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a b s t r a c t

Pyrazinamide (PZA) is the only first-line antitubercular drug active against latent Mycobacterium tubercu-
losis (Mtb). It is activated to pyrazinoic acid by the pncA-encoded pyrazinamidase enzyme (PZase).
Despite the emergence of PZA drug resistance, the underlying mechanisms of resistance remain unclear.
This study investigated part of these mechanisms by modelling a PZA-bound wild type and 82 mutant
PZase structures before applying molecular dynamics (MD) with an accurate Fe2+ cofactor coordination
geometry. After observing nanosecond-scale PZA unbinding from several PZase mutants, an algorithm
was developed to systematically detect ligand release via centre of mass distances (COM) and ligand
average speed calculations, before applying the statistically guided network analysis (SGNA) method to
investigate conserved protein motions associated with ligand unbinding. Ligand and cofactor perspec-
tives were also investigated. A conserved pair of lid-destabilising motions was found. These consisted
of (1) antiparallel lid and side flap motions; (2) the contractions of a flanking region within the same flap
and residue 74 towards the core. Mutations affecting the hinge residues (H51 and H71), nearby residues
or L19 were found to destabilise the lid. Additionally, other metal binding site (MBS) mutations delo-
calised the Fe2+ cofactor, also facilitating lid opening. In the early stages of unbinding, a wider variety
of PZA poses were observed, suggesting multiple exit pathways. These findings provide insights into
the late events preceding PZA unbinding, which we found to occur in some resistant PZase mutants.
Further, the algorithm developed here to identify unbinding events coupled with SGNA can be applicable
to other similar problems.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tuberculosis (TB) due toMycobacterium tuberculosis (Mtb) infec-
tion remains a global health concern with recent reports indicating
high morbidity and mortality [1]. The World Health Organization
(WHO) reported approximately 1.6 million TB-related deaths in
2018 [1] despite the availability of therapeutic options. Approxi-
mately one third of the global population is latently infected with
Mtb [2]. Since its discovery, the pyrazinamide (PZA) drug has
become an essential component in first-line TB treatment [3],
showing activity against primary TB, multidrug-resistant TB
(MDR-TB), and even preventing relapse of the disease [4]. It is fre-
quently combined with isoniazid (INH) and rifampicin (RIF) during
the initial phase of therapy [4].
1.1. Mechanism of action of PZA

PZA is a prodrug that requires intracellular activation by the
pncA-encoded bacterial enzyme pyrazinamidase (PZase) [4] to
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form bacteriostatic pyrazinoic acid (POA). Improved efficacy of PZA
is due to its increased specificity on latent tubercle cells, which
shortens the course of treatment to six months, instead of the stan-
dard period of nine to twelve months [5]. Additionally, studies on
murine models have shown that the omission of PZA in TB thera-
peutic regimens not only lengthens the treatment duration but
also compromises the efficacy of the other drugs to clear the bac-
terial cells [6,7]. Hitherto, the underlying mechanism of action of
PZA remains elusive [8]. Natively, PZase hydrolyses nicotinamide
to nicotinic acid, a precursor of nicotinamide adenine dinucleotide
(NAD+) in the NAD salvage pathway [4], through a cysteine-based
catalytic mechanism [9].

1.2. Structure of the drug target and resistance mutations

The monomeric structure of PZase consists of six parallel beta-
sheets with helices packed on either side to form a single a/b
domain (Fig. 1) [9]. PZase has a metal binding site (MBS) consisting
of a ferrous ion (Fe2+) coordinated by the NE2 atom of H51
(H51NE2), H57 (H57NE2), H71 (H71NE2) and OD2 of D49 (D49OD2).
Adjacent to the MBS are three substrate-binding residues (D8,
K96 and C138), which form a catalytic triad [9]. Access to the active
pocket is controlled by a lid (residue positions 52–70) [10], which
is tethered at the base by two of the MBS residues H51 and H71.
The exact catalytic mechanism for PZA activation is not known.
According to Petrella et al, Mtb PZase shares an addition–elimina-
tion mechanism with PZase from Acinetobacter baumannii in which
the C138 nucleophilic thiolate, assisted by D8, attacks the PZA car-
bonyl carbon atom to release ammonia and an acyl-enzyme inter-
mediate [9,11].

Although current TB therapeutics are effective for drug-
susceptible TB strains, the emergence of drug-resistant Mtb has
raised the level of difficulty in the control of MDR-TB globally, lead-
ing to increased TB-related morbidity and mortality [12]. In 2018,
the WHO reported 556,000 cases of MDR to the first-line anti-TB
drugs RIF and INH, leading to 251,000 fatalities [1]. Phenotypic
resistance to PZA is associated with mutations in the pncA gene,
leading to the reduced or complete loss of PZase activity [13–15].
These mutations include indels and missense/nonsense mutations
[16,17], and confer varying degrees of PZA resistance in patients
within different geographical locations [18]. Although mutations
are distributed throughout the PZase structure, previous studies
have shown that the majority of them are located in the following
regions: residues 3–17, 61–85 and 132–142 [13,19]. These posi-
tions account for 54% of all mutations conferring PZA-resistance.
Proteins are dynamic entities displaying a set of diverse move-
ments, which are greatly influenced by the inter- and intra-
residue interactions. This in turn defines the overall stability, fold-
ing and functioning of enzymes in 3D space [20]. Thus, a residue
substitution might drastically affect the ligand overall binding
and unbinding process.

1.3. The importance of understanding the ligand unbinding events in
drug discovery

Exploring the effect of mutations on the (drug) binding/unbind-
ing processes is an essential step in deciphering the underlying
molecular mechanism of drug resistance. A growing body of work
suggests the importance of ligand residence times and their char-
acterisation for assessing drug performance in silico [21–26].
Whilst playing an important role in determining drug perfor-
mance, the time-scales required to sample and observe ligand exit
can vary by several orders of magnitude across protein systems,
ranging from a few nanoseconds (as seen in our work) to hours
[27–29]. A long retention time for instance, partly explains the
effectiveness of several marketed long-acting drugs [24,30]. Sev-
eral computational approaches have thus been developed to expe-
dite and characterise the observation of ligand unbinding events in
silico, some of which are discussed below.

Hu and co-workers determined possible unbinding routes for
the insecticide TMG-chitotriomycin from the target b-N-Acetyl-D-
hexosaminidase, by applying steered MD to a list of CAVER 3.0-
generated pathway predictions [23,31]. By pulling the ligand along
defined pathways, one can determine the directionality of unbind-
ing [24], while also approximately determining the ease of ligand
dissociation [32]. As the force bias ushers the ligand along a prede-
fined path, the process is computationally faster, but needs to be
assisted by more rigorous methods to confirm the results [32].
Tiwary et al. have used metadynamic simulations to monitor var-
ious properties around ligand unbinding, such as the effect of
water and steric constraints [29], and drug association/dissociation
kinetics [21,33]. In metadynamics, the efficiency of conformational
sampling rate along the free energy surface is increased by intro-
ducing a history-dependent potential term [34]. This entails the
predefinition of a set of collective variables (CVs) around which
repulsive Gaussians are added whenever a conformation visits that
CV [29], which discourages the system from visiting previously
explored energy surfaces [34]. The choice of collective variables
(CVs) thus is essential for the success of these simulations. A scaled
MD approach was used with replication for several modulators of
the glucokinase isoform 1 – a type 2 diabetes mellitus target – to
determine their residence times [26]. Scaling the potential energy
function expedites conformational transition rates by weakening
stabilising interactions, thus facilitating ligand dissociation [26].
While reducing the level of detail for the energy landscape, the
method is computationally cheaper to compute, and benefits from
the statistical significance derived from replication. Rational sam-
pling is a recent approach proposed by Sohraby et al. where human
intuition was used to selectively guide MD simulations through the
desired unbinding path for the anticancer drug dasatinib from its
drug target c-Src kinase by selecting certain sampled conforma-
tions and extending the MD runs, under replication [28]. Doing
so avoided the need for introducing pseudo forces via modified
potential functions, and also avoided the application of additional
external forces into the system.

