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Different blur invariant descriptors have been proposed so far, which are either in the spatial domain or based on the properties
available in the moment domain. In this paper, a frequency framework is proposed to develop blur invariant features that are
used to deconvolve a degraded image caused by a Gaussian blur. These descriptors are obtained by establishing an equivalent
relationship between the normalized Fourier transforms of the blurred and original images, both normalized by their respective
fixed frequencies set to one. Advantage of using the proposed invariant descriptors is that it is possible to estimate both the point
spread function (PSF) and the original image. The performance of frequency invariants will be demonstrated through experiments.
An image deconvolution is done as an additional application to verify the proposed blur invariant features.

1. Introduction

Blur is one of the degradations that is classified as radio-
metric, created by factors such as motion, overexposure,
camera vibrations,, and strong illumination. The point spread
function (PSF) of an imaging system introduces some levels
of blurring in the captured images. Mostly the PSF is modeled
as a Gaussian distribution which is widely applicable in
imaging devices [1]. Restoration of images can be performed
using nonblind and blind techniques. In case of nonblind
technique [2-4], the estimation of the original image is
obtained using prior knowledge of the PSF which can be
derived based on the various modeling algorithms [5, 6].
But in most cases, the PSF is unknown. Hence, in order to
estimate the PSF and the original image, blind deconvolution
technique is adopted [7-13]. The general model which is used
for the observed blurred image, g(x, y) of a scene, f(x, y), is
described by a convolution integral:

g(xy)=f(xy)eh(xy)+n(xy), o)

where h(x, y) and n(x, y) are the PSF kernel and random
noise, respectively. Here, ® denotes the 2D linear convolution.

Earlier work in image features invariant with respect to
blur is divided into three different categories. First category
belongs to deriving blur invariant properties of the PSE. The
second one is to estimate the PSE, and the last is to obtain the
original image via deblurring processes. A frequency domain
approach for blur invariant has been done to develop some
features for object recognition [14]. Blur invariant in moment
domain is proposed by Flusser and Suk, which is invariant
to convolution of an image with an arbitrary symmetric PSF
kernel [15]. Two recognition methods for motion blurred
images have been developed based on a relation between
the moments of the blurred and the original images [16]. A
set of invariants are derived from Zernike moments which
are simultaneously invariant to similarity transformation and
to convolution with circularly symmetric PSF [17]. Dai et
al. [18] proposed a solution to develop a blur invariant
feature set for degraded image recognition systems based
on the orthogonal Legendre moments. Yan et al. [19] used
the second order central moment minimization for restoring
of the astronomical images degraded by the atmospheric
turbulence. Khan et al. presented a biometric technique for
identification of a person using the iris image by means of
the ordinary moments and k-means algorithm [20]. In this
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method, the iris is segmented from the acquired image of
an eye using an edge detection algorithm. Wavelet-domain
blur invariants are proposed for 2D discrete signals which are
invariant to centrally symmetric blurs [21]. Honarvar et al.
[22] derived new algorithms for image deblurring by means
of image reconstruction from its complete set of geometric
and complex moments. The adaptive total variation (TV)
minimization technique by Yoon et al. [23] has used image
enhancement from flash and no-flash pairs. Accurate sparse-
projection image reconstruction via nonlocal TV regulariza-
tion is proposed by Zhang et al. for tomography applications
[24].

In this paper, the blur invariant features in Fourier
domain are proposed. By establishing a relationship between
the normalized Fourier transform of the blurred and the
original images, it is possible to estimate the original image.

2. Frequency Domain Concerns

In this section, we establish a new frequency blur invariant
based on a Gaussian PSF for degraded images. Since an
imaging system can be modeled as a 2D convolution in (1), it
is possible to transform this equation to the Fourier domain.
For frequency analysis, we consider the imaging system in the
presence and absence of noise, respectively.

2.1. Noise Effect. In the presence of noise, the degradation
model can be expressed in the Fourier domain as

G (u,v) = F (u,v) H (u,v) + N (u,v), 2)

where G(u, v), F(u,v), H(u, v), and N(u, v) are the frequency
responses of the observed image, original image, PSE, and
noise, respectively. The Wiener deconvolution method has
widespread use in image deconvolution applications, as the
frequency spectrum of most visual images is fairly well
behaved and may be estimated easily [25, 26]. Here, the target
is to find A(x, y) in the way that f(x, y) can be approximated
as a convolution, that is, A(x, ¥) ® g(x, y), to minimize the
mean square error, where f (x, ) is an estimation of f(x, y).
The Wiener deconvolution filter provides such a A(x, y). The
filter is described in the frequency domain:

H* (u,v) S (u,v)
|H (4, v)?S (u,v) + N (u, v)

where S(u, v) is the mean power spectral density (S(u,v) =
E{|X(u, v)|*}) of the original image and f(x, y) and the super-
script * denote complex conjugation. Using this technique to
find the best reconstruction of a noisy image can be compared
with other algorithms such as Gaussian filtering.

