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Abstract: Background: Coronary artery calcium score (CACS) is a reliable predictor for future
cardiovascular disease risk. Although deep learning studies using computed tomography (CT)
images to predict CACS have been reported, no study has assessed the feasibility of machine learning
(ML) algorithms to predict the CACS using clinical variables in a healthy general population. Therefore,
we aimed to assess whether ML algorithms other than binary logistic regression (BLR) could predict
high CACS in a healthy population with general health examination data. Methods: This retrospective
observational study included participants who had regular health screening including coronary CT
angiography. High CACS was defined by the Agatston score ≥ 100. Univariable and multivariable
BLR was performed to assess predictors for high CACS in the entire dataset. When performing ML
prediction for high CACS, the dataset was randomly divided into a training and test dataset with a
7:3 ratio. BLR, catboost, and xgboost algorithms with 5-fold cross-validation and grid search technique
were used to find the best performing classifier. Performance comparison of each ML algorithm was
evaluated with the area under the receiver operating characteristic (AUROC) curve. Results: A total
of 2133 participants were included in the final analysis. Mean age and proportion of male sex were
55.4 ± 11.3 years and 1483 (69.5%), respectively. In multivariable BLR analysis, age (odds ratio [OR],
1.12; 95% confidence interval [CI], 1.10–1.15, p < 0.001), male sex (OR, 2.91; 95% CI, 1.57–5.38, p < 0.001),
systolic blood pressure (OR, 1.02; 95% CI, 1.00–1.03, p = 0.019), and low-density lipoprotein cholesterol
(OR, 1.00; 95% CI, 0.99–1.00, p = 0.047) were significant predictors for high CACS. Performance in
predicting high CACS of xgboost was AUROC of 0.823, followed by catboost (0.750) and BLR (0.585).
The comparison of AUROC between xgboost and BLR was significant (p for AUROC comparison
<0.001). Conclusions: Xgboost ML algorithm was found to be a more reliable predictor of CACS in
healthy participants compared to the BLR algorithm. ML algorithms may be useful for predicting
CACS with only laboratory data in healthy participants.
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1. Introduction

Cardiovascular disease (CVD) is one of the leading causes of death worldwide [1]. Inflammation of
the vascular smooth muscle cell results in increased calcium deposits that develops into atherosclerotic
plaque on the internal wall of the coronary artery. Further, the internal diameter of the vessels
deteriorates due to the expansion and rupture of the calcifying plaque, resulting in cardiovascular
disease [2]. When evaluating the risk of coronary atherosclerosis, we usually assess an individual’s
conventional risk factors including hypertension, diabetes, dyslipidemia, and smoking. In addition,
coronary artery calcium score (CACS) in computed tomography (CT) is an important predictor for
future CVD development and mortality in the general population [3–5]. It has been reported that
an assessment of CACS along with the Framingham Risk Score stratification, can be more useful in
assessing future CVD development rather than just evaluating the latter [6]. Likewise, identifying CACS
in the general population is a useful tool to identify high risk patients for CVD in primary prevention.

Machine learning (ML) has recently been adopted in a variety of medical problem solving or
outcome predictions because it shows greater accuracy compared to conventional statistical methods
due to its use of tremendous computational power [7]. Previous studies have focused on deep learning
algorithms to predict CACS using chest CT, which has already shown promising results in image
deep learning tasks [8,9]. Moreover, there have been a variety of ML algorithms to classify high
and low risk for CVD more efficiently than the conventional logistic regression analysis [10–12].
The performance of these ML algorithms are gradually improved by several ML techniques such as
data scaling/normalization, outlier or noise processing, and cross-validation to minimize overfitting
and underfitting [13]. Recently, Al’Aref et al. suggested that an ML model including clinical features
and CACS can improve the future coronary artery obstructive disease (CAOD) risks in 35281 Coronary
CT Angiography Evaluation for Clinical Outcomes: An International Multicenter (CONFIRM) registry
patients [10]. However, to our best knowledge, no study has assessed the feasibility of ML algorithms to
predict the CACS using only clinical variables in a healthy general population. Therefore, the aim of this
study was to assess the performance of several ML classifiers to predict CACS in addition to conventional
binary logistic regression (BLR) analysis. We hypothesized that classification performances of several
ML classifiers are superior to those of BLR analysis.

