-related molecules is more
accurately reflective of the progress of DKD (120). Exosomes are
also carriers of many proteins and microRNAs in the urine (121).
In the ultra-early stages of DKD, circulating exosomes cannot
pass through the glomerulus to enter the urine, and the exosomes
in urine are mainly derived from the kidney’s constituent cells
(120). Therefore, exosome content in the urine is not easily
disturbed by some peak proteins and can better mirror the
progression of diabetic nephropathy.
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microRNAs
MiRNA is a small RNA with a length of about 20-24 nucleotides,
which can bind to mRNA and regulate the expression of multiple
target genes. It plays a vital role in immune regulation, insulin
secretion, cell differentiation, and other physiological and
pathological processes (122, 123). Exosomal nucleic acids exist
in a remarkably stable form due to the protective effects of
exosomes from RNase activity. Federica-Barutta used two-step
differential centrifugation to provide the first evidence that urine
exosomes contain a large amount of MiRNAs. Subsequently,
many studies have confirmed that urinary microRNAs are
related to the degree of lesions in DKD, which is valuable in
early diagnosis and therapeutic targeting.

Researchers first examined the reported microRNAs
associated with DKD in urine exosomes. MiR-215, miR-192,
and miR-194 were enriched in the kidney and played a role in
DKD pathogenesis (124). Yijie Jia et al. classified diabetic patients
into three groups of no albuminuria, microalbuminuria, and
massive albuminuria according to different albuminuria levels.
They found that the levels of miR-192 in urinary exosomes was
higher than the levels of miR-194 and miR-215, but miR-192
levels in the massive albuminuria group decreased. In patients
with normal albuminuria and microalbuminuria, miR-192 was
positively correlated with proteinuria and transforming growth
factor (TGF-b). Receiver operating characteristic curve analysis
shows that miR-192 is superior to miR-215 and miR-194 in
distinguishing between the normal albuminuria and
microalbuminuria group. MiR-192 has more predictive value in
early renal function impairment in diabetic patients (125).

Yijun Xie et al. tested 5 Type 2 diabetes (T2D) patients without
kidney disease and 5T2Dpatients withmassive proteinuria. A total
of 496 types ofUExo-derivedmiRNAswere differentially expressed
in DKD patients (>2 times). After PCR verification, three up-
regulated miRNAs (miR-877-3p, miR-362-3p and miR-150-5p)
were found. These miRNAs are involved in the regulation of
AMPK, p53 and mTOR pathways in DKD (126). Barutta F et al.
evaluated miRNA expression in urine exosomes of patients with
diabetes and early kidney disease. The results showed thatmiR-145
and miR-130a were enriched in urine exosomes of DKD patients,
while miR-424 and miR-155 were reduced. In animal models of
diabetic nephropathy, the levels of miR-145 in glomeruli and urine
exosomesare elevated, andahighglucose environment can increase
the content of miR-145 in mesangial exosomes (127).

In recent years, researchers have used bioinformatics
technology to screen out further many miRNAs related to
DKD. Eissa S et al. initially screened the differential expression
and pathway enrichment analysis of miRNA in urine exosomes
based on the syber-green PCR array. Among them, miR-15b,
miR-636 and miR-34a are the three most significantly up-
regulated miRNAs in DKD. Validation of qRT-PCR in larger
independent subjects showed that miR-15b, miR-636 and miR-
34a were all up-regulated in urine exosomes of DKD patients. It
is worth noting that there is a positive correlation between these
miRNAs and the ratio of serum creatinine and urine protein
creatinine. The sensitivity of these urinary exosomal miRNAs
detection to the diagnosis of DKD is 100% (128).
Frontiers in Endocrinology | www.frontiersin.org 6
In another subsequent study, the Eissa S team used public
miRNA databases to apply a combined target prediction
algorithm. The PCR detection of differential expression in
urine exosomes of 210 clinical participants showed that the
expression levels of miR-133b, miR-30a and miR-342were
higher than normal levels. A more interesting result is that
there are still 39.3% miR-133b, 19.6% miR-342 and 17.9%
positive rates in patients with normal albuminuria. This
research indicates that these miRNAs may have changed
before the patient developed albuminuria (129).