A(u,v) =

(3)

2.2. Proposed Frequency Blur Invariant. If noise n(x,y) is
neglected, (2) can be reduced to

G (u,v) = F(u,v) H (u,v). (4)
Here, we consider a Gaussian distribution for the PSF as
1 —(x*+y%)/25°
h(x,y)= ety ) 5
(x.7) 20> ®)
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Assume that the imaging system does not change the overall
brightness of the image; that is,

”i:h (x, y)dxdy = 1. (6)

It is clear that (5) is a separable function in terms of x and y,
and we can rewrite that as follows:

1 e—>c2/2aZ > ( 1 e—y2/202 )
oV22n oV2n
(7)

M%ﬂ=M@Mﬁ=<

In order to obtain the Fourier transform of the 2D
Gaussian PSE it is easy to consider the 1D PSE and using the
formula in [27], we have

22 F 22
e ¥ /20 (i) H(u) = e Y /2' (8)

1
) =

For a 2D PSF, because of its separability property, the Fourier
transform of (7) can be written as

H(u,v) = e W2, )
Substituting (9) into (4), we get
G (u) V) =F (u’ V) . 6_02(u2+VZ)/2. (10)

To obtain the frequency domain blur invariant, we set both
frequencies (1, v) to (1, 1) in (10) which leads to

2 G(1,1)
e = .
F(1,1)

(11)

The PSF kernel o can be eliminated by substituting (11) into
(10) which yields

G (u,v)
(G, DY

a F (u,v)
= (F(1, 1))@ FR (12)

Equation (12) shows the proposed blur invariant features in
Fourier domain for all range of frequencies which is inde-
pendent of the Gaussian blur kernel (o). In this paper, these
features are obtained by normalizing the Fourier transform of
the original and blurred images with their respective Fourier
transforms, F(1, 1) and G(1, 1).

3. Image Deconvolution

In this section, we show an image deconvolution method
based on the derivatives of the blurred image function
which are defined in terms of differences. We begin with 1D
version of (10) because the separable property of the Gaussian
distributions will allow the easy 2D implementation of them.
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TABLE 1: The original binary and its blurred images with the proposed invariants of the blurred images.

Original image o’ =2 o’ =4 o’ =6 o’ =8
[¥(1,2)| 0.701 0.701 0.701 0.701
[¥(1,2) -0.191 -0.191 -0.191 -0.191
|¥(2,3)] 0.453 0.453 0.452 0.452
/¥(2,3) -3.070 -3.070 -3.070 -3.071
|¥(5,3)]| 0.128 0.128 0.128 0.127
/¥(5,3) 1.518 1.518 -1.518 1.518
|¥(4,9)| x 107 6.952 6.951 6.951 6.949
/¥ (4,9) -1.793 -1.793 -1.793 -1.793
[¥(7,7)] x 107 4.283 4.282 4.282 4.280
1¥(7,7) -0.912 -0.912 -0.911 -0.912
[¥(6,10)| x 10~* 4.118 4.116 4116 4115
/¥(6,10) 1.199 1.199 1.198 1.198
[¥(15,1)] x 107 4.155 4.155 4.155 4.154
/¥(15,1) 2.202 2.202 2202 2203
|¥(3,21)| x 1071 3.938 3.938 3.937 3.937
/¥(3,21) -0.214 -0.214 -0.215 -0.213

TABLE 2: The original gray-scale and its blurred images (“Saturn” image) with the proposed invariants of the blurred images.

Original image o’ =2 ot =4 o’ =6 o> =8
-
[W(1,2)] 0.256 0.256 0.256 0.255
/¥(1,2) —-2.996 —2.996 —-2.996 —-2.995
[W(2,3)] 1.66 1.658 1.658 1.655
[%(2,3) -1.738 -1.738 -1.737 -1.737
[¥(5,3)| 2.46 2.46 2.458 2.457
LY(5,3) —-2.048 —2.048 —2.047 —2.047
[W(4,9)] 823.64 823.64 823.63 823.63
/¥(4,9) 2.156 2.156 2.156 2.155
[(7,7)| 6703.78 6703.78 6703.77 6703.76
[Y(7,7) 2.945 2.945 2.945 2.945
[\¥(6,10)] 50712 50712 50711.99 50711.92
/Y(6,10) -1.440 —1.440 —-1.440 -1.439
|¥(15,1)] x 10° 9.92 9.92 9.919 9.917
/Y(15,1) 0.170 0.170 0.170 0.169
[¥(3,21)| x 10" 1.38 1.38 1.378 1.373
/Y(3,21) —-2.758 —2.758 -2.759 —-2.757