1.4. The study

Due to the diversity of mutations in Mtb PZase and their clinical
significance, a comprehensive study to understand the mechanism
of drug resistance is of paramount importance. Previous studies
have focused on a small subset of mutations, mostly using
sequenced based approaches [35] or wet laboratory-based assays
[36], such as the PZA-susceptibility test [37]. The fundamental
mechanism of PZA resistance is yet to be determined. Recent
efforts in understanding the molecular mechanism of resistance
against PZA using computational approaches focused on the muta-
tions that destabilize the metal ion and affect PZA binding [38,39].
PZA unbinding would be a sure determinant of decreased drug per-
formance. However, there is no literature describing such mecha-
nisms. Such information would provide invaluable insights to our
understanding of the resistance mechanisms.

In the current study, we aimed to identify the unbinding events
of PZA due to resistance mutations of Mtb PZase as well as deter-
mine if there is a common mechanism at the molecular level for
the PZA release. For that, we developed a new algorithm and uti-
lized a range of existing in silico approaches. Due to the presence
of the Fe2+ cofactor in the MBS, forcefield parameters defining
the coordination environment were calculated for use in high
throughput molecular dynamics (HTMD) simulations. As there
was no crystal structure data for PZA-bound PZase, docking was
performed using the wild type (WT) crystal structure, which was



Fig. 1. Cartoon representation of (A) the Mtb PZase-PZA complex and (B) the catalytic residue interactions within the MBS. The metal ion (Fe2+) is coordinated by D49, H51/
57/71 and two water (HOH220/221) molecules. (C) The hydrolytic activation of PZA to POA and ammonia by PZase.
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then used to model the mutant PZA-bound complexes for each of
the 82 high confidence drug resistance mutations. Statistically
guided network analysis (SGNA), as proposed in our earlier study
[40,41], was used to determine the conserved movements associ-
ated with ligand exit as part of the resistance mechanism. A differ-
ent dynamical behaviour between theWT complex and the mutant
complexes was observed with the ligand being released from the
active pocket of ~30 mutant-PZA complexes during simulations.
Further analysis revealed that the lid region residues exhibited
increased flexibility in the mutant complexes as compared to the
WT complex. SGNA results identified two hinge residues (H51
and H71) that act like a fulcrum and are responsible for regulating
the dynamics of the lid region. Residue interaction data showed a
rich network of inter-residue bonding contacts between these
two residues and neighbouring ones in the MBS and the catalytic
pocket. Mutations affecting both the hinge and neighbouring resi-
dues around the MBS and PZA binding pocket led to the loss of the
bonding contacts leading to opening of the lid and collapsing of the
side flaps. Mutations within the a/b core were also found to
adversely affect the stability of the domain either by a loss or gain
of bonding contacts, as well as the introduction of steric clashes,
which ultimately compromise protein structural integrity. The
overall analysis reveals an inter residue network affected by muta-
tions that together contribute to PZA release in resistantMtb PZase.
2. Material and methods

A graphical representation of the methodology applied to this
study is presented in Fig. 2.

2.1. Retrieval of WT Mtb PZase and identification of its high confidence
mutations

The crystal structure of WT Mtb PZase (PDB ID: 3PL1) [9] was
retrieved from the RCSB Protein Data Bank (PDB) [42]. From the
TB Drug Resistance Mutation Database [43], a total of 87 high con-
fidence single point mutations previously identified by genomic
approaches and PZA susceptibility assays were selected
(Table S1). Additional filtering was performed to exclude five non-
sense mutations that would otherwise cause premature termina-
tion of protein translation; hence the final dataset had only 83
missense mutations.
2.2. Establishment of WT Mtb PZase protein-drug complex and the
mutants

Due to the unavailability of 3D structural data ofMtb PZase con-
taining co-crystallised PZA, molecular docking was performed
using the WT crystal structure (3PL1) and PZA. Prior to docking,
all the crystal waters were deleted with an exception of HOH220
and HOH221 as they are important in the coordination and stabi-
lization of the Fe2+ found in the catalytic pocket of the enzyme.
The structure of PZA was downloaded from the PubChem Database
(compound ID: 1046) [44]. Using Discovery Studio (DS) [45], the
3D structure of PZA was minimized to a stable conformation. Auto-
DockTools (version 1.5.6) [46] was used to prepare the protein (re-
ceptor) and PZA pdbqt input files where non-polar hydrogen atoms
were merged, and partial charges were assigned using the
Gasteiger-Huckel method. A cubic box of 40x40x40 grid points
was centered at coordinates (9.88, �26.6, 0.35) to surround the
active pocket. A grid spacing of 0.375 Å was used and 100 confor-
mational searches were performed using AutoDock4.2 with the
Lamarckian genetic algorithm [47]. The maximum number of gen-
erations per run was set at 27,000 while the maximum number of
energy evaluations at 450,000. The interaction energy for each
pose was calculated using the semi-empirical scoring algorithm
in AutoDock4.2, and the best pose was selected based on the low-
est energy and the largest cluster. To generate the different PZase
mutant structures, homology modelling was performed using
MODELLER (version 9.18) [48] and the best docked WT PZase-
PZA complex was used as template. For each mutant protein, 100
models were calculated using the slow refinement approach before
ranking them in increasing order of the z-DOPE (normalised Dis-
crete Optimized Protein Energy) score [49] to obtain the best
model. The PZase-PZA interaction fingerprint for each of the 82
selected models and the WT complex were determined using DS.



Fig. 2. Flow diagram of methods and tools used in the identification of mutant PZase motions and associated events leading to PZA release.
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2.3. Establishment of AMBER force field compatible coordination
parameters for Fe2+

A key requirement for PZase activity is the presence of Fe2+ in
the active pocket. In the WT, one aspartate (D49), two water mole-
cules (H220 and H221) and three histidine (H51, H57 and H71)
residues coordinate the Fe2+, forming an octahedral (distorted)
geometry. However, the presence of the metal ion presents a chal-
lenge in the implementation of classical molecular dynamics (MD)
simulations. Thus, in order to perform all-atom MD simulations, it
is necessary to establish accurate force-field parameters describing
the geometric interactions within the metal binding site (MBS) in
both the WT and mutant systems. A few of the mutations affected
the MBS coordinating residues, resulting in a different coordination
environment compared to that of the WT (D49OD2, H51NE2, H57NE2
and H71NE2). Thus, additional parameters describing these unique
geometries were required. Firstly, the, PZase WT and mutant apo
proteins were protonated using the H++ web server [50] at pH
6.5 [51], with a salinity of 0.15 M and default dielectric values.
The generated AMBER topology and coordinate (top and crd) files
were used to build protonated protein structure files. In Schrödin-
ger Maestro (version 11.8), the correct protonation states (HID) for
each of the histidine coordinating residues were evaluated. Using
the AMBER bonded model approach and the Metal Center Param-
eter Builder (MCPB) [52], Gaussian 09 com input files were gener-
ated and quantum mechanics (QM) approaches (structure
optimization, force constant and the Merz-Kollman RESP charge
calculations) were performed by the B3LYP/6-31G basis set [53]
as described by Li and Merz [52]. All calculations were performed
using 72 cores and a memory of 10,000 MB on a Linux cluster at the
Center for High Performance Computing (CHPC) cluster, Cape
Town South Africa. Finally, MCPB was used to calculate the geo-
metric force field parameters (bond lengths, angles and dihedrals)
between the Fe2+ and the coordinating residues in each system.
The generated parameters were then evaluated by fitting the
molecular mechanics-derived normal mode frequencies to the
QM frequencies, followed by MD simulations.
2.4. High-throughput molecular dynamics (HTMD) and trajectory
analysis