There are many other factors besides diabetes that can lead to
chronic renal insufficiency. To further explore more accurate
markers of DKD, Jinnan Zang et al. established a cohort study
comparing urinary exosomes MiRs in patients with T2DKD and
T2DM (normal renal function), as well as chronic kidney disease
(CCKD). They found that let-7e-5p, miR-23b-3p and miR-21-5p
were higher in T2DKD patients than CCKD patients, while the
expression of miR-30b-5p and miR-125b-5p was reduced.
Compared with T2DM patients in independent validation
experiments, miR-21-5p was up-regulated in the T2DKD and
CCKD cohorts. MiR-30b-5p has decreased expression in
T2DKD and CCKD (130). Interstitial transformation of
epithelial cells is a key step in renal fibrosis. MiR-21-5p in the
renal cortex of diabetic mice increased inhibitory phosphatase,
phosphatase and tensin homolog deleted (PTEN) and
fibronectin levels (131). Overexpression of miR-21-5p
promoted TGF-b-induced epithelial-mesenchymal transition
(132). miR-30b-5p is abundantly expressed in prostate cancer
patients, and its expression level is lower in T2DKD patients. The
miR-30 family have a protective effect in kidney cells. The
reduction of miR-30 family expression is also associated with
renal fibrosis (133). Although the changes of miR-30b-5p and
miR-21-5p are not unique to T2DKD, the degree of imbalance of
miR-30b-5p and miR-21-5p in T2DKD is more obvious than
that of CCKD. The definition of DKD patients is not
distinguished from CCD by pathological testing methods. The
different course of DKD patients is also the reason for the
difficulty in finding biomarkers. How to group patients more
accurately may be a breakthrough point for in-depth research in
the future.

Protein
In addition to carrying miRNAs, exosomes also contain various
proteins that participate in multiple signal pathways of DKD.
Irene Zubiri et al. detected 352 proteins in human urinary
exosomes using proteomic techniques for the first time.
Quantitative analysis revealed significant changes in 25
proteins in DKD. Further screening and analysis confirmed
that there were differences in the expression of histone-lysine
N-methyltransferase (MLL), a-microglobulin/bikunin precursor
(AMBP), and voltage-dependent anion-selective channel protein
1 (VDAC1) (134). MLL3 is a histone methyltransferase firstly
identified in exosomes (135) that is associated with proliferator-
activated receptorg (PPARg) downstream activation. PPARg
agonists prevent a variety of kidney diseases, including DKD,
through systemic and renal action (136). AMBP is a membrane
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glycoprotein expressed in the liver and kidneys that inhibits
serine protease activity (137). Previous studies have found that
compared with healthy people, patients with type 2 diabetes have
lower levels of AMBP in their urine (138). The decreased
synthesis of AMBP in the liver and kidneys of diabetic patients
or the obstruction of exosome inclusion into AMBP may explain
the decrease of urinary exosomes. VDAC 1 has been reported in
exosomes secreted by both urine and B cells (139). In this study,
VDAC1 levels were reduced in urine foreign bodies isolated from
DKD samples (140). VDAC1 has the activity of NADH-
ferricyanide reductase. In previous studies, the up-regulation of
VDAC1 in the kidneys of diabetic rats was related to podocyte
apoptosiss (141). The decrease in the presence of exosome
VDAC1 may be related to apoptosis regulation by exosomal
secretion. Due to the limitations of previous studies’ techniques
and methodology, it was difficult to detect many low-abundance
proteins. After removing high-abundance proteins, protein
techniques can help locate potential biomarkers and
therapeutic targets for DKD. This study shows us a better
screening process of exosome protein markers.