To deconvolve the original signal, we rewrite (10) in 1D form
as

Fu) =" “2G ). (13)

2 2
Since the inverse Fourier transform of the function e’ ¥ /2

does not exist, we can not find an explicit form of that to

find the original signal deconvolution from (13). If we use the
Taylor series expansion of the squared exponential function,
it is possible to connect the degraded signal to its original
form. Equation (13) leads to

2.2 4 4 6
ocu” ocu ou
F(u)=<1+ 3 + +

6
. s +---)G(u). (14)



By using the high order derivative property of the Fourier
transform (differentiation property), we have

2%
% <, (ju)*G (u). (15)

Using (15) in (14) and taking the inverse Fourier transform
yields

00 2 k 2k
f(x):Z%(i) w (16)

2k
& 2 ox

Equation (16) includes the even order derivative of the
degraded signal that can be defined as a difference. For
example, the definition of a second-order derivative as the
difference is [28]

g (x)
Ox?
By generalizing the definition of a high order derivative

as differences, we are able to approximate the continuous
derivatives with discrete differences as

=gx+1)+g(x—-1)-2g(x). 17)

2k 2k
TIC) _ § (pypem (i{f) glx—k+m. (18)

2k
Ox m=0

Sustituting (18) into (16) yields the original signal in terms of
the degraded signal as

00 2 k 2k
f(x)=2%<7") Z(—1)2k""(ffl‘>g(x—k+m).
k=0 """ m=0
19)

Similarly, for a 2D blurred image, the desired image
deconvolution can be obtained from

®© X 1 _02 k+l 2k 21 Sksal
fley) = ZZW<T) Z Z(—l) e

k=0 1=0 m=0 n=0 (20)
X <21k> <2].l>g(x—k+m,y—l+n).
4. Experimental Studies

Different numerical experiments are conducted in order to
prove the validity and the efficiency of the proposed methods.
The detailed description of these numerical experiments
will be presented in this section. The performance for the
proposed methods is evaluated based on the binary, gray-
scale, and real images. This section is divided into two
subsections.

In the first subsection, the accuracy of the proposed
blur invariant features in the Fourier domain is validated by
using the frequency analysis of the blurred and the original
images. The efficiency of the proposed image deconvolution
algorithm based on the Gaussian PSF is carried out with
different experiments in the second subsection. Results of
nine numerical experiments are used to ensure the efficiency
of the proposed image deconvolution method.
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FIGURE I: Variation of |G(1, 1)/F(1, 1)| with respect to the standard
deviation of the Gaussian blur kernel for “Saturn” image shown in
Table 2.
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FIGURE 2: Variation of ZG(1,1)/F(1, 1) with respect to the standard

deviation of the Gaussian blur kernel for “Saturn” image shown in
Table 2.

4.1. Experiments on the Frequency Blur Invariant. In order to
verify the proposed blur invariant in (12), binary and gray-
scale images of size 32 x 32 are used. The blurred images are
obtained using different variance, o, by a mask with size of
3 x 3. Table 1 shows the original binary and its corresponding
blurred images. In this table, the blur invariants shown in (12)
are denoted as W(u, v), where the frequencies, u and v, are
varied in random ranges. In each row of this table, the results
of the amplitude and phase of the blur invariants are shown. It
can be observed that their respective values remain the same
or slightly change for different 0.

The results shown in Table 2 for “Saturn” gray-scale image
indicate similar observations of blur invariants as in Table 1.
One thing to observe for both the tables is that the values
of the blur invariants vary slightly with different o*. This
is because (8) was based on the integral form whereas all
invariant computations are executed in discrete form, which
may lead to numerical error in the calculation. The proposed
blur-invariant values are fairly stable with respect to different
Gaussian kernel, 0>

4.2. Experiments on the Proposed Image Deconvolution. To
validate the proposed image deconvolution shown in (20), an
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TABLE 3: Image deconvolution using proposed frequency blur invariant for Tropical Storm Lorenzo image (shown in Figure 3(a)) with
different estimated o (below the restored images), different mask sizes, and their corresponding NMSE.