To evaluate the conformational changes in the different PZA-
bound systems, all-atom MD simulations of 150 ns (ns) were per-
formed using the GROMACS tool (version 2016.1) [54] utilizing the
generated force field parameters. Firstly, AMBER topologies for
each of the systems were generated by Leap modelling with the
AMBER ff14SB force field [55] to incorporate the generated force
field parameters. Using the AnteChamber Python Parser interface
(ACPYPE) tool [56], the resulting topologies were converted to
GROMACS-compatible input files for the structure (gro) and the
topology (top), with the correct atom types and charges. Subse-
quently, these systems were solvated using the TIP3P water model
[57] in a cubic box with a minimal padding distance of 1.0 nm
between each complex system and box edges. The resulting infi-
nite systems were neutralized by adding 0.15 M NaCl, and were
subsequently relaxed using the steepest descent algorithm for
energy minimization (without constraints) until a maximum force
of 1000.0 kJ/mol/nm was attained. A key step in MD simulations is
the equilibration phase, which ensures the solvated protein system
is at the correct temperature and pressure. A two-step approach
was used (each 200 ps), starting with a 300 K temperature equili-
bration (NVT – constant number of particles, volume, and temper-
ature) using the Berendsen thermostat. This was followed by a
pressure equilibration at 1 atm (NPT – constant number of parti-
cles, pressure and temperature) step using the Parrinello-Rahman
barostat [58]. By setting a uniform temperature and pressure, the
biological environment conditions necessary for the functioning
of the protein are mimicked. After equilibration, all systems were
subjected to 150 ns MD production runs with an integration time
step of 2 fs (fs) at the equilibrated temperature and pressure. All
bonds were constrained under the LINCS algorithm [59] during
the equilibration and production processes. A Particle-mesh Ewald
(PME) algorithm [60] with a Fourier grid spacing of 0.16 nm was
used for long-range electrostatics calculations, and a 1.4 nm cut-
off distance was used for the Coulomb and van der Waals interac-
tions. Each MD simulation was run on a Linux cluster using 120
cores with ~478,080 CPU time at the CHPC. Structure coordinates
were written to a file after every 10 ps. Resulting trajectories were
stripped of all periodic boundary conditions (PBC) and centred
prior to any analysis. Using the GROMACS tools gmx rms and gmx
rmsf, the global stability and local residue fluctuations for PZA-
bound systems were evaluated. The MD of each system was visu-
alised using the Visual Molecular Dynamics program (VMD) [61].
This was also necessary to ensure that the defined force field
parameters correctly described the MBS coordination geometry
by maintaining Fe2+ in place throughout the simulations. R and
Python packages were used for data analysis and plotting.

2.5. Determining unbinding events from ligand exit points

In the course of MD simulations, dissociation of PZA from the
binding pocket of some mutant PZase systems was observed,
prompting additional analysis to understand the ligand unbinding
process. In order to extract and investigate PZA unbinding events,
ligand exit points were first determined using a three-step algo-
rithm, as explained below (Fig. 3).

2.5.1. Ranking of protein–ligand complexes by their hydrogen bonding
propensities

The total number of strong hydrogen bonds was estimated at
each time step using the gmx hbond tool from the GROMACS soft-
ware (version 2019.4) with default parameters, for all the PZA-



Fig. 3. Work-flow used to investigate ligand unbinding events from MD simulations.
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bound protein complexes. The results were then ranked in ascend-
ing order of frequency of absence of hydrogen bonding and sum-
marized as a heat map. This resulted in a sorted array of
trajectory labels, whereby top ones would most likely comprise
trajectories with retained ligands while bottom ones would
include complexes where the ligands would have most likely been
released. After visually confirming the ‘‘retention – the ligand-
bound state” and ‘‘release – ligand-unbinding state” and removing
any ambiguous cases, this information was used as a reference
depicting the mechanistic(s) of PZA release and retention within
PZase. Ambiguous cases comprised mutant complexes where the
computational prediction of ligand exit points did not reasonably
correspond to the visually determined release time points
(Section 3.4.3.).

2.5.2. Determination of stable anchor residues for the ligand
In order to increase our likelihood of finding a ligand exit point,

the most stable ligand anchor points within the top 15 complexes
with the highest hydrogen bonding frequencies were shortlisted.
Protein-ligand atomic contacts were inferred using an in-house
Python script that estimates atomic contacts at a maximum inter-
atomic distance of 4 Å and averages them, using MD data as input.
From the resulting analysis, any residue with atomic contact fre-
quencies greater than 0.8 over the MD simulation were recorded
for each complex before ranking the complete list in descending
order to retain a consensus comprising the top six most frequent
residues.

2.5.3. Combining COM and the estimated average rate of motion to
predict the ligand exit time

The COM distance was subsequently calculated between the set
of previously determined anchor point residues and PZA for each
time point for all complexes. The maximum recorded COM dis-
tance obtained from the high frequency ligand-contacting residues
(the anchor point) in the top 15 hydrogen-rich complexes was
recorded as one of the criteria required to characterise ligand
retention. More specifically, any subsequent distance should
always be above that value, i.e. from that event until the end of a
simulation for a given complex. In order to increase the likelihood
of finding a most likely exit point, a gradient was estimated from
the linear regression of COM distance against a set of time scales.
Given the ligand masses were identical across all complexes, the
estimated average speed was deemed a reasonable measure of
ligand behaviour. A series of minimum gradients (0.1, 0.2, 0.3,
0.4, 0.6, 0.8 and 1.0 nm/ps) was thus evaluated against a series of
time scales (50, 100, 200, 500, 600, 700, 800, 900, 1000 and
2000 ps) to visually determine an interval in which varying the
minimum gradient did not result in greatly shifted time points.
From this observation, a 2 ns window was extracted prior to the
estimated ligand exit time point. For comparison, the final 2 ns
were selected from the trajectories where the ligand was retained.

2.6. Estimating conserved protein motion using statistically guided
network analysis (SGNA)

In order to identify conserved late motions associated with the
release of PZA in mutant proteins, two ensembles were defined
based on the observed PZA dynamics during simulations, namely
the ‘‘retention – the ligand-bound state” and ‘‘release – ligand-
unbinding state” events. The approach designed previously by
Sheik Amamuddy [40] was then applied to the ensembles, and
the result was mapped onto a WT static structure. The original
code used for mapping the differential effects was updated to show
arrows connecting the high degree nodes to their neighbours’
respective centroids. For larger distances, the arrowheads point
in the direction of the high degree nodes, while for smaller dis-
tances they point towards the nodes’ corresponding neighbour
centroids.

2.7. Determining changes in inter-residue interaction and structural
integrity due to mutations

To further evaluate the effect of mutations on PZase stability
and residue bonding network, all single point missense mutations
exhibiting PZA release were analysed using the SUSPECT-PZA
(StrUctural Susceptibility PrEdiCTion for PZA) web server [17].
The SUSPECT-PZA webserver utilises a combination of sequence
and structure-based tools and machine learning approaches to pre-
dict PZase drug resistance and changes in inter-residue interaction
in comparison to the WT protein. These tools include SDM (Site-
Directed Mutator) [62], mCSM (mutation Cutoff Scanning Matrix)
[62], SNAP2 (Screening for Non-Acceptable Polymorphisms) and
PROVEAN (Protein Variation Effect Analyzer) [63]. A comparison
of the predictions was made with those from the Variant Analysis
Portal (VAPOR) [64] for a consensus.
3. Results and discussion

3.1. Global distribution of the selected PZA drug resistance mutations
in Mtb PZase

A total of 82 high confidence missense mutations were
retrieved from the TB Drug Resistance Mutation Database [43].
These mutations have been identified in different geographical
regions (Fig. 4A), and their effects have been rigorously studied



Table 1
List of Mtb PZase missense mutations for each group.

