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Alzheimer’s-specific brain amyloid interactome:
Neural-network analysis of intra-aggregate
crosslinking identifies novel drug targets

Meenakshisundaram Balasubramaniam,1,* Akshatha Ganne,1 Nirjal Mainali,2 Sonu Pahal,2

Srinivas Ayyadevara,1,3,* and Robert J. Shmookler Reis1,3,4,*

SUMMARY

Alzheimer’s disease (AD) is characterized by peri-neuronal amyloid plaque and intra-neuronal neurofibril-
lary tangles. These aggregates are identified by the immunodetection of ‘‘seed’’ proteins (Ab1–42 and
hyperphosphorylated tau, respectively), but include many other proteins incorporated nonrandomly.
Using click-chemistry intra-aggregate crosslinking, we previously modeled amyloid ‘‘contactomes’’ in
SY5Y-APPSw neuroblastoma cells, revealing that aspirin impedes aggregate growth and complexity. By
an analogous strategy, we now construct amyloid-specific aggregate interactomes of AD and age-
matched-control hippocampi. Comparing these interactomes reveals AD-specific interactions, fromwhich
neural-network (NN) analyses predict proteins with the highest impact on pathogenic aggregate forma-
tion and/or stability. RNAi knockdowns of implicated proteins, in C. elegans and human-cell-culture
models of AD, validated those predictions. Gene-Ontology meta-analysis of AD-enriched influential pro-
teins highlighted the involvement of mitochondrial and cytoplasmic compartments in AD-specific aggre-
gation. This approach derives dynamic consensus models of aggregate growth and architecture,
implicating highly influential proteins as new targets to disrupt amyloid accrual in the AD brain.

INTRODUCTION

Neurotoxic inclusions, comprising intra-neuronal and extracellular aggregates, are critical hallmark features of diverse neurodegenerative

diseases including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Aggregates from AD tissue comprise ‘‘seed’’ or initiator proteins

(e.g., Ab1-42 and hyperphosphoryated tau fragments1), augmented by a wide variety of other proteins, most of which feature high levels of

disorder.2–5 Among the most abundant aggregate constituents are 14-3-3 paralogs, a-synuclein, neurofilament and motor proteins, hyper-

phosphorylated tau, Glial Fibrillary Acidic Protein (GFAP), and TAR DNA Binding Protein (TDP-43), which have been identified in diverse ag-

gregates isolated by immuno-pulldown with antibodies to Ab, tau, or a-synuclein.5,6 Knockdown of some of these commonly aggregating

proteins in C. elegans models of neurodegenerative aggregation, including models of AD, PD, and Huntington’s disease, indicate highly

leveraged roles of these proteins in aggregate formation and stability.2,5,7,8 Moreover, proteins recovered from neurodegenerative disease

aggregates show marked enrichment for post-translational modifications (PTMs) such as phosphorylation, acetylation, and oxidation of res-

idues that are pristine in normal controls.5,7 PTMs may induce structural changes that alter the functional activities of a protein while at the

same time exposing buried surfaces (predominantly hydrophobic) that favor aggregate adhesion. We recently showed that GFAP co-aggre-

gates with both tau andAb ‘‘seed’’ proteins in Alzheimer aggregates, and is fully (>95%) phosphorylated at sites that remain unmodified (<5%)

in age-matched-control (AMC) aggregates.5 Knockdown of GFAP in diverse neurodegenerationmodel systems conferred significant protec-

tion against aggregation, as did a small molecule (drug candidate) that directly and selectively targetsGFAP.5 Similarly, we previously showed

that 14-3-3 paralogs, especially 14-3-3g (14-3-3G or gamma), interact preferentially with hyperphosphorylated tau, present only in AD aggre-

gates.9 This demonstrates the need to delineate aggregate architecture specific for each neurodegenerative disease, to understand the eti-

ology of aggregate formation and to identify new therapeutic targets and drugs to combat these diseases.

We previously established an interactome-modeling approach in which crosslinkingwas used to derive aggregate-specific ‘‘contactomes’’

for insoluble aggregates from SH-SY5Y-APPSw cells, a human neuroblastoma model of amyloidopathy associated with familial AD.10 Graph

modeling and neural-network analysis identified critical hub and hub-connector proteins that play key roles in aggregate accretion and insol-

ubility.10 Accurate prediction of highly influential proteins, based on knockdown-mediated protection against aggregate accrual, provides a
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powerful strategy to assess or confirm the importance of specific protein-protein interactions. Applying machine learning (including neural

networks) to analyze empirical data, we predicted influential proteins that play crucial roles in protein aggregation.10

As a proof-of-principle example, we assessed a known inhibitor of protein aggregation, aspirin,11,12 showing that it significantly reduced

the complexity of insoluble aggregates in SH-SY5Y-APPSw human neuroblastoma cells.10 Aspirin is a prolific acetyl donor for many aggrega-

tion-prone proteins, including HSP90.10,13 Aspirin markedly reduced protein recruitment into aggregates, supporting the strategy of map-

ping the aggregate interactome to identify targets that may disrupt aggregation.5,11 Our preferred term for the aggregate interactome is

‘‘contactome,’’ because its internal crosslinks reflect the protein-protein adhesion architecture within aggregates, but are unlikely to reflect

functional interactions. This approach provides a mechanistic basis for predicting and disrupting protein aggregation, by identifying key

‘‘lynchpin’’ proteins that can serve as potential therapeutic targets for drug discovery.