Gelatinase and ceruloplasmin are two types of proteins that have
been identified inurine andare closely related to thedevelopmentof
DKD(120, 142, 143).There is ample evidence in laboratory animals
and humans that gelatinase is reduced in early and lateDKDkidney
tissues. The symptoms of diabetic nephropathy in mice were
significantly aggravated after the deletion of gelatinase (144).
Ceruloplasmin, which promotes inflammation in response to
hyperglycemia and advanced glycation end products, is activated
in renal tissues of patients with confirmed DKD (145).
Krishnamurthy P. Gudehithlu and his team compared changes in
gelatinase and ceruloplasmin levels in the urine and exosomes from
DKDpatients and healthy subjects. They found that the changes to
gelatinase and ceruloplasmin in urinary exosomes of DKDpatients
were consistent with the differences in renal tissue. In contrast, the
activity of these enzymes in whole urine samples frompatients with
DKD differed from that in renal tissues. These studies suggest that
protein markers found in urinary exosomes may better reflect the
kidney’s underlying changes thanproteinsmeasured inwhole urine
samples (120).

Aquaporins (AQPs) expressed on the plasma membrane of
renal tubular epithelial cells are often dysregulated in diabetic
nephropathy (146, 147). Linear regression analysis of the
histological diagnosis and exosomal excretion of AQP5 and
AQP2 in the urine (UAQP5 and UAQP2) of patients with
non-diabetic proteinuric nephropathy (NDN) and diabetic
nephropathy showed that UAQP5 and UAQP2 were positively
correlated with the histological type of diabetic nephropathy
(148). AQPS is a complete membrane protein. The excretion of
AQP2 and other top plasma membrane proteins through
exosome formation was demonstrated by immunoelectron
microscopy and nano atomization liquid chromatography-
tandem mass spectrometry (149). It has been suggested that
exosomes can mediate the transport and secretion of cell
membrane proteins in the diseased kidney.

The activation of the TGF-b/Smad is recognized as a classic
signal for pathological changes of DKD (150). In recent years,
Frontiers in Endocrinology | www.frontiersin.org 7
various evidence has confirmed that exosomes of diabetic
patients can affect many aspects of the TGF-b/Smad cascade
signal. In the HG environment, the secretion of exosomes by
macrophages was significantly increased. Exosomes carry TGF-b
mRNA into mesangial cells, mediating the proliferation and
activation of mesangial cells through the TGF-b/Smad pathway
and promoting renal fibrosis (151). TGF-b superfamily receptors
are classified into type I and type II receptors. TGF-b can
phosphorylate Smad3 protein when it binds to type II receptor
on the cell surface, regulating cell proliferation-related genes
(152). The up-regulation of RII transcription is one of the
mechanisms leading to the TGF-b signal activation. Akiko
Sakurai et al. found that podocytes release exosomes
containing the epithelial cell-specific transcription factor3
(ELF3) transcription factor in high glucose culture, promoting
TGF-b/Smad signaling by up-regulating RII transcription. There
was a linear correlation between the ELF3 content in exosomes
and the decrease of glomerular filtration rate (153).

Podocytes are located on the surface of glomerular capillaries.
They are highly differentiated epithelial cells that work with
endothelium to maintain normal glomerular filtration function
(154). Podocyte damage is a hallmark pathologicalmanifestation of
early DKD. Podocyte injury can lead to a variety of cellular and
structural changes in the glomerulus (155). In vitro studies,
exosomes released by macrophages cultured with high glucose
disrupted podocyte function by inducing apoptosis and TGF-b
pathway and reduced the expression of protective proteins such as
nephrin, podocin andWilms tumor protein (WT1) (156).WT1, as
a podocyte-derived signal transduction factor family member, is
closely related to the development and function of the urinary
system (157). Clinical trials have found that the content ofWT1 in
urinary exosomes is related to multiple indicators that reflect the
decline of kidney function (serum creatinine, albumin/creatinine
ratio, urine protein/creatinine ratio and eGFR) (158).WT1 in urine
exosomes is considered tobe amarker of podocyte damage inDKD.
These results indicate that exosomes can participate in TGF-b/
Smad signal transduction in multiple pathways.
THERAPEUTIC VALUE OF EXOSOMES