Missense Mutations

Group 1 Group 2 Group 3 Group 4

A134V, H137R,
C138Y

V7G, V9A, V9G,
D8G, Q10P, D12A,
C14H, C14R L19P,
L19R, V21G, T47A,
W68G, W68L,
W68R, C72R,
G97D, G97S,
A102V, Y103S,
S104R, G132D,
G132S, V139A,
V139G, V139L,
V139M, R140S,
Q141P, T142P,
T142K, A161P,
G162D

A3P, A3E, G17D,
Y34S, L35P, L35R,
H43P V45G, A46V,
D53A, P54T, T61P,
D63G, S66P, S67P,
T76P, G78D, H82R,
L85P, L85R, K96N,
T114P, L116R,
W119R, R121P,
V128G, V130G,
A146V, V155A,
V155G, L159P,
L159R, T160P,
A171E, A171P,
A171V, L172P,
S185T

D49G,
D49A,
H51P,
H51R,
H51Y,
H57P,
H57Y, H71R
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using DNA sequencing and PZA susceptibility assays (Table S1). In
this study, the mutations were separated into four groups based on
the distance between the Ca atoms of each mutation and the PZA
COM using the WT complex as reference (Fig. 4B and Table 1).
Group 1 (green spheres) comprised all mutations within a radius
of �6.7 Å from the ligand COM; Group 2 (blue spheres) consisted
of mutations within the range 6.7 Å < X � 11.0 Å; Group 3 (orange
spheres) comprised all mutations whose distance were >11.0 Å.
The remaining mutations coordinating the MBS formed Group 4
(black spheres). This way of grouping was designed to investigate
the effect of the location of drug resistance mutations on the
dynamics of PZA-bound PZase.

3.2. PZA docking against WT PZase and homology modelling of mutant
PZA-bound complexes

From 100 conformational searches performed in an exhaustive
docking experiment, the most stable PZA conformation was
selected as a representative of the PZase-PZA complex, based on
the lowest binding energy (�4.48 kcal/mol) and the highest clus-
tering percentage (83%). Key protein–ligand interactions consisted
of hydrogen bonds involving residues D8, I133, A134 and C138,
and van der Waals interactions with residues V7, F13, L19, D49,
W68, H71, K96 and H137. In a previous crystallographic experi-
ment performed by Petrella et al. aimed at obtaining the PZA-
bound PZase complex [9], a nearly identical interaction fingerprint
was obtained, with the exception of residues V7, L19 and H71,
which formed hydrophobic contacts in our in silico study. Due to
the lack of 3D mutant structures in PDB, the mutant PZA-bound
complexes were modelled by MODELLER (v9.18) using the docked
WT complex as template. Prior to modelling, the quality of the
template structure was assessed and validated using the z-DOPE
score, ProSA [65] and PROCHECK [66]. A z-DOPE score of �1.69
was obtained, with a ProSA z-score of �7.34 and 96.8% of the resi-
dues being in allowed regions of the Ramachandran plot, for the
WT.

3.3. Derivation and validation of QM-based AMBER force field
parameters describing the MBS environment in Mtb PZase

Molecular mechanical force fields are integral tools used to
investigate the dynamic properties of biomolecules at an atomistic
level [67,68]. However, existing classical force fields in GROMACS
simulation package lack the required parameters to accurately
model the dynamic polarization effects around the Fe2+ MBS in
PZase, leading to the complete dissociation of the metal ion cofac-
tor during simulations. The metal ion is key for the hydrolytic
activity of PZase, which is carried out through the deprotonation
of coordinated water molecules, creating a nucleophile required
for the acidic activation of PZA. Consequently, reliable parameters
are required to ensure an intact active site and an accurate coordi-
nation geometry is maintained during simulations. We derived
new force field parameters (Table 2) for both PZA unbound WT
PZase, as well as for eight mutants in Group 4 (with different
Fe2+ coordinating residues as a result of the single point mutations
D49, H51, H57 and H71) using the AMBER bonded approach
scheme.

A 200 ns MD validation run was performed for each of these
systems to evaluate the reliability and accuracy of the derived
parameters. This revealed that the bonds between the coordinating
residues and the metal centre remained intact throughout the sim-
ulations (Fig. 5). In each of these systems, the bond lengths
between the Fe2+ and the coordinating atoms in each of the MBS
residues were compared to those previously reported by Harding
[50] and found to be in agreement. Mutations occurring in the
MBS modified the coordination geometry of Fe2+ compared to the
distorted octahedral arrangement found in the WT. The distorted
geometry comprises of (1) a square pyramidal geometry involving
D49A/G, H57P/Y and H71R, (2) a square planar geometry including
H51P/Y; and a trigonal bi-pyramidal shape including H51R. In
H51Y and H57Y, the TYRO atom interacted with Fe2+. WT-derived
parameters were extrapolated to the proteins bearing mutations
belonging to Groups 1–3.
3.4. Determining ‘‘ligand-unbinding - release” events

83 PZA-bound PZase complexes were MD simulated for a period
of 150 ns each, totalling to about 478,080 h of CPU time. Over the
course of MD, rapid dissociation of the ligand from the protein
binding site was observed in some of the mutants at different time
points, in the nanosecond scale (Table 3). These included the
mutants A3P, D8G, V9A, D12A, L19P, L35R, D49A/G, H51P/R/Y,
H57Y, T61P, W68R, H71R, G78D, L85P, K96N, L116R, A134V,
V139M, Q141P, A146P, A146V and T160P. The observed dissocia-
tion times of PZA from the binding pocket ranged from 7.34 ns to
148.41 ns with a median of 51.72 ns, which prompted further anal-
ysis to explore the dynamics of the ligand unbinding mechanism
(s). Understanding drug unbinding mechanisms is very important
for the design of better drugs as the retention (rather than the
equilibrium binding affinity) tends to be a better predictor of
in vivo pharmacological action [22]. A growing body of computa-
tional studies is indeed motivating the importance of ligand resi-
dence times and the characterisation of unbinding for assessing
drug performance in silico [21–24,26,28]. These approaches gener-
ally aim to increase the conformational sampling efficiency to
avoid getting stuck in local minima or to expedite the sampling
of unbinding events [28,69,70]. A long retention time for instance,
partly explains the effectiveness of several marketed long-duration
drugs [24,30].

In the case of PZA, rapid release of the prodrug from PZase
would be a clear indication of a reduced efficiency of catalysis.
Thus, the main aim was to find a systematic and unbiased way of
determining the ligand exit time point such that analogous events
would be detected across similarly behaving PZA-bound com-
plexes. It was crucial to sample the PZase dynamics as soon as
the PZA unbinding was about to happen, such that the protein
would not revert to its holo state dynamics once the ligand had
left. Hence, a model of estimating the ligand exit time was calcu-
lated based on the COM distance and an estimated minimum aver-
age speed, using a smaller reference subset of complexes to test
our model before applying the method to the entire set of



Fig. 4. (A) The geographical distribution of high confidence PZA drug resistance mutations. (B) Distance-based grouping of the mutations, using the PZA COM as origin.
Mutation positions are represented as spheres, where Group 1 residues (�6.7 Å) are coloured green, Group 2 residues (6.7 Å < X � 11.0 Å) are coloured orange and Group 3
residues (>11.0 Å) are in blue. Group 4 mutations that coordinate the Fe2+ cofactor in the MBS are in black. The Fe2+-coordinating water molecules (HOH220 and HOH221) are
depicted as sticks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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trajectories. The results for our proposed three-step algorithm are
elaborated below.
3.4.1. Evaluation of hydrogen bonding frequencies for the PZase-PZA
complexes

Hydrogen bonding analysis was performed as a first investiga-
tion of the exact moment of bond breakage between the PZA head
region and the catalytic residue triad of the protein. As seen in
Fig. 6, an initial interruption in H-bonding was not a persistent
event. The protein–ligand dynamics rather resulted in transient
interactions that were accompanied by partly erratic ligand
motions. This was closely associated with the irregularity of H-
bonding distributions. Upon closer inspection, PZA could be seen
establishing H-bonds of differing number and duration with vary-
ing residues within the binding site. The mutant proteins were
therefore sorted in ascending order of H-bonding absence as a
way to partition the extremes of ligand behaviour, corresponding
to subsets of the mutant complexes to most likely retain or release
PZA, respectively. The top and bottom subsets were visualised in
VMD [61] to confirm the presence of ligand retention and exit
events. As seen in Fig. 6, no clear relationship could be found
between the distance of the mutation and the H-bonding ability
in MD.
3.4.2. Determination of a PZA anchor point in PZase for predicting the
ligand exit time

A stable PZA binding surface was subsequently determined
from the MD trajectories of the ligand-bound protein complexes.
An in-house Python script was written to carry out weighted
atomic contact mapping between PZA atoms and those of the pro-
tein, similarly to how the contact mapping script from MD-TASK
assigns the contact frequencies to the edge widths of the network
graph [71]. In this case, a cut-off distance of 4 Å was used to infer
inter-atomic contacts. In order to obtain the residues that were
most likely involved in ligand retention, residues that had any
unique contact frequency above an arbitrarily chosen cut-off value
of 0.8 were selected for each complex. To obtain a consensus, the
top six residue positions with the highest value counts were
retained, containing the positions 133, 138, 137, 134, 8 and 13
(in descending order of frequency for unique contacts), as seen in
Fig. 7.