In the present work, we used the same interactome-modeling approach to analyze b-amyloid aggregates isolated from AD and AMC

hippocampi.We combine empirical data from chemical crosslinkingwithin aggregates, and graphmodeling based on those inputs, to assess

the validity of neural-network (NN) predictions based on wet-lab determinations of aggregate abatement after knockdown of key targets in

human-cell orC. elegansmodels of neurodegenerative aggregation, by siRNA or RNAi respectively. We first constructed aggregate-specific

protein contact networks of sarcosyl-insoluble aggregates from AD brain tissues vs. their AMC counterparts. The non-functional protein-pro-

tein contacts that we describe here are highly nonrandom, anddefine disease-specific interactomes that govern the growth and stability of Ab

plaque, as well as tau tangles and other aggregates in AD brains.

RESULTS

Interactome modeling of Ab-specific insoluble aggregates from Alzheimer’s disease brains

To construct the intra-aggregate contactome (protein-protein interface network) from AD hippocampi, aggregates were isolated from 3 in-

dividual AD samples and 3 age-matched-control (AMC) samples, as previously described7; see Table S1. Aggregates are known to be quite

heterogeneous,4,7,14 so we first isolated relatively pure populations of AD aggregates by immuno-pulldown (IP) with antibodies to AD-specific

‘‘seed’’ proteins, in this case antibody to human Ab1–42, and these were cross-linked using our published protocol.7 In brief, after 100,000 x g

centrifugation to recover sarcosyl-insoluble aggregates from an Ab1–42-IP, pellets were permeated with a cross-linking reagent and a biotin-

tagged linker, which were coupled by azido-alkyne cyclo-addition. After mild tryptic digestion, cross-linked peptide pairs are recovered on

streptavidin-coated magnetic beads, released, and analyzed by mass spectrometry (see STAR methods for details), yielding high-resolution

m/z data that were interrogated with a modified version of Xlink Identifier.10,15 Linked peptide pairs are prima facie evidence of a protein-

protein interface that might contribute to the aggregate contactome network. Two stringency criteria were imposed to exclude or minimize

random interactions and false positives, and thus to reduce the complexity of the insoluble-aggregate consensus interactome derived from

hippocampal samples: crosslinked peptide pairs were required (i.) to have >5 spectral hits per individual sample, and (ii.) to be present in all

three individual AD brain-aggregate samples, but absent or far less abundant in AMC samples. To aid visualization, proteins (nodes) with

fewer than two additional interacting partners were pruned from the network, retaining only the total number of links (edges) for the preced-

ing hub.

Based on these filters, identified protein-protein pairs were analyzed for the following network-based descriptors using GePhi graph-

modeling software10,16 and an in-house R script: (i.) the ‘‘degree’’ (number of directly interacting partners) of each node protein; (ii.) the clus-

tering coefficient (CC) of the full network; (iii.) the eigenvector centrality (EC) of the network; and (iv.) the number of triangles (linked triads) in

the network. To differentiate disease (AD)-specific aggregates from normal, non-pathognomonic aggregates, we compared Ab-specific

consensus contactomes from 3 AD vs. 3 age-matched control (AMC) hippocampi, applying the same constraints as noted above. Cross-link-

ing and interactome analysis of the AD-specific Ab1-42-aggregate interactome identified 1,325 proteins (nodes) involved in 47,808 interac-

tions, for a mean of 72 interactions per node if all hubs are weighted equally (Figure 1A [degree]). The Ab1-42-aggregate interactome for

AMC samples identified 29,733 interactions for 1,369 nodes (a mean of 44 interactions/node, all hubs weighted equally). The average number

of interacting partners per node is thus 64% higher in the AD interactome than in AMC (P < 1E‒24, 2-tailed t test). The number of triangles

(triads of three interconnected nodes), a measure of aggregate complexity,10,17,18 is 2.5-fold greater for the AD interactome than AMC

(P < 1E‒4, 2-tailed t test; Figure 1B [triangles]).

To prioritize AD-specific protein-protein interactions that could serve as therapeutic targets for protein-protein interaction inhibitors

(PPIIs), we calculated common edges (interactions) shared between AD and AMC aggregates. Of 47,808 AD interactions, only 7,304 (15%)

were also present in AMC. Thus, although protein aggregation occurs progressively with age in many organisms and in multiple mammalian

tissues,2–4,7,19,20 AD amyloid-specific aggregates are far more abundant and complex than age-dependent aggregates observed in AMC

brains (Figure 1C, total edges per individual interactome, n = 3; p < 0.04 by 2-tailed heteroscedastic t test). As a tool for the discovery of pro-

teins that are preferentially aggregated in AD relative to AMC, we calculated the degree ratio (ratio of interacting partners, AD/AMC). We

developed an R-based graph-visualization tool to indicate individual hubs and their degrees (numbers of ‘‘contactome’’ direct connections).

The resulting graph (Figure 1D) thus emphasizes nodes in the Ab-specific interactome of AD aggregates, for which AD degree greatly ex-

ceeded AMC degree. In this panel, red color denotes proteins that had at least 4-fold more direct (first-degree) contacts in AD aggregates

than in AMC. Since these aggregates are immuno-purified for Ab peptides, we extracted just the direct-interaction partners of peptide Ab

(sometimes called ‘‘A4’’) to create the subnetwork shown in Figure 1E.

The AD aggregate contactome revealed a complex architecture comprising �1300 proteins, engaged in 1.9-fold more interactions than

were observed in AMC aggregates. AD nodes can be partitioned based on the number of interacting partners (degree) of each,10 as 323

ll
OPEN ACCESS

2 iScience 27, 108745, January 19, 2024

iScience
Article



mega-hubs (>100 partners), 296major hubs (50–99 partners), 498midi-hubs (10–49 partners), 11mini-hubs (2–9 partners; clustering coefficient

[CC] > 0.5), and 195 ‘‘hub connectors’’ (2–9 partners; CC/EC < 100, where EC is eigenvector centrality). The size distributions of hub proteins

for AD aggregate interactome are shown in Figure 2A. It is noteworthy that most mega-hub proteins are structural and/or cellular-matrix pro-

teins (Table S2).