Blurred
image (A)

Deblurred images

Mask size: 5 x 5
-

o

>y

o=333 0.25 0.73 1.34

1.98 2.65 3.12 3.28 3.45

NMSE 0.4429 0.4106 0.3619

0.3007 0.2491 0.1838 0.0195 0.0056

Mask size: 11 x 11

o =7.66 0.42 0.87 1.68 2.56 4.98 7.24 7.51 7.72
NMSE 0.7915 0.6745 0.5608 0.4834 0.1973 0.0088 0.0031 0.0015
Mask size: 17 x 17

— —

o=1133 1.53 2.87

3.19

4.01 6.79 8.26 10.93 11.28

NMSE 0.8924 0.7127 0.5111

0.3501 0.1833 0.1381 0.0551 0.0110

iterative procedure is performed. Rewriting (20) in terms of
iterations, we obtain the estimated restored image as

_ © @ 4 ) K+l o 21 kel
fi(xy) = ZZW(TH) Z Z(—l) e
k=0 i=0 ***: =0 =0 1)
2k\ (21
X <m><n>g(x—k+m,y—l+n),
where
o = G(L1)
FTax, y)}u:vzl (22)

and i is the iteration number. In this technique, an estimation
of the original image is obtained after every iteration. To
estimate the value of ¢ in (11), the only unknown parameter is
F(1, 1) which can be replaced by a suitable Fourier transform
of the blurred version of the original image such as G(0, 0).
To understand the behavior of G(1,1)/F(1, 1) in terms of the
variation of standard deviation (¢), we plot the amplitude and
phase of this factor for different amount of blur from 0.1 to
10 for “Saturn” image that is shown in Table 2. Figures 1 and
2 show the variation of amplitude and phase of the original
and blurred images’ Fourier transform in terms of o. It can
be seen that the amplitude of G(1, 1)/F(1, 1) is decreasing up
to o = 2.75 uniformly, whereas the phase of that is increasing
up to the same point of standard deviation.

To measure the improved quality of the restored
images, the normalized mean square error (NMSE),

ICfiCe, ) = fioi (e, )] filx, y)llz, has been used as a
reference metric. The iteration stops once a minimum value
of NMSE is reached.

This iterative approach is performed on three real astro-
nomical images—Tropical Storm Lorenzo (Image A) of size
337 x 440, Milky Way (Image B) of size 1536 x 1056, and
Galaxy (Image C) of size 1316 x 1032; see Figure 3.

In this experiment, for each of the aforementioned astro-
nomical images, we degraded them using artificial blur by a
Gaussian kernel of different mask sizes. Image A is degraded
by blur kernel of sizes 5x 5, 11 x 11, and 17 x 17 with ¢ values
of 3.33, 7.66, and 11.33, respectively. Table 3 illustrates the
results for deconvolved images using the proposed frequency
blur invariant features. It is clear that, after every step, the
quality of the deconvolved image becomes better, and finally,
we can get a fine quality of the deconvolved images based on
the minimum value of the NMSE. Image B is degraded by
blur kernel of sizes 7 x 7, 19 x 19, and 23 x 23 with o values
of 4.66, 11.33, and 15.33, respectively. As can be seen from
Table 4, the process converges reaching o = 4.94,11.41, and
14.95. for different mask sizes and yielding visually very good
result with small NMSE. Finally, Image C is degraded by blur
kernel of sizes 11 x 11, 19 x 19, and 23 x 23 with o values
of 7.33, 12.66, and 14.99, respectively. The same deblurring
processes are shown in Table 5 for different level of blurs of
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TABLE 4: Image deconvolution using proposed frequency blur invariant for Milky Way image (shown in Figure 3(b)) with different estimated
o (below the restored images), different mask sizes, and their corresponding NMSE.

Blurred
image (B)

Mask size: 7 x 7

Deblurred images

o = 4.66 0.37 1.73
NMSE 0.5319 0.4227
Mask size: 19 x 19

3.18 4.57 4.94
0.1512 0.0103 0.0085

o=11.33 0.66 1.75 4.68 8.23 10.99 11.41
NMSE 0.8105 0.7213 0.4983 0.1655 0.0210 0.0061
Mask size: 23 x 23

o =15.33 0.89 2.05 4.64 8.81 13.81 14.95
NMSE 0.8756 0.6133 0.3988 0.1613 0.0824 0.0034

TaBLE 5: Image deconvolution using proposed frequency blur invariant for Galaxy image (shown in Figure 3(c)) with different estimated o
(below the restored images), different mask sizes, and their corresponding NMSE.