Catalytic triad residue position 96 was not part of the top PZA
contacting residues (being shortlisted only in 5 out of 15 cases),
indicating that its role may be less important for maintaining
ligand stability, in contrast to C138 and D8. More generally, a too
large number of residues used as the PZA anchor point would
increase the variability in the predictions and tend to overestimate
ligand retention. A too low number would increase predictive bias
by only considering a smaller portion of the ligand motions, thus
wrongly predicting a higher number of ligand exit cases. These
top residue positions were used to compute a stable anchor point
COM to be used in ligand COM distance calculations in all samples.
The COM metric was used instead of RMSD calculations based on
earlier work, which showed the stability of COM distance towards
bond rotational movements, especially for the case of long flexible
compounds that may still be retained within an active site [72].
This is due to the fact that distances computed at each point in
the time series between two moving COM vectors accounts for
both protein and ligand motions, compared to computing the
RMSD at each time step from a fixed reference frame for the ligand
only. The maximum recorded COM distance for the PZA bound
complexes was 7 Å, a number coincidentally very close to the com-
monly used residue contact distance cut-off value in dynamic resi-
due network (DRN) calculations [71,73,74].
3.4.3. Designing an algorithm to estimate PZA exit times from mutant
proteins

Determining an exact point of exit over a short time scale may
not be a well-defined problem, mostly due to the entropic contri-
butions coming from the ligand, the protein and the system they
are surrounded in, which influence ligand dynamics. It may also
depend on what an experimenter defines as the exit point, which
can make a systematic detection difficult. For instance, a ligand
may leave the catalytic triad but linger at the opening of the bind-
ing site before complete dissociation. From visualisations of PZA
leaving its binding site, we observed numerous ways in which it
PZA navigates when unstably maintained in the catalytic pocket,
such as flipping in various axes of rotation, translational motions,
forming transient interactions with the edge of the receptor sur-



Fig. 5. Parameterization of the Fe2+ MBS in Mtb PZase. (A) The Fe2+ coordination environment in the Mtb PZase crystal structure. (B) The optimised geometry of the MBS
subset according to the B3LYP/6-31G level of theory, and (C) the energy potential for the geometry as visualised in gview. (D) Bond distances of Fe2+ coordinating residues
during a 200 ns MD simulation.

Table 2
Optimised parameters (bond lengths, force constants, charges) and geometry in WT and the eight mutant systems in Group 4. In brackets are values from the crystal structure.
* values are in kcal/mol, and ** indicates parameter values from Tyr (mutation) in the MBS enviroment.

System WT D49A D49G H51P H51R H51Y H57P H57Y H71R

bo (Å) D49OD2 1.96 (2.15) – – 1.92 1.92 1.90 1.90 1.95 1.92
H51NE2 1.95 (2.30) 1.94 1.94 – – 2.00** 1.90 1.96 1.95
H57NE2 1.88 (2.32) 1.96 1.96 1.95 1.95 2.00 – 2.01** 1.95
H71NE2 2.01 (2.23) 1.92 1.92 1.95 1.95 1.96 1.93 1.97 –

Kb * D49OD2 70.30 – – 138.30 138.20 129.00 132.20 110.80 136.9
H51NE2 108.59 124.60 124.60 – – 65.80** 129.50 91.20 114.2
H57NE2 132.70 108.30 108.30 104.70 104.70 74.30 – 48.00** 106.4
H71NE2 82.60 124.00 124.00 110.10 110.10 103.40 112.00 78.80 –

Charge Fe2+ 0.59 (2.00) 1.13 1.14 1.04 1.03 0.62 1.08 0.33 1.07
D49OD2 �0.47 – – �0.64 �0.63 �0.52 �0.68 �0.55 �0.56
H51NE2 0.01 �0.34 �0.35 – – �0.57** �0.36 �0.04 �0.59
H57NE2 �0.15 �0.84 �0.84 �0.54 0.10 �0.34 – �0.57** �0.56
H71NE2 �0.18 �0.43 �0.43 �0.57 �049 �0.25 �0.31 �0.17 –

Geometry MBS Octahedral (distorted) Square pyramidal Square planar Trigonal bi-pyramidal Square planar Square pyramidal

Table 3
Estimated exit time points for the initially PZA-bound protein complexes.

Mutant Estimated exit time (ns) Group Mutant Estimated exit time (ns) Group

A134V (test) 48.71 1 T61P (test) 48.66 3
V7G (test) 148.41 2 L85P (reference) 61.83 3
D8G (reference) 18.26 2 K96N (test) 53.17 3
V9A (test) 85.65 2 A146V (reference) 7.34 3
D12A (test) 61.01 2 L159P (reference) 137.60 3
W68R (test) 126.62 2 T160P (test) 112.49 3
Y103S (test) 27.70 2 D49A (reference) 12.31 4
V139M (reference) 25.94 2 D49G (reference) 12.16 4
A161P (reference) 68.48 2 H51P (test) 29.80 4
A3P (reference) 33.80 3 H57P (reference) 23.95 4
L35R (test) 51.72 3 H57Y (test) 107.16 4
H43P (test) 74.51 3 H71R (test) 62.81 4
L116R (test) 26.59 3

1110 O. Sheik Amamuddy et al. / Computational and Structural Biotechnology Journal 18 (2020) 1103–1120



Fig. 6. Hydrogen bonding counts for the PZase-PZA complexes sorted according to the frequency of absence of H-bonds, obtained from MD runs. The different mutants are
coloured according to their groups: Group 1 (green), Group 2 (orange), Group 3 (blue) and Group 4 (black), while the WT complex is in cyan. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. PZA-contacting residue positions with contact frequencies �0.8 from the top
15 PZA-bound complexes.
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face, and also back-and-forth motions. It was on the basis of these
factors that we chose to focus on a subset of the PZA drug resis-
tance mechanism, a late event that was observed from MD simula-
tions for certain PZA-resistant PZases. To do so, we visually
assessed the top and bottom fifteen complexes that had been
sorted according to H-bonding frequency (Fig. 6) to verify the
PZA had remained or left its receptor. In order to build reference
subsets, the PZase mutants L19R, L19P, L35P, A171P and L172P
were removed as they were deemed ambiguous for our purposes.
In these cases, PZA either stayed with poor hydrogen bonding or
flipped in a manner that does not coincide with the proposed
mechanism of action, i.e. with the amide group pointing away from
the catalytic triad. There was no relationship between the position
of the retained mutations in the two defined ensembles and ligand
behaviour in terms of surface exposure, propensity towards sec-
ondary structural elements, or in the physicochemical properties
of the amino acids in the two groups [74].