In SYSY-APPSw cells, we had shown that hub connectors— proteins with few direct interacting partners, which link higher-degree hub pro-

teins that are not otherwise connected— are especially influential in the aggregate contactomes.10 The present analysis extends this obser-

vation to the human AD amyloid contactome. In AD hippocampal Ab aggregates, there were 195 highly influential hub connectors, which

include PGAM1, SQSTM1, CYTB, CRYM, several RAB proteins, and 14-3-3T. Complete list of predicted AD hub connectors are provided

as Table S3.

Since phosphorylations play a critical role in modulating protein aggregation,3,5,7,10 we analyzed phosphorylation status for sarcosyl-insol-

uble aggregate proteins purified after Ab pull-down from AD and AMC tissue. We found only 10 out of 66 proteins (15%) with sites that are

Figure 1. Crosslinking of AD vs AMC hippocampal aggregates defines the Ab-specific contactome

(A) Mean degree (number of interacting partners) of nodes in insoluble-aggregate contactomes from AD and AMC hippocampi, derived by crosslinking analysis

of aggregates isolated by Ab-immuno-pulldown (Ab-IP).

(B) Mean number of triangles (ternary associations) per node in insoluble-aggregate contactomes fromAD vs. AMC hippocampi, derived by crosslinking analysis

of aggregates isolated by Ab-IP.

(C) Mean number of protein-protein interactions (PPI), summed over the entire aggregate contactome derived by crosslinking analysis of Ab-IP-isolated

aggregates from AD vs. AMC hippocampi, treating each individual as a single data point.

(A–C) Error bars show means GSEM. ****p < 6E‒82 by 2-tailed homoscedastic t tests.

(D) Graph-model representation of the insoluble-aggregate contactome from AD hippocampal samples. Node colors indicate the AD/AMC degree ratios (see

key insert in panel E): orange and red nodes indicate the highest differential connectivity (AD/AMC) at 3–4 and 4–100, respectively.

(E) Direct contacts (first-degree interacting partners) of Ab peptide in AD insoluble aggregates, showing the degree enrichment ratio for AD/AMC aggregates

(see key resources table).
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uniquely phosphorylated in AMC aggregates, in contrast to 43 proteins (65%) with sites that are phosphorylated only in AD brain amyloid

(Figure 2B). A further 8 proteins are modified by shared site phosphorylations in both AD and AMC aggregates, although not always iden-

tically. AD-specific phosphorylations are listed in Table S4, demonstrating the potential diagnostic value of identifying differential PTMs in

protein aggregates. Figure 2C illustrates the abundance and pervasiveness of phosphoproteins in the AD-aggregate contactomes. Hubs

with AD-specific phosphorylation are colored red, while those shared by AD and AMC are highlighted in yellow.

Mitochondrial and cytoplasmic proteins are enriched in the Alzheimer’s disease amyloid contactome

In a previous study comparing the protein compositions of AD vs. AMCaggregates,meta-analysis of themost differentially abundant proteins

implicated acetylation, phosphorylation, and oxidation as GO (Gene Ontology) or pathway annotation terms highly and significantly over-

represented among AD-aggregate proteins.7 In the present aggregate-contactome analysis, we identified over 1300 aggregate proteins

markedly enriched in 3 out of 3 AD brain samples relative to AMC. Functional-annotation enrichment analysis of these proteins revealed

some interesting features. First, we partitioned proteins based on the associated subcellular location.Mitochondrial and cytoplasmic proteins

emerge as the cell compartments most highly represented in the aggregate interactome (Figure 3A). More than 20% of the AD aggregate

contactome comprises mitochondrial proteins, while over 40% are cytoplasmic. By parsing the ADmitochondrial contactome for disease as-

sociations, we revealed enrichment for multiple neurodegenerative diseases, including Parkinson’s, Huntington’s, and Alzheimer’s diseases,

as well as prion disease and spinocerebellar ataxia (Figure 3B). Other enriched disease terms were diabetic cardiomyopathy and chemically

induced cancers. Mitochondrial proteins in AD aggregates have over 1.6-fold higher degree (number of interacting proteins) than those in

AMC contactomes (Figure 3C).

We performed a parallel GO/pathway analysis for the disease association of cytoplasmic proteins identified in the AD aggregate contac-

tome, again revealing significant enrichment for neurodegenerative diseases that include Alzheimer’s and Parkinson’s diseases, ALS, and

prion disease (Figure 3D). Cytoplasmic proteins were also enriched for the insulin and oxytocin signaling pathways, and a variety of infections

Figure 2. The AD interactome reveals hub and hub-connector proteins

(A) Hub proteins in the AD insoluble-aggregate interactome were categorized, based on the number of interacting partners (degree), into classes ranging from

mega-to mini-hubs; ‘‘hub connectors’’ have low degree, but connect hubs that are not otherwise linked.

(B) Venn diagram showing that phosphorylations unique to AD are almost 5 times more abundant than AMC-specific sites in insoluble amyloid aggregates.

(C) Graph network depiction of phosphorylated proteins inferred from proteomic data, representing three categories: absence of phosphorylation (white),

phosphorylated in both AMC and AD (yellow), and phosphorylated only in AD aggregates (red). Sites are deemed fully phosphorylated if that PTM

comprises >99% of proteomic reads; whereas sites are considered ‘‘unphosphorylated’’ if they carry <20% phosphorylation.
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(salmonella, E. coli, COVID19), suggesting impacts on health and immunity (Figure 3D). Consistent with data for mitochondrial proteins,

aggregate-associated cytoplasmic proteins show an increase of over 1.8-fold in degree (interacting partners) in AD relative to AMC

(Figure 3E).