At present, the treatment of various diabetic complications aims
to control the metabolic and hemodynamic changes related to
this condition and slow disease progression. The treatment
methods for vascular injury are very limited (159). Stem cells
can self-renew and differentiate into multiple lineages to produce
specific cell types (160). They are considered a potential treatment
for DVC due to their ability to reconstruct damaged, lost, and
aged tissues (161–163). Moreover, in recent years, research
indicates that that exosomes secreted by stem cells may be an
effective weapon for treating diabetic vascular diseases.

Diabetic Retinopathy (DR) and Diabetic
Kidney Disease (DKD)
A Safwat et al. injected rabbit adipose-derived mesenchymal
stem cell (ADSC) exosomes into mice eyes 4, 8, and 12 weeks
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after the diabetic model was established by systemic,
subconjunctival, and intraocular injection. They found that
ADSC-derived exosomes can effectively alleviate retinal edema,
the cell structure destruction in each layer in the STZ group.
MiR-222 in exosomes can reduce abnormal angiogenesis by
regulating STAT5a (164).

Kanna Nagaishi et al. found that after intravenous transplantation
of bone marrow mesenchymal stem cells, minimal donor
mesenchymal stem cells were observed in the kidneys (165).
Further studies have found that bone marrow MSCs can inhibit
ICAM-1 and TNF-a through paracrine exosomes and reduce the
excessive infiltration of macrophages (166). At the same time, MSC-
derived exosomes inhibited the mesenchymal transition and fibrosis
of the renal tubular epithelial cell phenotype by reducing the
expression of TGF-b (167, 168).

Autophagy has a protective effect on hyperglycemia-induced
renal injury (169). Rapamycin (mTOR), the core component of
cell growth signals that enhances protein translation, can inhibit
autophagy when its activity is enhanced. Increased mTORC1
activity has been observed in human and animal diabetic
nephropathy (170–172). Nesrine Ebrahim et al. found that
bone marrow mesenchymal stem cells-derived exosomes can
enhance autophagy by inhibiting the mTOR signaling pathway
in the diabetic nephropathy model. Additionally, the team also
found that MSC-derived exosomes significantly increased the
expression of autophagy-related proteins, Beclin-1 and LC3. The
histological morphology of the kidney of mice treated with MSC-
derived exosomes was restored, and fibrosis markers in the
kidney tissue was reduced (173).

The occurrence and development of DKD are related to
podocyte injury (174). VEGF produced by podocytes is
unfavorable for the treatment of DKD (175). MiR-16-5p can
inhibit the expression of VEGF. Hyperglycemia reduces the
production of miR-16-5p by podocytes and promotes the
release of VEGF. After over-expressing MiR-16-5p in human
embryonic stem cells, MiR-16-5p can be transferred to podocytes
treated with high glucose through the exosomal pathway,
reducing the degree of podocyte apoptosis and the expression
of VEGF (176).

Wound Blood Vessels
Approximately 15% of diabetic patients worldwide experience
wound healing difficulties and diabetic foot ulcers (DFU), of
which 5-24% require amputation (177). The slow reconstruction
of blood vessels and inflammation make wound healing difficult
in diabetic patients (178, 179). Exosomes also play an essential
role in stem cell transplantation for diabetic wound angiogenesis
(180). Cell-free treatment of exosomes is a highly stable, non-
immune therapy that provides easy access to the lesion and has
clinical value (181, 182). Evidence describes the therapeutic
mechanism of MSCs-exos in diabetic wound healing. Arsalan
Shabbir et al. found that MSCs-exos can be internalized by
fibroblasts from normal donors and chronic wound patients
and can enhance the proliferation and migration of fibroblasts in
a dose-dependent manner. The uptake of MSC-exos by human
umbilical vein endothelial cells also leads to increased endothelial
Frontiers in Endocrinology | www.frontiersin.org 8
cell lumen formation. The MSC-exos treatment activates Akt,
ERK and STAT3 signaling pathways and induces the production
of various growth factors (183). In another experiment, it was
also confirmed that MSCs-exosomes extracted from blood
accelerate wound healing in diabetic mice. MSCs-exosomes can
induce macrophage polarization, enhanced angiogenesis and
collagen deposition by affecting the NF-ĸB signaling pathway
and up-regulation of VEGF. The expression of PTEN protein in
the MSC-derived exosomes pretreated with melatonin was up-
regulated, and the M2 polarization of macrophages was induced
by inhibiting the phosphorylation of AKT to promote wound
repair (184).