Once the anchor point for the PZA-bound state was defined, an
approach was designed to estimate the moment of ligand exit in
each of the shortlisted protein receptor complexes (Table 3 refer-
ence complexes). The previously computed maximum distance
from the anchor point COM and the ligand COM (Section 3.4.2)
was chosen as the minimum distance criterion for deciding on
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the ligand exit event. As the ligands could rotate and translate to a
certain extent before coming back to the anchor point under the
constraints of the binding cavity, the COM distance alone was
deemed insufficient to define a moment of exit and was supple-
mented by the speed of movement. Due to the frequency of the
partially erratic ligand motion, the instantaneous speed was
deemed too variable, and we thus decided to estimate the speed
as an average taken over increasing time intervals via a regression
line, as specified in the methods section. We then optimised the
parameters by varying the time scales and the minimum gradients,
with the aim of minimising variability of our exit point predictions.
As there were several optima, we chose a minimum gradient of
0.3 nm/ps for a time frame of 1 ns as our optimal parameters, as
we found that our predictions tended to be more stable when
the minimum gradient was not very high and the window size
was not too small. A gradient that was too small tended towards
non-specificity of predictions. Due to time constraints, the algo-
rithm and scripts developed were semi-automated and applied to
investigate only part of the resistance-associated mechanistic pro-
cesses of PZase and will be further developed in a follow-up study
catering for the earlier phase of the resistance-driven motions.

By applying our method to the entirety of the trajectories and
ignoring the ambiguous cases, the following time points were
obtained, as shown in Table 3. The ‘‘reference” subset consisted
firstly of complexes used to calibrate the ligand release time point
estimation and secondly, of the retained ligands. The ‘‘test” set con-
sisted of the ones where the method was applied. From results in
Table 3, we conclude that the radial distance (defined by the
Groups) of the mutation with respect to the bound PZA does not
have an effect on exit time. However, such a comparison may not
be entirely correct as the atomic velocities are instantiated from
random numbers selected from a Maxwell-Boltzmann distribution
[54], applied at the beginning of equilibration, using initial confor-
mations that slightly differ in each case. The graphical output for
the PZA exit predictions is presented in Fig. 8.

For the remainderof theHTMDdataset, PZAwaspredictedasbeing
retained within the binding pocket of PZase systems. The 15 PZA-
bound complexes were used as ‘‘reference” for the PZA-bound ensem-
ble, and comprised the mutants Q10P, C14R, Y34S, A46V, D63G,
W68G, L85R, S104R, R121P, V128G, H137R, V139A, R140S and
A171V, in addition to theWT. The graphical output for the predictions
of PZA retention is presented in Fig. S1. From the figure, it can be
observed that the COM distance is generally <~6 Å and has a very
low variance in each of the reference samples. For the 37 test cases
(A3E, V9G, C14H, G17D, L19R, V45G, T47A, H51Y, P54T, D53A, S66P,
S67P, W68L, C72R, T76P, H82R, G97D, G97S, A102V, T114P, W119R,
V130G, G132D, G132S, C138Y, V139G, V139L, T142P, T142K, V155G,
V155A, L159R,G162D,A171E,A171P, L172PandS185T) thevariability
was higher, and visibly negatively affected by the decrease in the
instantaneous number of hydrogen bonds and their frequency of
occurrence. During the simulations, PZA displayed various motions
inside the binding cavity, leading to either ligand release or retention,
as recorded in Table S2. These important characteristics influencing
PZA stability within PZase were further examined to track the events
preceding the drug’s release in the case of resistance to PZA.
3.5. Analysis of PZA unbinding events: the ligand/cofactor perspective

In order to have a more global picture of the events from the
PZA-bound PZase, separate attention was given to each of the pro-
tein and the ligand dynamics, to search for any possibility of cou-
pled events between the enzyme and PZA. Further, both early
(up to 2 ns before ligand release) and late events (2 ns before ligand
release) were examined for the ligand.
3.5.1. Early PZA unbinding events
While the analysis of late protein dynamics revealed a con-

served pair of motions involving the lid and one of the side flaps
(Section 3.6), the systematic behaviour triggered from the early
stages was analysed. Ligand RMSDs were calculated for the ligand
release and ligand retention systems. Fig. 9 shows the distribution
of ligand RMSD from the start of simulations until 2 ns before
ligand release from PZase. In theWT protein, PZA displayed a bimo-
dal (two peaks) RMSD distribution with modes around 0.05 and
0.20 nm. This suggests that contrary to what would be expected,
the ligand adopts two conformational equilibria, instead of staying
immobile, awaiting hydrolytic cleavage. It can be observed that in
the WT, the pyrazine moiety (PZA head) region is anchored to the
catalytic triad, resulting in more subtle oscillations. In mutant sys-
tems, where PZA release was observed at different simulation
times, multimodal ligand RMSD distributions were recorded in
Groups 1–4 (3rd quartile RMSD above 3.0 nm). This suggests that
these mutations destabilised PZase-PZA interactions. No conserved
distribution pattern was observed across the groups, suggesting a
weak correlation between mutation distance and ligand dynamics.
Interestingly, PZA bound to Group 2 mutants (A3P and L85P)
showed a more spread out distribution with standard deviations
of 0.55 nm and 0.23 nm respectively, indicative of increased mobil-
ity. However, in mutants exhibiting ligand retention, most systems
displayed one or two peaks with RMSD values around 0.4 nm, an
indication of ligand stability (Fig. 10). In Group 2, Q10P displayed
a tighter distribution, representing a more stable equilibrium. This
may be due to the anchoring of the pyrazine moiety of PZA to resi-
dues within the binding pocket. Group 3 mutant (D63G) showed a
similar behaviour, indicative of stability. However, C14R showed a
wider distribution coupled with a skinnier section. This observa-
tion is attributed to the linear flipping of the pyrazine moiety.
3.5.2. Late PZA unbinding events (preceding release)
In order to examine the underlying ligand events associated

with the SGNA-determined late protein motions preceding ligand
release (Section 3.6), the corresponding ligand poses were com-
pared to the analogous region from the WT trajectory. Ligand
poses from the mutant PZases were analysed by superimposing
the mutant proteins against the first frame from the 2 ns window
for the WT before calculating the ligand RMSD, without aligning
the ligands themselves. From the skewed distribution of the
PZA-bound WT in Fig. 11, it can be inferred from the area under
the curve that a large part of the ligand motion comprised of sub-
tle vibrations, due to the anchoring of the PZA head to the cat-
alytic triad, under the constraints of the binding cavity. The
lowest RMSD mode for the WT PZA system is lower than those
observed for all of the mutants that displayed the ligand release
event. As highlighted by the flatter distribution of the higher
RMSD mode in the WT PZA, the ligand seldom visits the other
conformations that are otherwise more enriched in the mutants.
The higher RMSD mode in the WT PZA is due to a shift in the
plane of the amide moiety of PZA, whilst being anchored to the
catalytic triad residues. The lack of a consistent ligand RMSD dis-
tribution pattern across the groups of mutants suggests a poor
correlation between the distance of the mutation from the PZA
COM and the sampled RMSD distribution for Groups 1–4. Collec-
tively, the mutants can be seen to enrich populations of ligand
conformations with generally larger distances, compared to the
WT PZA equilibria. Ligands with the highest RMSD modes before
drug release were observed from mutants H57P (Group 4) and
W68R (Group 2), followed by A134V (Group 2). L116R was dis-
carded from this comparison as the exact release time could
not be determined with a higher degree of accuracy.



Fig 8. Predictions of PZA exit times from the complete MD data set, with the exception of mutations L19R, L19P, L35P, A171P and L172P. The H-bond frequencies are in blue,
while the PZA COM distance to the anchor point is in black. The red dotted line points to the exit time. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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3.5.3. Late PZA unbinding events: the cofactor (Fe2+) dynamics
As done for determining the late ligand unbinding events, the

protein complexes were aligned to the WT protein, before comput-
ing the violin plots for the cofactor RMSD using the first frame of
theWT as reference for the metal. It is clear from Fig. 12 that Group
4 mutations lead to a greater shift in the position of the metal from
the catalytic triad, with mutants D49A/G showing the highest dis-
placements with respect to those of the WT complex. This is fol-
lowed by H71R and H57P from the same group. As residue 49
forms an integral part of the MBS and is thus in close proximity
to both H51 and H71, its mutation is very detrimental to hinge
stability, which explains the rapid PZA release for these MBS
mutations. Mutant W68R displayed the highest mode for Group
2 mutants.