Neural network analysis predicts node influence in Alzheimer’s disease-like aggregation

The AD aggregate interactome comprises >1,300 proteins, participating in >47,000 protein-protein interactions (Figure 1D). To ascertain

which proteins or interactions contribute the most to aggregate formation and stability, we assessed RNAi knockdowns targeting aggregate

proteins for rescue of chemotaxis failure in a C. elegansmodel of AD-like amyloidosis. These empirical wet-lab data supplied inputs to train a

neural-network (NN) algorithm in R (Orange), which then predicted the influence of each protein in stabilizing aggregates based on their con-

tactome structure.10 Knockdown (KD) influence predictions were highly correlated (R= 0.9; R2 = 0.8) with empirical KD influence in a validation

set of previously measured RNAi rescues (Figure 4A). We then predicted KD-influence scores for 1314 proteins (nodes) identified in the

AD-specific interactome for Ab-pulldown aggregates. Graphical visualization of the resulting AD interactome, showing KD-influence scores

predicted by the trained neural network, allows us to emphasize differentially influential proteins that appear to play highly leveraged roles in

AD aggregate growth and/or stability (Figure 4B, orange and red nodes).

The most influential proteins, represented by orange and red nodes, appear with a wide range of degrees, i.e., varying numbers of inter-

acting partners. The ratio of predicted influence scores, AD/AMC, implicates a subset of aggregate proteins (red hubs in Figure 4B) that are

especially influential in AD aggregation— e.g., Ab peptide (and the parent APP protein); CAND1 (Cullin-associatedNEDD8-dissociated pro-

tein 1); eEF2 (eukaryote Elongation Factor 2); GFAP (Glial Fibrillary Acidic Protein); 14-3-3E (epsilon); PERI (peripherin); RAB30 (Ras-related

protein Rab-30); CH10 (mitochondrial heat shock protein); and ACTN3 (a-actinin 3), each of which has an AD influence predicted to be at least

twice that for AMC (Figure 4C). In contrast, some very large structural proteins such as TITIN and SRRM2 were not observed among proteins

with very high AD/AMC influence ratios. We then extracted a map of neural-network predicted influential proteins that are direct contacts of

Ab (Figure 4D). This ‘‘local contactome’’ subnetwork reveals several interesting candidate proteins, including CTNA1 (catenin a1) and histone

H1-3 (H13), that are predicted to be far more influential in the AD interactome than in AMC, providing amodel for understanding accelerated

aggregate progression in AD.

Gene ontology analysis identifies disease associations for neural-network-predicted aggregate proteins

Neural network (NN) analysis of aggregation data predicts that certain proteins are especially influential in AD aggregation. To characterize

the disease relevance of the topNN-predicted aggregate proteins, we used an annotation-term enrichment meta-analysis of all proteins pre-

dicted to be especially influential in AD (AD/AMC influence ratio >1.5) to identify associated diseases, cellular compartments, and diseases

that are over-represented. We found significant annotation enrichment for neurodegenerative diseases including Alzheimer’s, Huntington’s,

and Parkinson’s diseases, prion disease, and amyotrophic lateral sclerosis (ALS) (Figure 4E), supporting the mechanistic involvement of pro-

teins predicted to stabilize aggregates, in the etiology of diverse neuropathologies.

Knockdown of predicted influential proteins rescues amyloid aggregation in human cells

To empirically assess the validity of neural-network predictions, we selected five of the top protein candidates having node influence ratios

(AD/AMC) predicted to be > 1.5: PRKDC, PERI, CTNA2, SPTB1, and ANK3. Individual knockdowns of each of these target proteins by siRNA

constructs (Table S5) conferred significant protection against amyloid-like aggregation in SY5Y-APPSw cells relative to controls (Figure 5), with

no visible cytotoxicity (based on the detachment of DAPI+ cells). We infer from this that the observed reduction in Thioflavin T fluorescence

reflects lower aggregate formation or stability. Among these aggregate components, KD of Ank3 and Peri genes conferred the greatest pro-

tection against aggregation:�3.7-fold and�2.8-fold, respectively, exceeding their NN-predicted AD/AMC influence ratios of 2.1. Moreover,

the predicted AD/AMC influence ratio for CTNA2 was 1.75, very close to the 1.8-fold reduction in thioflavin-positive aggregates observed in

SY5Y-APPSw cells upon transfection withCtna2 siRNA. These results collectively support the conclusion that NN-predicted influential proteins

such as PERI, ANK3, CTNA2, and SPTB1 are especially important for AD-associated aggregation.

Knockdown of aggregation-prone mitochondrial proteins improves C. elegans chemotaxis

Gene ontology prediction showed that proteins in AD aggregates are especially enriched for two cellular compartments, mitochondria and

cytoplasm. Previous studies have noted mitochondrial dysfunction in Alzheimer’s disease brains.7 We sought to analyze the importance of

Figure 3. Gene Ontology meta-analysis implicates mitochondrial and cytoplasmic proteins as the principle AD annotations

(A) Pie chart representing the composition of aggregate proteins, based on their cellular component.

(B) Bar chart showing mitochondrial proteins identified in AD aggregates with >2-fold enrichment for disease-pathway annotations and Benjamini-adjusted p

value < 3E ‒ 6 for annotation enrichment in DAVID 2022 (https://david.ncifcrf.gov/home.jsp).

(C) Average number of interacting partners (degree) for mitochondrial proteins retrieved from aggregates.

(D) Bar chart showing cytoplasmic proteins recovered from AD aggregates with >2-fold enrichment for disease-pathway annotations and Benjamini-adjusted p

values <2E ‒ 7 for annotation-term enrichment in DAVID 2022.