2. Materials and Methods

2.1. Study Participants

This is a retrospective observational study using hospital-based participants who had regular
health screening. In Korea, the entire population has medical insurance, and those aged 40 and above
are allowed to have a general health screening every two years, which is provided by the National
Health Insurance Service. At the same time, if there have been any abnormal health results through
prior screening, or if the health policyholder or business owner wants additional investigations at a
personal cost, then examinations such as a brain MRI or coronary CT angiography (CTA) are made
available. We included patients who were examined between January 2014 and December 2019 at
three tertiary academic centers. The inclusion criteria were those patients (1) who were 40 years or
older and (2) who opted for a coronary CTA in addition to regular health examination simultaneously.
The exclusion criteria were (1) missing clinical or laboratory information and (2) the patients with
repetitive coronary CTA. In other words, if the patients had undergone repetitive coronary CTA at
each regular health examination, we only included information of the last health examination and
coronary CTA results. Figure 1 shows the flow chart of the inclusion and exclusion strategy used in
this study. The study protocol was approved by the Hallym University Hospital Institutional Review
Board (No. 2019-05-010-001). Informed consent was waived by the IRB because we only used fully
deidentified data.
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Figure 1. Flow chart of the participants. CTA, Computed tomography angiography; CACS, coronary
artery calcium score.

2.2. Data Collection

As described earlier, we included laboratory parameters performed at regular health examinations
including complete blood count, liver and renal function tests, lipid profile, atherosclerosis markers,
and screening tests for diabetes. In addition, anthropometric measures such as age, sex, blood
pressure, and body mass index were included in the input features of ML tasks. Information on
clinical characteristics and risk factors for CVD (hypertension, diabetes, dyslipidemia, current smoking)
were not included because laboratory parameters such as blood pressure, fasting blood glucose,
glycated hemoglobin, or total and low-density lipoprotein (LDL) cholesterol are already included in
the prediction model.

2.3. Coronary Artery Calcium Score

Three participating centers performed an ECG-triggering cardiac CT scan of Sensation 64 or
Somatom Definition Flash (Siemens Medical Solutions, Forchheim, Germany). All CT scanners
performed with 64-detector scanning capability, and the exact parameters of the cardiac CT scan
were as follows: tube voltage, 120 kVp; window level, 40; window width, 120; slice thickness, 3 mm.
CACS was calculated by semi-automated Agatston method [14]. The primary outcome measure was
high CACS, defined as a CACS of 100 or more in coronary CTA.

2.4. Machine Learning

We used anthropometric and laboratory variables from the general health examination as input
variables. BLR, catboost, and extreme gradient boost (xgboost) ML algorithms were used to classify
high and low CACS of the participants. Especially, catboost and xgboost are ensemble tree-based
classifiers, which can minimize the issue of overfitting in tree-based classifiers [15–17]. We randomly
divided the whole dataset into a training and test dataset with a 7:3 ratio. Proportions of high CACS
groups were identically distributed in the training and test dataset. Input variables were not scaled or
normalized with preprocessing but entered as row values in the ML task. All ML tasks were performed
with 5-fold cross-validation, which prevents overestimation of the parameters and reduces information
leakage. We used a grid search technique for hyperparameter optimization of the ML algorithms.
From the ML training process, we extracted feature importance information of each ML classifier and
compared them with each other.
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2.5. Statistical Methods

Baseline characteristics of the participants according to high vs low CACS were compared with
Student’s t-test, Mann–Whitney U, or Pearson’s χ2-test, as appropriate. We performed univariable
and multivariable BLR analysis for the whole dataset. Statistically significant features with a p-value
less than 0.05 in the univariable logistic regression analysis were entered into the multivariable model.
Predictors in BLR analysis were represented with odds ratio (OR) and 95% confidence interval (CI).