3.6. Analysis of PZA unbinding events: the protein perspective

3.6.1. Detecting conserved protein motions by constructing a
statistically guided network

As a first demonstration of the application of SGNA, the
approach was successfully used to determine distinct early
motions from HIV-1 protease conserved across 8 FDA-approved



Fig. 9. Ligand RMSD violin plots for stages of simulation until a 2 ns window before ligand release. RMSD values for the mutants are presented, including the WT as reference.
Kernel density traces were plotted around the boxplots, whereby the width corresponds to frequencies of occurrence. The box plot shows the first, second and third quartile.
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inhibitors [40]. For the HIV drug target, these comprised a lateral
expansion and a compaction stemming from the base of the drug
target towards the catalytic region, preparing for drug expulsion.
The requirements for the analysis are two comparable ensembles
of alternating characteristics.

With the exit timepoints systematically defined in the case of the
PZase complexes, their trajectories were visually assessed before
extracting the immediate events preceding ligand release from a
2 ns window. The SGNA algorithm was then applied to the dataset
to compare the PZA-bound against the PZA-unbinding event (just
before the detected ligand release) to seek for conserved motions
buried within the HTMD data. The main algorithm is unchanged
from its original version [40], however arrows were added to the
output figure (Fig. 13), as explained in themethods section, to more
clearly show the overall direction of the conserved movements.
While not all motions may be unidirectional or of similar magni-
tudes, we infer that there is a very high likelihood for an overall
resultant direction. This is especially the case if each top single resi-
due is distant to a communityof neighbours (largerdistances) or clo-
ser (smaller distances), via the degree centrality, as explained in



Fig. 10. Violin plots showing RMSDs of ligand retention for the PZA-bound systems, in the early stages (from the beginning to 2 ns before ligand release). The width of the
kernel density plot is proportional to the frequency of RMSD occurrence, while the top and bottom lines of the box plots illustrate the 3rd and 1st quartile. The middle bar
shows the median (2nd quartile).

Fig. 11. Ligand RMSD violin plots for the 2 ns window preceding ligand release (late stages) for the PZase mutants, including the WT as reference. The WT PZA complex is in
cyan while the mutant ones (Groups 1–4) are coloured green, orange, blue and black. Both the reference and the test sets are included. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Fe2+ RMSD violin plots for the 2 ns window preceding ligand release for the PZase mutants, including the WT as reference. The WT PZA complex is in cyan while the
mutant ones (Groups 1–4) are coloured green, orange, blue and black. Both the reference and the test sets are included. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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[40]. In social network analysis, the degree centrality (or the connec-
tivity) corresponds to the averagenumberof connections an individ-
ual has, which in graph theory terms corresponds to the row (or
column) sum of an adjacency matrix [75].

The SGNA algorithm capitalises on the ability to extract con-
served differences within related groups of phenotypes, offering
increased sensitivities by performing statistical tests on pairs of
multiple averaged distance values. This makes the data more nor-
mal, before using the degree centrality to support residue pairs
with the most systematically differential distances. The following
hypotheses are used for the t-tests:

H0 : Dij;PZA-unbinding ¼ Dij;PZA-bound

HA : Dij;PZA-unbinding > Dij;PZA-bound

HA : Dij;PZA-unbinding < Dij;PZA-bound

where Dij is the collection of time-averaged distances observed for
the residue pair (i, j). H0 and HA are the null and alternate hypothe-
ses respectively. The subscripts ‘‘PZA-bound” and ‘‘PZA-unbinding”
refer to the alternate states. The significant p-values for the one-
tailed tests conducted at the default 99% confidence level were used
with Bonferroni correction to construct a robust network in each
alternate case.

Petrella and co-workers define a lid region in the form of a loop
spanning residues 52–70, which controls the closure of the binding
cavity [9], as shown in Fig. 13. This lid is tethered to the protein by
two residues (H51 and H71) that act as a hinge and form part of the
metal ion chelators together with H57. From Fig. 13, two associ-
ated but distinct motions were observed from the HTMD simula-
tions, comprising (1) an expansion involving the antiparallel
motion of the lid (residue positions 62 and 64) and a side flap (resi-
due positions 14–16) (Fig. 13A); (2) an associated contraction of a
flanking region of the same side flap (residue positions 17,19–21),
together with residue 74, towards the a/b core area (Fig. 13B). The
coupled expansion event in (1) clearly depicts the preparations for
the lid opening. Coupled contraction events in (2) were less
expected, as a flanking region of the flap involved in expansion
drives inwards to the core. From the 3D structure visualisation,
the contracting flap segment (residue positions 17,19–21) and
the expanding flap segment (residue positions 14–16) were found
to coil over each other. They actually form a dense,
hydrophobically-connected network, which may rely on the length
and charge of residue 19 for lid interaction and closure. The physic-
ochemical implications around residue 19 are discussed in Sec-
tion 3.6.3. Surface residue 74, which is adjacent to the lid hinge
residue 51, brings the lid base from an angled position, towards
the core, and may thus be a key mediator for lid opening. In all,
these suggest that the side flap dynamics around residue 19 may
form part of a switch that tunes lid dynamics to allow PZA release,
with assistance from the hinge base residue 74 across all PZase
mutants that showed ligand release.

While giving important insights about the late events leading to
the release of PZA from the PZase active site, this experiment
shows once more its effectiveness at detecting conserved motions
from noisy MD data, as was the case earlier with HIV-1 protease
[40]. Careful data preparation according to a given experimental
objective makes the technique more likely to extract relevant sig-
nals. Coincidentally, during our experimentation it was found that
the SGNA predictions were consistent at extracting and showing
conserved motions for the highest degree nodes, even in the pres-
ence of few wrongly labelled samples for a given ensemble, which
hints at some form of robustness of the method.
3.6.2. Identifying PZase residue flexibility changes linked to the release
of PZA

Root mean square fluctuation (RMSF) is an important dynamics
metric to identify per-residue flexibility changes during MD simu-
lations. To further characterise the events leading to PZA release,
the difference in local residue flexibility fluctuations from the start
of simulation to the time when the ligand exit event occurred
(Table 3) were calculated by subtracting RMSF for the mutant
PZA complexes from that of the WT PZA-bound system (Fig. 14).
Thus, in DRMSF, a negative value (red) indicates increased flexibil-
ity as a result of mutation, while positive value (blue) represents
more flexible regions in the WT with respect to mutant protein.

From Fig. 14B, residues 17–19 and 38–41 show higher flexibility
in the WT PZA-bound system. These residues form part of the side
flap. In comparison to the mutants, highly flexible residue posi-
tions are noted across the Groups 1–4. Several regions (16–21,
33–43, 49–72, 97–103 and 162–163) were generally flexible. These
regions are located at the lid and the side flaps, an indicative of lid
and flap opening causing the release of PZA. In Group 3, D12A
exhibited the highest fluctuations. Additionally, RMSF of Group 2
mutations (T61P, K96N and L116R) were higher in multiple regions
compared to the WT, an indication of increased flexibility in these
protein segments. As expected, mutations occurring around the
MBS (Group 4) showed the highest flexibility especially around
the lid (residue 49–72) and side flap (residue 100–103) regions.
The high flexibility observed in D49A/G could be associated with
the observed rapid release of PZA during the simulation. (~12 ns).
3.6.3. Residue-residue interactions of the hydrophobic core, the MBS,
binding pocket and their influence on PZA release

Maintaining the active pocket structural integrity of a protein is
of crucial importance during the molecular recognition process



Fig. 13. 3D mapping of SGNA results using a WT PZase conformation as template, showing the conserved (A) lid opening and (B) flap contractions extracted from the PZA-
unbinding event from PZase. Hinge residues (H51 and H71) are represented as black spheres, which connect the lid (residue positions 52–70). The arrows show the general
direction of movement, inferred for each of the highest degree residues and their corresponding neighbourhood of differential residues. 3D images were generated using
MDTraj and NGLView.