(E) Average degree (number of interacting partners) of cytoplasmic proteins retrieved from aggregates.

(C and E) In these panels, each individual tissue sample is treated as a single point, and significance is assessed by 2-tailed heteroscedastic t tests.
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aggregation-prone mitochondrial proteins that were enriched in AD aggregates. Gene knockdowns of mitochondrial proteins, that differ

markedly in predicted influence between AMC and AD aggregates, were assessed in a C. elegans strain with the neuronal expression of hu-

man Ab1‒42. These KDs reduced the levels of amyloid-like aggregates, which impaired chemotaxis progressively with age.7 Specifically, 4 of 8

knockdowns of C. elegans orthologs of human genes encoding mitochondrial proteins enriched in AD aggregates (rmd-3, odp-2, pgam-5,

and nduf-2.2) significantly protect against chemotaxis decline in worms expressing Ab42 in neurons (Figure 5C). This illustrates the importance

of mitochondrial dysregulation and possible roles of aggregation-prone mitochondrial proteins in AD pathogenesis.

DISCUSSION

In this study, utilizing ‘‘click chemistry’’ to crosslink proximal proteins within aggregates, we constructed an aggregate-specific protein-con-

tact network from AD-patient and control brains.

Through proteomic analyses of AD and AMC aggregates, we previously identified proteins that co-aggregate with Ab in extracellular pla-

que, or with hyperphosphorylated tau in neurofibrillary tangles.7 Such proteomic analysis revealed the true complexity of AD aggregates in

general. Knockdowns achieved by the siRNA transfection of SY5Y-APPSw neuroblastoma cells allowed us to suppress the expression of indi-

vidual proteins that are significantly and specifically enriched in AD aggregates, confirming pro-aggregation roles for many of the implicated

proteins — including GFAP, eEF2, 14-3-3 family members, and SERF2.5,6,9,10 These results imply that the aggregation of many proteins is

nonrandom, favoring specific protein-protein interfaces (PPI) for adhesion.2,5–10,21 However, the interfaces through which proteins interact

within aggregates were not previously known. In the present study, we used the same protein-crosslinking technique that we had previously

established in a simple neuroblastoma cell model10 to derive theAD contactome (non-functional interactome) as a consensus amyloid-plaque

structure differentiating AD fromAMChippocampi. The complex interaction network for AD plaque revealed hub proteins with greater abun-

dance and interaction complexity than the same hubs in AMC aggregates, features that are expected to contribute to the insoluble-aggre-

gate burden in AD. Most protein-protein interactions observed in AD aggregates were not found at all in AMC; e.g., the interaction of GFAP

with dynactin-1 (DCTN1) is unique to AD. Interestingly, both GFAP and DCTN1 were enriched in AD serum relative to AMC.22 Although Dey

et al. did not isolate aggregates, their serum proteomics would have included them, and thus are consistent with our finding that these pro-

teins occur in AD aggregates at elevated levels, and suggest the possibility that these proteins may have leaked into cerebrospinal fluid, and

thence into the bloodstream, from dead or dying brain tissue.

The observation in AD brain amyloid of hubs with far more interacting partners per node (higher degree) suggests that such proteins may

support the growth or stability of aggregates. Althoughwe previously demonstrated that knockdown of proteins that are relatively enriched in

AD aggregates confers protection against aggregation in multiple model systems,2,6,10 our current AD-specific interactome data allow hub

proteins to be ranked by their AD/AMC degree ratio, which is likely to contribute to the aggregate abatement we observed after KD of either

partner.

We previously reported that numerous proteins identified in AD aggregates are differentially phosphorylated. We surmised that AD-spe-

cific phosphorylations may predispose these proteins to misfolding and aggregation,10 and may recruit other proteins to conglomerate in

insoluble aggregates. Our current proteomics data identified 66 proteins that are phosphorylated only in AD but unmodified in AMC aggre-

gates. This is likely due to previously demonstrated, AD-specific elevation of the implicated kinases, including MAPK-p38, GSK3b, and

PKA.23–27 Studies have documented that inhibiting the activity of these kinases lowered aggregation of critical proteins, including tau,

GFAP, and a-synuclein, demonstrating the role of phosphorylation in AD pathology.5,26,28 Griffin et al. (1989) reported that neuroinflamma-

tion, and IL1b in particular, drive the synthesis and activation of several AD-elevated kinases that underlie tau hyperphosphorylation.29 Our

identification of uniquely phosphorylated proteins in AD aggregates implicates newprotein and PPI targets for therapeutically opposing PTM

events that drive aggregation.

Organelles, includingmitochondria and endoplasmic reticulum, have long been implicated in ADpathogenesis.30,31 Gene ontologymeta-

analysis of top-ranked aggregate proteins (as predicted by NN analysis of network structure) revealed that�20% of them are mitochondrial.

This suggests two possibilities: (i.) Due to aging and/or stress, including Ab stress, mitochondria form insoluble aggregates, leading to mito-

chondrial dysfunction. (ii.) Accumulation of Ab peptide in mitochondria is responsible for mitochondrial dysfunction/disintegration, resulting

in leakage of mitochondrial proteins into the cytosol, where they coalesce with other aggregation-prone proteins. Meta-analysis of these AD-

enriched mitochondrial proteins implicates pathways specific for diverse neurodegenerative diseases, strongly implying that mitochondrial

proteins play a highly leveraged role in disease pathology.We are currently pursuing this possibility by analysis of aggregates isolated directly

frommitochondria of AD vs. AMC brain tissue. This is important because we believe that both intra- and extra-cellular aggregates are crucial

Figure 4. Neural-network prediction of influential proteins in the AD b-amyloid interactome

(A) Correlation between experimentally observed impact of RNAi knockdown (KD) on total aggregate (amyloid) burden in SH-SY5Y-APPSw cells, and the influence

of node removal based on neural network (NN) predictions after training.