After the BLR analysis of the whole dataset, the ML classifier was trained in the 4-fold training
dataset and validated in the 1-fold dataset, randomly. Performance of each ML classifier was evaluated
in unseen test data. We calculated the probability score of the data in each ML algorithm and
allocated those with a score of more than 0.5 into the high CACS group. The performance of each
ML algorithm was measured by the area under the receiver operating characteristic (AUROC) curve.
ML classification tasks were performed with R version 3.6.1 (the R Foundation for Statistical Computing)
using moonBook, caret, xgboost, and catboost R packages.

3. Results

A total of 2123 participants were included in the final analysis. Mean (±standard deviation)
age and proportion of male sex were 55.4 ± 11.3 years and 1483 (69.5%), respectively. Among all
participants, 237 participants (11.2%) had a high CACS. Comparison of the anthropometric and
laboratory difference for high versus low CACS groups in the whole dataset are shown in Table 1.
The high CACS group is likely to be older, shorter in height and male and have a longer abdominal
circumference and higher systolic and diastolic blood pressure than those with low CACS. Fasting
blood sugar, glycated hemoglobin, lactate dehydrogenase, serum glutamic-oxaloacetic transaminase,
blood urea nitrogen, creatinine, and mean corpuscular volume of red blood cells were higher, and total
bilirubin, estimated glomerular filtration rate, total cholesterol, LDL cholesterol, and platelet count
were lower in the high CACS group than in the low CACS group.

Table 1. Baseline characteristics of the total study population.

Low CACS (n = 1896) High CACS (n = 237) Total (n = 2133) p Value

Age, years 54.0 ± 10.8 66.2 ± 9.5 55.4 ± 11.3 <0.001
Male 1300 (68.6) 183 (77.2) 1483 (69.5) 0.008

Height, cm 166.3 ± 8.8 164.6 ± 9.0 166.1 ± 8.8 0.007
Weight, Kg 69.2 ± 11.9 68.1 ± 11.0 69.1 ± 11.8 0.187

Abdominal circumference, cm 85.2 ± 9.2 87.0 ± 8.8 85.4 ± 9.2 0.004
BMI, Kg/m2 24.9 ± 3.0 25.0 ± 2.9 24.9 ± 3.0 0.514

BP systolic, mmHg 120.8 ± 14.3 128.0 ± 15.5 121.6 ± 14.6 <0.001
BP diastolic, mmHg 73.3 ± 11.2 74.8 ± 10.9 73.4 ± 11.1 0.047

hsCRP, IU/L 1.3 ± 2.4 1.2 ± 2.3 1.3 ± 2.4 0.764
FBS, mg/dL 102.0 ± 24.0 111.4 ± 30.5 103.1 ± 25.0 <0.001

A1c, % 5.6 ± 0.8 5.9 ± 0.9 5.7 ± 0.8 <0.001
Bilirubin (total), mg/dL 0.9 ± 0.3 0.8 ± 0.3 0.9 ± 0.4 0.014

Bilirubin (direct), mg/dL 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.023
gamma-GT, IU/L 44.4 ± 59.3 48.1 ± 66.0 44.8 ± 60.1 0.408

ALP, IU/L 72.4 ± 25.1 73.3 ± 25.4 72.5 ± 25.2 0.572
LDH, IU/L 217.1 ± 83.2 233.7 ± 81.6 219.0 ± 83.2 0.004
AST, IU/L 28.7 ± 29.6 31.1 ± 15.4 28.9 ± 28.4 0.041
ALT, IU/L 31.0 ± 43.0 29.9 ± 22.0 30.9 ± 41.3 0.523

BUN, mg/dL 13.5 ± 3.3 14.8 ± 3.8 13.6 ± 3.3 <0.001
Creatinine, mg/dL 0.9 ± 0.3 0.9 ± 0.2 0.9 ± 0.3 0.015

eGFR, mL/min 85.8 ± 27.3 77.9 ± 25.6 84.9 ± 27.2 <0.001
Total cholesterol, mg/dL 195.5 ± 38.1 184.1 ± 42.5 194.2 ± 38.8 <0.001

TG, mg/dL 145.0 ± 100.3 135.3 ± 86.7 144.0 ± 100.0 0.112
HDL, mg/dL 52.5 ± 13.1 52.1 ± 12.2 52.5 ± 13.0 0.610
LDL, mg/dL 110.4 ± 51.4 85.5 ± 58.1 107.6 ± 52.7 <0.001
WBC, 103/µL 5.7 ± 1.5 5.7 ± 1.6 5.7 ± 1.5 0.918
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Table 1. Cont.