EPCs are the progenitor cells of endothelial cells, which play a
crucial part in angiogenesis and diabetic wound repair (185).
J Zhang et al. injected human umbilical cord blood EPC
exosomes into diabetic rats and found that EPC-Exos can be
integrated into endothelial cells and enhance endothelial cell
proliferation, migration and blood vessel formation by activating
the Erk1/2 signaling pathway (186). Chun-Yuan Chen et al.
collected exosomes secreted by human urine-derived stem cells.
USC-Exos protein profile screening showed that the highly
expressed pro-angiogenic protein 1 (DMBT1) enhanced the
angiogenic activity of endothelial cells and promoted wound
healing in STZ mice (187).

Nrf2 has a protective effect on oxidative stress. Patients with
Nrf2 gene mutation are more likely to have diabetic
complications, including peripheral neuropathy, nephropathy,
retinopathy, foot ulcer, and microvascular disease (188). Xue Li
et al. used the exosomes of Nrf2 overexpressing ADSCs to treat
diabetic rats and found that the foot wound ulcer area was
significantly reduced. Increased levels of granulation tissue
formation, angiogenesis and growth factors, as well as
decreased levels of inflammatory and oxidative stress-related
proteins were detected in the wound bed. This experiment
shows that the target gene-modified stem cells can make their
exosomes play a more effective therapeutic role (189).

As platelet-rich plasma (PRP) contains many growth factors
that promote tissue regeneration and wound healing (including
new blood vessel formation), PRP has been widely used to treat
chronic wounds (190). Exosomes encapsulate many platelet
growth factors. VEGF and bFGF carried by PRP-exos have
pro-angiogenic effects in normal ECs via PI3K/Akt signaling
(191). Wound healing begins with the proliferation of fibroblasts
(192). PDGFBB promotes the proliferation offibroblasts through
the extracellular signal-regulated kinase (Erk) pathway (193).
Additionally, the expression of bFGF, PDGF-BB, and TGF-b in
PRP-exons was significantly enriched compared with the PRP
supernatant. After PRP-exos treatment, the downstream target
protein YAP of Rho GTPase (RhoA) is dephosphorylated,
allowing it to transfer to the nucleus, increasing fibroblasts’
migration and promoting faster wound healing (194).

In addition to the exosomes released from stem cells,
macrophages-derived exosomes also have a promising effect in
mediating the pro-angiogenic effects in diabetic wounds via
inhibiting the inflammatory response. Liu W et al. found that
macrophages-derived exosomes can activate P-AKT and reduce
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MMP-9 levels, significantly reduce pro-inflammatory cytokines
secretion, and promote the proliferation and migration of
endothelial cells to improve wound healing in diabetes
mellitus. Furthermore, it reduced TNF-a, IL-1b, and iNOS
expression and increased the expression of IL-10 and Arg-1 (59).