Fig. 14. (A) A heat map showing the change in local residue fluctuations between the WT and mutants in PZA-bound systems exhibiting PZA release. Change in RMSF was
calculated by subtracting the RMSF of each mutant PZA complex from the WT PZA-bound system. A negative change (red) indicates highly flexible regions as a result of
mutation while positive change (blue) represents flexible regions in the WT. Heat map was plotted using the JupyterLab tool. (B) The raw RMSF values of WT PZA-bound
complex. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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between a biological macromolecule and their cognate ligands.
This is highly determined by the residue-residue interactions
within the protein. A change in the protein residue composition
can drastically affect its binding pocket structural as well as its
chemical features which are key in determining the affinity and
specificity for a particular ligand. Thus, assessment of the
residue-residue interaction changes as a result of a mutation can
provide valuable insights about the ligand binding process as well
as the drug resistance mechanism. From SGNA and dynamics
results, several plausible links associated with the unbinding and
release of PZA in several PZase mutant protein systems have been
established. These included higher lid and side flap flexibility
(Fig. 13) as well as additional mutation-driven changes around
the PZA binding pocket that create internal stresses (interatomic
clashes) that may contribute to ligand release (Table S3). These
clashes were identified using the SUSPECT-PZA web server
(Table S3).
Besides the identified hinge residues (H51 and H71) facilitating
the lid dynamics, the interactions of the residue involved in the
two distinct ligand release motions determined by SGNA [flap con-
traction (residues 17, 19, 20, 21 and 74) and lid opening-expansion
(residues 14, 15, 16, 62, and 64)] were analysed. In the WT, resi-
dues L19 and S74 both formed strong interactions with the two
hinge residues. Additionally, L19 which is located in one of the side
flaps also formed a network of hydrophobic contacts with Y64,
W68, and P69 lid residues. A complete loss of the bonding network
between L19 and the hinge residues as well as the lid residues was
observed with the introduction of a mutation in position 19 (L19/P/
R) which may explain the observed inward movement of the side
flap. The observed inward movement of S74 and associated out-
ward movement by P62 and Y64 may be an integral requirement
for the lid opening and release of PZA.

An intricate bonding network composed mainly of polar, hydro-
gen, and aromatic interactions was observed around both the MBS
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(D49, H51, H51 and H71) and binding pocket residues (V7, D8, F13,
L19, D49, W68, K96, I133, A134 and C138) of the WT. However,
residue changes in any of these positions led to the disruption of
the bonding network either through a loss of bonding contacts or
by the introduction of steric clashes with other neighbouring resi-
dues possibly causing a destabilization effect of the binding pocket.
Introduction of a mutation in the catalytic triad residues (D8 and/
or K96) resulted in loss of polar contacts formed with D49 and
either of them. Investigations of the possible consequences of these
mutations (D8 and K96) using the SUSPECT-PZA web server indi-
cated both to cause damaging effects. In the WT, the MBS residues
formed a rich contact network with each other, as well as with
residues forming the lid (residues 54–74) and side flaps (residues
S18, L19 and G97). This is a probable indication that these are an
integral functional unit regulating ligand access to or exit from
the binding site. In addition, each of the histidine residues in the
MBS region forms aromatic interactions with each other as well
as with F58 and F68 which are both in the lid loop. However, muta-
tions affecting the MBS residues led to a significant loss of interac-
tion in the bonding network, possibly leading to the opening of the
lid and exit of the ligand (Table S3). In the WT, D49 forms a bond-
ing interaction of polar contacts with catalytic triad residues D8
and K96, as well as with the hinge residues. From the interaction
results, D49 mutations were found to lead to a loss of the Fe2+ coor-
dinating interactions through reduced polar interactions and
hydrophobic contacts" (Table S3). The loss of the bonding network
around the MBSmay explain the metal cofactor delocalization seen
in Group 4 mutations (Fig. 12). In theWT system, the lid region and
one of the side flaps are stabilised by hydrophobic interactions
between W68 and L19, and a substitution of the tryptophan with
a polar residue leads to a loss of the interaction besides those
established with H57 and other lid residues. Interestingly, in
W68R, a similar delocalization of the Fe2+ is also observed mainly
due to the disrupted interaction with H57 MBS residue. In Group
3 mutations (mainly located in the a/b core domain), no interac-
tions were detected between the mutation and the active site resi-
due (including the lid, side flaps and MBS). This may hint to the
existence of additional mechanisms through which ligand exit is
triggered. However, an altered interaction network (Table S3), as
well as steric clashes were observed in these mutants, which
may compromise protein integrity, thus leading to the ultimate
release of the ligand.
4. Conclusion

TB drug resistance remains a serious global problem and a
major obstacle towards the proposed WHO and the United Nations
commitment to achieve a TB-free world by 2035 [68,69]. PZA is the
only first-line anti-tubercular drug possessing bactericidal effects
against latent Mtb, and as such can shorten the TB treatment per-
iod to six months. However, its effectiveness has lately been
reduced due to the development of numerous drug resistance
mutations in its target enzyme PZase. The exact molecular mecha-
nism of PZA resistance is still incompletely understood, and an
improved knowledge of the drug resistance mechanism in PZase
is vital for the development of more efficacious anti-tubercular
agents. To do so, a range of in silico tools was used to determine
conserved dynamics associated with PZA release in Mtb PZase
mutants.

The limited literature on structure-based computational studies
involving Mtb PZases is mainly due to the unavailability of a 3D
PZase-PZA complex. Herein, molecular docking and homology
modelling techniques were successfully applied to establish
native-like protein–ligand complexes, highlighting the importance
of computer-aided drug discovery. Due to the importance of the
metal ion cofactor for PZase, a highly accurate description of the
coordination geometry was developed using QM for use in MD
with the AMBER force field for 82 PZA-bound mutants and the
PZA-bound WT. Mutations affecting the MBS were found to drasti-
cally alter the inherent octahedral coordination geometry of Fe2+

found in the WT. Analysis of MD simulations revealed the unbind-
ing of PZA in somemutants, which were then investigated from the
protein, ligand and metal perspectives. An algorithm was designed
to systematically determine ligand exit times to compare late PZA
unbinding events against the PZA-bound states. The exit times var-
ied widely in the nanosecond range. Using this information, the
SGNA algorithm was applied to characterise late PZA-unbinding
events derived from ensembles of PZA unbinding and PZA- bound
trajectory segments. This revealed coupled expansions (involving
the antiparallel motion of the lid and one side flap) and contrac-
tions (contraction of a flanking region of the same side flap,
together with residue 74, towards the a/b core) happening in PZA
unbinding. The flap residues formed a dense network of hydropho-
bic contacts, which may rely on the length and charge of residue 19
for lid interaction and closure. Destabilisation of the hinge residues
(or nearby residues) facilitated lid opening and PZA release from
the active site. RMSF showed increased fluctuations of the lid
and the other flap (position 100–103) during early stages. From
the ligand perspective, in the early stages, generally higher modes
and differing distributions of RMSD values were found, hinting at
larger ligand conformational changes and multiple unbinding
dynamics. Later events showed a generally higher range of ligand
RMSD values preceding ligand release from mutants, compared
to the WT complex. The Fe2+ cofactor was generally destabilised
in the Group 4 mutants. The SUSPECT-PZA server identified
residue-residue interactions that were linked to the PZA unbinding
dynamics that were characterised in detail through dynamics anal-
ysis and SGNA. Although our molecular mechanics-based
approaches were able to describe the PZA unbinding events for a
subset of resistant PZases, additional methods such as QM simula-
tions, protein–protein interactions and longer simulation times
may be explored to obtain a better description of atomistic beha-
viour that may be occurring in drug resistant mutants where PZA
remained stably bound.

These findings provide valuable insights which may be used for
the development of newer anti-tubercular agents with improved
activities. Compared to the existing tools which aim at increasing
the probability of sampling ligand dissociation events, our work-
flow focuses on the systematic identification of the ligand exit time
points. Coupled to SGNA, this approach revealed robust and sensi-
tive to extract conserved protein motions within the chaotic pro-
tein dynamics across collections of alternate states. As a way to
explore further details of PZA drug resistance, follow-up studies
will be done to improve the algorithm efficiencies and study other
facets of drug resistance in PZase. The approaches and algorithms
used here can be applicable to any other similar scientific
problems.
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