Low CACS (n = 1896) High CACS (n = 237) Total (n = 2133) p Value

Hemoglobin, g/dL 14.7 ± 1.4 14.6 ± 1.5 14.7 ± 1.5 0.122
MCV, fL 91.6 ± 4.3 92.5 ± 4.2 91.7 ± 4.3 0.001

Platelet count, 103/µL 243.3 ± 49.4 233.5 ± 44.6 242.2 ± 49.0 0.002
CACS * <0.001

Values were presented as mean ± standard deviation or number (column percent) as appropriate. * median
(interquartile range). CACS, coronary artery calcium score; BMI, body mass index, BP, blood pressure; hsCRP, high
sensitivity C-reactive protein; FBS, fasting blood sugar; A1c, glycated hemoglobin; gamma-GT, gamma-glutamyl
transferase; ALP, alkaline phosphatase; LDH, Lactate dehydrogenase; AST, Aspartate transaminase; ALT, alanine
aminotransferase; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; TG, triglycerides; HDL,
high-density lipoprotein; LDL, low-density lipoprotein; WBC, white blood cell; MCV, mean corpuscular volume; IU,
international unit.

3.1. Predictors of High Coronary Artery Calcium Score

Table 2 showed the results of the univariable and multivariable BLR analysis of the whole dataset.
Among them, age (OR, 1.12; 95% CI, 1.10–1.15 per 1 years), male sex (OR, 2.93; 95% CI, 1.59–5.40),
systolic blood pressure (OR, 1.02; 95% CI, 1.00–1.03 per 1 mmHg), and LDL cholesterol (OR, 1.00; 95%
CI, 0.99–1.00) were significant predictors for high CACS.

Table 2. Results of the binary logistic regression analysis to predict high coronary artery calcium score
in the entire study population (N = 2123).

Univariable Analysis Multivariable Analysis

OR (95%CI) p Value OR (95%CI) p Value

Age, years 1.12 (1.10–1.13) <0.001 1.12 (1.10–1.15) <0.001
Male 1.55 (1.13–2.14) 0.007 2.93 (1.59–5.40) <0.001

Height, cm 0.98 (0.96–0.99) 0.007 0.95 (0.82–1.10) 0.488
Weight, Kg 0.99 (0.98–1.00) 0.188 1.06 (0.89–1.27) 0.507

Abdominal circumference, cm 1.02 (1.01–1.04) 0.004 1.02 (0.99–1.06) 0.168
BMI, Kg/m2 1.01 (0.97–1.06) 0.514 0.80 (0.49–1.30) 0.367

BP systolic, mmHg 1.03 (1.02–1.04) <0.001 1.02 (1.00–1.03) 0.022
BP diastolic, mmHg 1.01 (1.00–1.02) 0.047 1.01 (0.99–1.03) 0.475

hsCRP, IU/L 0.99 (0.93–1.05) 0.758 0.95 (0.88–1.03) 0.193
FBS, mg/dL 1.01 (1.01–1.02) <0.001 1.01 (1.00–1.01) 0.070

A1c, % 1.41 (1.23–1.61) <0.001 1.06 (0.82–1.36) 0.676
Bilirubin (total), mg/dL 0.63 (0.41–0.97) 0.036 0.84 (0.35–2.03) 0.705

Bilirubin (direct), mg/dL 0.24 (0.06–0.99) 0.049 0.68 (0.04–10.92) 0.787
gamma-GT, IU/L 1.00 (1.00–1.00) 0.370 1.00 (1.00–1.00) 0.254