After stem cell transplantation, it is unnecessary to reach the
lesions for cell replacement to treat diabetic vascular damage.
Exosomes may help stem cells slow down pathological changes
in blood vessels throughout the body via blood circulation. These
results have provided new suggestions for stem cell therapy.
CONCLUSION AND FUTURE
PERSPECTIVES

In the past diagnosis of DVC, we mainly relied on abnormal
biochemical indicators produced after different organ vascular
system diseases (195). However, these biochemical indicators’
values do not change significantly in the early stage of the disease
and can be interfered with bymany factors (196). Different types of
cells can secrete exosomes. The membrane structure of exosomes
prevents enzyme degradation of its contents. The outer membrane
and contents of exosomes are derived from the source cell, which is
a marker of pathological changes in the source cell and also a
Frontiers in Endocrinology | www.frontiersin.org 9
signal mediator. Many studies have confirmed that exosomes are
more related to vascular complications than the signal molecules
detected in the total body fluid. However, the experimenters found
that the level of exosomes in the urine of patients with early diabetic
nephropathy increased, the number of exosomes in the urine of
end-stage diabetic nephropathy decreased (197, 198). Therefore,
the influence of exosomes processing in different stages of DVC is
also a challenge for converting exosomes into biomarkers.

Diabetes is a chronic disease of the whole body. Abnormal
glucose metabolism and inflammation activation are the main
causes of diabetic complications. Metabolic disorders in multiple
organs are the main feature of diabetes. The vascular system is
the most critical channel for the exchange of nutrients and signal
molecules. Both paracrine and remote signals are essential ways
for diabetic organs to regulate vascular disease. Exosomes
connect the crosstalk between cells and blood vessels in organs
and connect the regulation of blood vessels by the body’s
immune system. By summarizing previous studies, we found
that exosomes can activate classical pathological pathways and
provide opportunities for miRNAs and microproteins to
participate in diseases. It also provides new targets and
perspectives for the treatment of DVC in the future.

Stem cells have always been regarded as a very promising
strategy in the treatment of diabetic complications. Several
studies have confirmed that stem cells can improve diabetes
FIGURE 2 | Schematic representation of exosomes regulating the pathological process of diabetic vascular complications. Exosomes mediate atherosclerosis and
plaque rupture by regulating the production of no in aortic endothelium, increasing adhesion molecules, inflammatory transformation of macrophages, and endothelial
proliferation in diabetes. In the retina, exosomes promote angiogenesis, destroy endothelial cells and increase leakage. At the same time, exosomes mediate the
apoptosis of Müller cells in the early stage of DR and the proliferation and fibrosis of Müller cells in the late stage of DR. Exosomes carrying proteins and microRNAs
mediate podocyte injury, basement membrane thickening, mesangial dilatation, and glomerulosclerosis in diabetic patients. Exosomes derived from stem cells can
accelerate wound healing by regulating the proliferation and migration of fibroblasts and vascular endothelial cells.
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complications through systemic effects. In this article, we
summarized the mechanism of various stem cells to treat DVC
through exosomes. These results suggest that stem cells are no
longer purely cell replacement therapy and are more likely to be
the source of signal release for tissue repair. The treatment of
stem cell exosomes will be an important direction for diabetes
and vascular diseases in the future.

In summary, this review emphasizes the diagnostic and
therapeutic value of exosomes in DVC (Figure 2). However, due
to the current definition of DVC, it is difficult to distinguish
pathologically from similar diseases completely. The results of
many exosome-related biomarker studies still need to be further
confirmed.Another shortcoming in the current exosomeresearch is
the classification of the source of exosomes. Although the
technology of extracting exosomes from body fluids is becoming
more and more mature. However, the method of determining the
sourcecells of exosomewill be thekey topushingexosomesresearch
to a higher level in the future. Therefore, in the study of exosomes
and diabetic vascular complications, it is necessary to clarify the
internal relationship between the pathological changes dominant in
different stages and the changes in exosomes. In addition, exosomes
from different sources represent different characteristics. By
improving exosomes marking methods to clarify the distribution,
uptake and half-life of exosomes, the relationship between
exosomes in different cells and organs can be better clarified.
It can also better avoid the non-targeted uptake and side effects of
exosome therapy. In general, stem cell exosomes are a promising
direction for the treatment of diabetic vascular complications, but
Frontiers in Endocrinology | www.frontiersin.org 10
challenges still exist in the process of clinical application in
the future.
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