(B) Graph model representation of the SY5Y-APPSw cell contactome, showing AD/AMC ratios of NN-predicted influence. As in Figure 1, orange and red nodes

indicate proteins with the highest AD/AMC influence ratios (see key resources table).

(C) Dot-plot representation of AD/AMC ratios of NN-predicted influence scores for 1325 proteins more abundant in AD than AMC aggregates.

(D) Ab direct (first-degree) interaction partners in AD insoluble aggregates, extracted from the contactome in panel b, showing NN-predicted influence ratios

(see key resources table).

(E) Bar chart representing fold-enrichment for disease pathway terms annotating NN-predicted influential proteins from AD aggregates, having AD/AMC

influence ratio >2.0.
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determinants in AD pathology, in that one contributes to the other, forming a vicious cycle that ultimately leads to neuropathology. Intracel-

lular aggregates, especially aggregates formed in the organelles such asmitochondria, damages those organelles andmay lead to cell death.

In many instances, Ab peptide is known to exacerbate intra-cellular/organelle aggregation, suggesting that intra- and extra-cellular aggre-

gation are not independent of one another.32

GOanalysis of AD-enriched aggregate proteins also identified pathways related to infectious agents, including Salmonella and E. coli bac-

teria and SARS-CoV2 virus. This is interesting because the risk of dementia was reported to be higher in patients after Herpes Simplex Virus

(HSV) infection, than in non-HSV controls or HSV-positive patients who received anti-herpetic drugs (e.g., Acyclovir, Famciclovir, Ganciclovir,

Valciclovir, or Valganciclovir).33,34 Neuroinflammation is a critical component of AD pathology, and infections increase a variety of neuroin-

flammatory cytokines, and IL-1b in particular.29,35–38 Increased IL-1b stimulates the production of sAPPa and eventually Ab, leading to plaque

formation. On the other hand, AD brains are more vulnerable to diverse infections, including E. coli,which are often associated with cognitive

decline.39 Aggregate proteomics revealed that several constituent proteins, including structural proteins (e.g., actin, dynactin, and tubulins)

and regulatory proteins (e.g., ATP-ribosylation factors and small GTP-binding proteins), are involved in pathways related to infection, sug-

gesting common mechanisms linking immune activation to AD etiology.

Furthermore, our use of neural-network algorithms to predict the relative influence of nodes in the aggregate interactome identified

several proteins that are critical to aggregate burden. Recruitment of proteins into aggregates is non-random,10 and due to the complex

Figure 5. Aggregate burden in SY5Y-APPSw cells and a C elegans model of neuronal amyloidosis is reduced after exposure to siRNAs targeting

predicted highly influential proteins

(A) Thioflavin-T staining of amyloid-like aggregates in SY5Y-APPSw cells treated with siRNAs targeting the indicated proteins, or with a random-sequence siRNA

construct (control) to assess nonspecific effects of the transfection protocol.

(B) Histogram shows thioflavin-T fluorescence of amyloid-like aggregates per cell in controls vs. siRNA-treated cells. Error bars indicate GSEM. ****p < 1E‒40.
(C) We tested 8 influential mitochondrial proteins implicated in AD aggregates, by RNAi knockdown in a C. elegans ADmodel expressing Ab1-42 in neurons and

consequently displaying impaired chemotaxis. Of these, 4 (50%) showed significant rescue of chemotaxis, in each case comparing three biological repeats by

1-tailed paired t-tests (*p < 0.05; **p < 0.005). At least 2 out of 3 biological assays for each KD target, taken individually, showed significant rescue relative to

controls (no KD) by chi-squared test, at p % 0.01.
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3D structure of the aggregate ‘‘contactomes,’’ the component proteins vary widely in their impact on aggregate growth and stability.10 We

used a machine-learning/neural-network approach to prioritize hubs and PPIs as potential therapeutic targets. Neural-network predictions

correlated extremely well (R = 0.9) with experimental values in test datasets derived from gene knockdowns in a C. elegans model of AD,

allowing us to identify key amyloid-interactome proteins (e.g., APP, GFAP, eEF2, CAND1, TENS1, MAP1A, and FLNC) predicted to be the

most influential contributors to aggregate burden; these predictions were then validated by gene knockdowns in C. elegans.

The static interactome (contactome) of AD-specific aggregates described here delineates a complex web of aggregate-specific PPIs that

mediate aggregate growth and stability. A detailed understanding of aggregate architecture implicates key hub proteins and PPIs. Targeting

such influential proteins with small molecules can reduce the complexity of aggregates and/or halt further aggregate growth. For example,

in our previous work, we found GFAP to be an influential protein that plays a crucial role in aggregate growth and complexity. Target-based

in silico screening of small-molecule structural libraries predicted several that specifically target GFAP; the best candidate was validated in

several AD-model systems wherein we observed highly significant reductions in aggregate burden.5,21 The approach, strategies, and more

importantly the influential proteins, described here can be generalized to many other neurodegenerative diseases that feature age-associ-

ated protein aggregation as hallmarks.

Limitations of the study

(1) Recovery of Ab-specific aggregates from brain samples depends on antibody specificity and avidity for its target. We validated the

antibody employed here for specificity based on binding to protein of the expected electrophoretic mobility.7 Due to differences

in avidity among antibodies, no comparisons could bemadebetween recoveries of different proteins; thus, relative proteomic spectral

counts (‘‘hits’’) are used only to compare AD vs. AMC yields of the same protein.