ALP, IU/L 1.00 (1.00–1.01) 0.572 1.00 (0.99–1.00) 0.182
LDH, IU/L 1.00 (1.00–1.00) 0.004 1.00 (1.00–1.00) 0.812
AST, IU/L 1.00 (1.00–1.01) 0.260 1.01 (0.99–1.02) 0.308
ALT, IU/L 1.00 (0.99–1.00) 0.697 0.99 (0.98–1.00) 0.298

BUN, mg/dL 1.12 (1.08–1.16) <0.001 1.05 (1.00–1.10) 0.067
Creatinine, mg/dL 1.39 (0.93–2.09) 0.105 1.17 (0.71–1.91) 0.538

eGFR, mL/min 0.99 (0.99–0.99) <0.001 1.00 (1.00–1.01) 0.268
Total cholesterol, mg/dL 0.99 (0.99–1.00) <0.001 1.00 (1.00–1.01) 0.882

TG, mg/dL 1.00 (1.00–1.00) 0.155 1.00 (1.00–1.00) 0.438
HDL, mg/dL 1.00 (0.99–1.01) 0.676 0.99 (0.97–1.00) 0.094
LDL, mg/dL 0.00 (0.99–0.99) <0.001 1.00 (0.99–1.00) 0.047
WBC, 103/µL 1.00 (0.92–1.10) 0.918 1.04 (0.94–1.15) 0.444

Hemoglobin, g/dL 0.93 (0.85–1.02) 0.122 0.94 (0.81–1.10) 0.446
MCV, fL 1.06 (1.02–1.09) 0.001 1.01 (0.97–1.05) 0.627

Platelet count, 103/µL 1.00 (0.99–1.00) 0.004 1.00 (1.00–1.00) 0.478

OR, odds ratio; CI, confidence interval; BMI, body mass index, BP, blood pressure; hsCRP, high sensitivity C-reactive
protein; FBS, fasting blood sugar; A1c, glycated hemoglobin; gamma-GT, gamma-glutamyl transferase; ALP, alkaline
phosphatase; LDH, Lactate dehydrogenase; AST, Aspartate transaminase; ALT, alanine aminotransferase; BUN,
blood urea nitrogen; eGFR, estimated glomerular filtration rate; TG, triglycerides; HDL, high-density lipoprotein;
LDL, low-density lipoprotein; WBC, white blood cell; MCV, mean corpuscular volume.
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3.2. Performance of Machine Learning Classifier of High Coronary Artery Calcium Score

Supplementary Table S1 shows the comparison of input variables between the training and test
datasets. There were no differences among input features with the exception of triglyceride level.
In BLR analysis that included only the training dataset, age and male sex were significant predictors for
high CACS (Supplementary Table S2). Supplementary Table S3 depicts the catboost and xgboost ML
algorithms detailing the hyperparameters of the best classifier. Figure 2 shows the overall performance
comparison of the AUROC of the three algorithms that predict high CACS. The performance of xgboost
was better than that of the BLR classifier (p for AUROC comparison = 0.008). Figure 3 summarizes
the feature importance of each ML model. Age, systolic blood pressure, and LDL cholesterol were
significant features in all three ML classifiers. Male sex was found to be a significant predictor of
high CACS in BLR analysis but was not a significant feature in xgboost ML classifiers. When we
additionally performed ML prediction with the 10 variables that had the highest importance values
(Figure 3), the AUROC values did not differ much from the original models (0.605 for binary logistic
stress, 0.749 for catboost, and 0.822 for xgboost).
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Figure 3. Variable importance plot in each machine algorithm. ALP, alkaline phosphatase; hsCRP, high
sensitive C-reactive protein; HDL, high-density lipoprotein; eGFR, estimated glomerular filtration rate;
BUN, blood urea nitrogen; BPsys, systolic blood pressure; LDL, low-density lipoprotein; BMI, body
mass index; ALT, alanine aminotransferase; FBS, fasting blood sugar; WBC, white blood cell; AST,
aspartate transaminase.

4. Discussion

In this study of CACS prediction using health examination data, age, male sex, and systolic blood
pressure were significant predictors for high CACS in a healthy population. BLR analysis provides
reasonable information for the significant predictors of high CACS, but its prediction performance
was lacking as a prediction classifier. However, other ML algorithms such as catboost and xgboost
classifiers overcome the prediction power of the BLR classifier and provide a satisfactory binary
classification prediction.

There have been well-known risk calculators in stratifying CVD risk in symptomatic and
asymptomatic patients [18–20]. Diamond and Forrester originally developed the Duke Clinical Score
using logistic regression, which included age, sex, type of chest pain, and several risk factors for
CVD [21]. After reporting the overestimation of the pretest probability of the Duke Clinical Score
in predicting symptomatic CAOD, the CAD Consortium score and the CONFIRM Risk score were
developed and still used age, sex, and several risk factors for CVD as predictors to predict high CAD
risk in patients with CAOD [22–24]. In our ML prediction model, age, sex, and several risk factors also
contribute to classification prediction. Among them, age, systolic blood pressure, and LDL cholesterol
were important features for all three ML classification predictions, which is concordant with previously
developed risk stratification calculators.

In our BLR of high CACS in all participants, LDL cholesterol had a negative association with
high CACS. In our data, the high CACS group had lower total and LDL cholesterol levels (184 mg/dL
and 86 mg/dL, respectively) compared to the low CACS group, which was different to other study
populations [4,6,25]. This phenomenon could be explained by the possibility that those with high CACS
may have been taking more lipid lowering agents for primary prevention of CVD than those with low
CACS. Further, our data could be partially explained by the fact that high aspartate transaminase/alanine
aminotransferase ratio and increased lactate dehydrogenase in individuals with high CACS have been
associated with a higher proportion of statin-induced muscle or liver injury than in those with low
CACS [26,27]. If drug history was included as an input feature of our ML algorithms, the performance
of these models might have been better than current models. However, since we did not include
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history of previous prescription including lipid lowering agents, this hypothesis should be verified in
future studies.

In our xgboost algorithms, male sex was not a significant predictor of CAS. Furthermore, why is
the importance of input features different in predicting high CACS group for each ML model?
Logistic regression is used to explain various phenomena with odds ratio but always takes into
account the interaction effect when constructing the model [28]. In contrast, catboost and xgboost do
not consider interaction effects because these algorithms are composed of tree-ensemble structures,
which minimize the feature interaction in classification or regression tasks [15,29,30]. In addition,
identifying the importance of catboost and xgboost features could give us novel feature information for
CACS prediction. In our result, alkaline phosphatase, platelet count, estimated glomerular filtration
rate, body mass index, and white blood cells were importance features in ML algorithms. Alkaline
phosphatase is already one of the risk factors or treatment target for cardiovascular disease in addition
to the highly sensitive C-reactive protein as atherosclerotic biomarkers [31]. Likewise, implementation
of ML other than logistic regression could be useful to improve prediction performance and to find
novel associations between input features and target disease.

Our study has some limitations. We did not extract or use information on drug usage,
regular exercise, or compliance of primary prevention of CVD. In other words, the disadvantage of this
study is that there is no information on statin usage and regular exercise, which are associated with
CVD development. Second, this study was conducted on the Korean people, and therefore, it may not
be possible to generalize its results to other ethnic groups. When using our method on data from other
ethnic groups, we should keep in mind that the probability of several factors contributing to CVD
development in Asians is underestimated. This study was conducted on patients attending tertiary
hospitals, and therefore, there is a possibility of selection bias even though the participants were likely
to be a healthy general population.

Despite these limitations, our study has some strengths. First, physically healthy participants
were the main population in our study. Most other CVD risk scoring systems have been developed
for symptomatic CVD patients. Therefore, in order to screen for the risk of CAOD in asymptomatic
patients, there was a need to study patients without CVD, rather than those with CVD. Second, our ML
algorithms showed improved performance of some ML classifiers compared to logistic regression
even though no clinical variables, except age and sex, were used in the training process. Therefore,
our results could be useful in predicting future CVD risk in patients with only limited laboratory data.

5. Conclusions

In this study, we found that when predicting CACS with laboratory data in a healthy participant,
logistic regression was not enough for classifying them into a high CACS group. Instead, the xgboost
algorithm can improve the prediction power in CACS estimation.
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