(2) Quantitation of cross-linked peptides from aggregates depends on the extent to which trypsin can digest intra-aggregate proteins.

We assessed whether protease digestion can progressively degrade aggregates using AD-model systems, including SY5Y-APPSw
human neural cells and C. elegans.10 Based on material failing enter a polyacrylamide electrophoretic gel, we estimate that trypsin

digests R94% of sarcosyl-insoluble aggregates from AD hippocampus. Such material was excluded from analyses under our current

protocol. Yields of each crosslinked-protein were only compared between AD and AMC.

(3) Identification of cross-linked peptide pairs depends on both proteins being included in a reference list of aggregate proteins and their

post-translational modifications (PTMs), identified in aggregates isolated without crosslinking. Proteins and PTMs not detected in

reference aggregates will not be registered by the software. Identification of cross-linked peptides requires high-resolution outputs

from mass spectrometry, and may exceed the local computational capability for large reference lists. No such limitation was encoun-

tered in the present study.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact: Robert J Shmoo-

kler Reis (rjsr@uams.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The raw Xlinked data generated in this manuscript, and any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Institutional approval of ethical procedures

Samples for proteomic analysis were excised from brain tissue archived at �80�C in the UAMS Brain Bank, originating from subjects diag-

nosed by immunohistochemistry to have Alzheimer’s disease (but lacking markers of Parkinson’s disease) or age-matched controls

(AMCs). Tissues were de-identified, by removal of all identifiers and personal information that could be used to link them to their donors.

All experimental procedures described were deemed non-human-subject research by our Institutional Review Board (IRB) under Exemption

4 (U.S. Department of Health and Human Services).

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

monoclonal antibody Ab1–17 Abcam ab_11132; RRID: AB_297770

Biological samples

Frozen brain tissue from hippocampus (AMC), N = 3 UAMS brain bank Not applicable

Frozen brain tissue from hippocampus (AD), N = 3 UAMS brain bank Not applicable

Chemicals, peptides, and recombinant proteins

Cross-linking reagents Balasubramaniam et al. (2019)10 Not applicable

Experimental models: Cell lines

SY5Y-APPsw cell line Mousavi & Hellström-Lindahl et al.,14 Not applicable

Experimental models: Organisms/strains

C.elegans AD model CAENORHABDITIS GENETICS CENTER (CGC) CL2355

Oligonucleotides

PRKDC Sigma SASI_Hs01_00134549

CTNNA2 Sigma SASI_Hs01_00024061

SPTNB1 Sigma SASI_Hs01_00083730

ANK3 Sigma SASI_Hs01_ 00186165

Software and algorithms

Xlink Identifier Modified in-house Du et al., 201115

Orange data mining software Orange https://orangedatamining.com/

Fiji-ImageJ Schneider et al.40 https://ImageJ.net/software/fiji/

GePhi graph modeling software Open Source https://gephi.org/
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METHOD DETAILS

Purification of Ab-specific sarcosyl-insoluble aggregates

Detailedmethods describing purification of insoluble aggregates from brain tissue were reported previously.7 Briefly, flash-frozen tissue from

AD or AMCbrain caudal hippocampus (N = 3 per group) was pulverized in amortar and pestle pre-cooled on dry ice. After a 5-min low-speed

centrifugation (2200 x g), supernatant protein was quantified with Bradford reagent (Bio-Rad) and equal protein portions were analyzed. To

isolate Ab-specific aggregates, samples were incubated with DYNAL Protein-G magnetic beads coated with monoclonal antibody raised

against a synthetic Ab1–17 peptide (ab11132; Abcam). Bound aggregates were rinsed 3 times, eluted, and brought to 1% v/v sarcosyl,

0.1-M HEPES, 5-mM EDTA, to which was added a cocktail of protease and phosphatase inhibitors (Sigma Aldrich PPC1010). Sarcosyl-insol-

uble aggregates were pelleted by ultracentrifugation (90min at 100,0003 g), resuspended in 20-mMphosphate-buffered saline (pH 7.5), and

processed for cross-linking.10

Chemical cross-linking of insoluble aggregates

Amodified cross-linking reagent,10,41 propargyl amine, was prepared as a stock solution in DMSOand added to insoluble aggregate fractions

to achieve a final concentration of 5 mM, and incubated 30 min at 22�C. Cross-linking reactions were quenched with 50-mM Tris-HCl (pH 8.0),

and samples were centrifuged 90 min at 100,000 x g at 4�C to remove unbound cross-linker.

Cross-linked aggregates were then incubated in 8-M urea and 122-mMdithiothreitol buffer for 30min at 37�C. To this reactionmix, 40-mM

iodoacetamide was added and incubated 20 min at 22�C in the dark. To the reduced cross-linked sample, 10 units of trypsin (Pierce) was

added, and ammonium bicarbonate to 150 mM, for 14 h incubation at 37�C followed by quenching with addition of acetic acid to 3% (v/v).

Trypsin-digested cross-linked peptides are then desalted on a 1-cc C18 column (Sep-Pak,Waters) containing 50mg resin, and evaporated

to dryness (Speed-Vac, ThermoFisher). Samples were then reconstituted in a 10-fold molar excess of biotin crosslinker/azide solution,

0.25-mMTBTA, 250-mMCuSO4, and 5-mMTris-phosphine (TCEP) buffer, and incubated at 4�C for 2 h. Biotinylated cross-linked peptide pairs

were captured on streptavidin-coatedmagnetic beads as described10 (ref). Bound cross-linked peptides were eluted in buffer containing 50%

(w/v) acetonitrile and 0.4% (v/v) trifluoro-acetic acid, and identified by LC-MS/MS as previously described.

Graph modeling of protein-protein interaction (PPI) networks

Cross-linked peptide pairs were identified and their relative abundances estimated with a modified version of Xlink-Identifier.10,15 A list of

Ab-specific aggregate proteins, identified previously,7 was used as a reference database to calculate m/z values for all possible peptide pairs

that could arise by cross-linking proteins within aggregates. To reduce the complexity of cross-linking data, only peptide-peptide pairs

attaining R5 spectral hits per sample were included for further analysis. To reduce false positives, only protein-protein pairs identified

in all three individual brain samples were carried forward for further data processing. All data analyses were performed using Linux scripts

developed in-house. Results from Xlink-Identifier were first processed by GePhi16 to calculate network descriptors, including the number

of interacting partners (degree) and eigenvector centrality, utilized as independent-variable inputs for NN analysis.

Neural-network analyses

For neural network predictions, we employed our previously trained model,10 containing experimental data from 36 knockdowns in a

C. elegans neural-Ab model. Briefly, NN utilized a multilayer perceptron (MLP) algorithm with back-propagation, implemented within

Orange. The NN algorithm had 1 hidden layer with 5100 neurons, and the activation method and solver were set to ReLu and Adam respec-

tively.10 For training and testing, data were randomly split 70%/30% at each of 100 iterations. The chemotaxis index (normalized as fold

change) was predicted and plotted for the full dataset.

siRNA knockdowns and thioflavin-T staining in SY5Y-APPsw cells

To knock down the expression of target genes, human neuroblastoma cell line SH-SY5Y-APPSw, expressing the ‘‘Swedish’’ familial-AD muta-

tions wasmaintained as previously described.6,10,42 Briefly, cells were grown to 70% confluence, trypsinized, and sub-cultured in 96-well plates

(at 30,000–40,000 cells/well), supplemented with antibiotic-free Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% (v/v)

fetal bovine serum (Atlanta Biologicals, GA, USA). After 24 h at 37�C, Lipofectamine 3000 (Invitrogen) was used to transfect cells with a short

interfering RNA (siRNA; Sigma Aldrich), targeting each candidate gene of interest, viz., PRKDC (SASI_Hs01_00134549), CTNNA2

(SASI_Hs01_00024061), SPTNB1 (SASI_Hs01_00083730), and ANK3 (SASI_Hs01_ 00186165). Transfected cells, including control cells trans-

fected with a random-sequence siRNA construct (Sigma Aldrich), were maintained 48 h at 37�C prior to thioflavin-T staining. To assess

amyloid-like aggregates, siRNA-treated cells were incubated with 0.1% (w/v) thioflavin-T in phosphate-buffered saline, and imaged in a

Keyence automated-stage fluorescence microscope. Total aggregate fluorescence per cell was calculated using the Fiji plug-in to ImageJ,

as previously described.6

RNAi knockdown and chemotaxis assay in a C. Elegans AD model

Chemotaxis Index (CI) was assessed in C. elegans strain CL2355, expressing human Ab1-42 in all neurons as previously described.43,44 Briefly,

prior to chemotaxis assay, eggs from age-synchronized cohorts of worms were hatched and fed with E. coli bacteria (HT115/DE3) carrying a

plasmid that harbors either empty feeding vector (FV) or a construct yielding RNAi targeting the gene of interest.2,45 Worms weremaintained
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at 20�C to assess progressive Ab aggregation and loss of chemotaxis.2,7 The Day 1 adults were transferred onto plates containing 2-mMFuDR

to prevent progeny production and incubated at 25�C to induce Ab production. Day 5 (post-hatch) worms were collected after serial washes

to remove progeny in larval stage and residual bacteria, and were assayed as previously described11 in 100-mm culture dishes. Briefly, worm

motility toward 1-butanol (chemotaxis) was scored after 2 h and the ‘Chemotaxis Index’ (CI) was calculated as a normalized response.

Thioflavin-T staining of amyloid-like aggregates in SY5Y-APPSw cells

To quantify amyloid-like aggregates in SY5Y-APPSw cells (expressing the ‘‘Swedish’’ double mutant of APP, a model of heritable AD), cells

were fixed in formaldehyde and stained with thioflavin-T as described previously.6 Briefly, before RNAi KD, cells at 70–80% confluence

were detached in trypsin/EDTA and sub-cultured in triplicate wells of 96-well plates (at 5,000–8,000 cells/well) containing antibiotic-free

DMEM medium with 10% v/v FBS (Invitrogen). At 6-h post-plating, the gene of interest (or vehicle alone) was transfected into SY5Y-APPSw
cells with Lipofectamine 3000 (ThermoFisher) and maintained at 37�C for 48 h. Cells were then fixed in 4% v/v formaldehyde and incubated

with 0.1% (w/v) Thioflavin T in phosphate-buffered saline (PBS) along with DAPI. Fluorescence intensities of images captured on a Keyence

(BZ-x810) microscope were quantified using FIJI (ImageJ) software.46

QUANTIFICATION AND STATISTICAL ANALYSIS

Significance of differences between groups was assessed by homoscedastic ‘‘Student’s’’ t tests for groups of N > 8 with like variance; for

smaller groups or groups of unequal variance, the heteroscedastic t test (Excel option 3) was employed. Differences in proportions were as-

sessed for significance by chi-squared tests or Fisher’s exact tests, as appropriate to group sizes. In some analyses, multiple repeat assays

were treated as individual points and significance ascertained by heteroscedastic t tests. Benjamini-adjusted significances of annotation-

term enrichment were calculated by DAVID (https://david.ncifcrf.gov/home.jsp, Dec. 2022) as p values corrected for multiple endpoints.

All tests were 2-tailed except (as noted) if the direction of a significant shift had been previously determined.
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