Blurred
image (C)
Mask size: 11 x 11

Deblurred images

o=7.33 0.33 1.82 3.12
NMSE 0.4416 0.3709 0.2117
Mask size: 19 x 19

o =12.66 0.72 2.00 4.28 7.77
NMSE 0.5271 0.4343 0.2713 0.1009
Mask size: 23 x 23

o =14.99 1.55 4.78 9.35 14.16 14.58 15.13
NMSE 0.5698 0.3487 0.1429 0.0171 0.0089 0.0029
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(b)
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FIGURE 3: Set of gray-scale images used in the experiments: (a) Tropical Storm Lorenzo (337 x 440), (b) Milky Way (1536 x 1056), and (c)

Galaxy (1316 x 1032).

Normalized mean square error (NMSE)

0 + + + -+ v v -
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Standard deviation (o)

< Image A (Mask size: 11 x 11)
= Image B (Mask size: 19 x 19)
a Image C (Mask size: 23 x 23)

FIGURE 4: NMSE for three restored images of Table 3.

Galaxy image. One can observe from these three tables that
it yields very good results for the overestimating of o values.
The advantage of o overestimation can be seen in the first and
second rows of Tables 3 and 4 and also in the below row of
Table 5.

The plotted curves of NMSE for three images are dis-
played in Figure 4. It would be noted that the three curves
of NMSE are plotted in the same figure in terms of standard
deviation of blur kernel for easier comparison. As shown in
Figure 4, the NMSE curves of the restored images approach
zero by increasing the o values. The results of these experi-
ments ensure the robustness of the proposed Fourier domain
blur invariant.

5. Conclusion

In summary, we presented a novel blur invariant technique
in frequency domain using Fourier transform properties of a

Gaussian PSF kernel. The proposed features are equal in both
original and blurred images which are described in Fourier
domain. To our knowledge, this represents a normalization
of the Fourier transform of the original and degraded images
by their respective fixed frequencies which are set to one.
In addition, the obtained blur invariant features will enable
us to estimate the original image which is degraded by a
Gaussian kernel. We use this invariant not only to restore
the degraded images, but also to evaluate the variance of
the PSE. Since the proposed image deblurring algorithm
is similar to the nonblind deconvolution, we applied the
NMSE factor to show the error measurement and the image
quality in these analyses. Finding other types of image quality
measurement to determine an appropriate o range for real
image deconvolution is a major direction for further practical
applications on the proposed method.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work has been supported by the University of Malaya
High Impact Research Grant (MOHE-HIRG A000007-
50001).

References

[1] C.Tang, C.Hou, and Z. Song, “Defocus map estimation from a
single image via spectrum contrast,” Optics Letters, vol. 38, no.
10, pp. 1706-1708, 2013.

[2] A. Kumar, R. Paramesran, and B. H. Shakibaei, “Moment
domain representation of nonblind image deblurring;” Applied
Optics, vol. 53, no. 10, pp. B167-B171, 2014.

[3] M. Almeida and M. Figueiredo, “Parameter estimation for blind
and non-blind deblurring using residual whiteness measures,”
IEEE Transactions on Image Processing, vol. 22, no. 7, pp. 2751-
2763, 2013.



[4] S. Tang, W. Gong, W. Li, and W. Wang, “Non-blind image
deblurring method by local and nonlocal total variation mod-
els;” Signal Processing, vol. 94, no. 1, pp. 339-349, 2014.

[5] N. Meitav and E. N. Ribak, “Estimation of the ocular point
spread function by retina modeling;” Optics Letters, vol. 37, no.
9, pp. 1466-1468, 2012.

[6] B. H. Shakibaei and J. Flusser, Image Deconvolution in the
Moment Domain, chapter 5, Science Gate Publishing, 2014.

[7] W. He, Z. Zhao, ]. Wang et al., “Blind deconvolution for spatial
distribution of K,; emission from ultraintense laser-plasma
interaction,” Optics Express, vol. 22, no. 5, pp. 5875-5882, 2014.

[8] J. Zhang, Q. Zhang, and G. He, “Blind deconvolution of a noisy
degraded image,” Applied Optics, vol. 48, no. 12, pp. 2350-2355,
2009.

[9] L. Yan, H. Fang, and S. Zhong, “Blind image deconvolution with
spatially adaptive total variation regularization,” Optics Letters,
vol. 37, no. 14, pp. 2778-2780, 2012.

[10] X. Gong, B. Lai, and Z. Xiang, “A 10 sparse analysis prior for
blind poissonian image deconvolution,” Optics Express, vol. 22,
no. 4, pp. 3860-3865, 2014.

[11] H.Fang, L. Yan, H. Liu, and Y. Chang, “Blind Poissonian images
deconvolution with framelet regularization,” Optics Letters, vol.
38, no. 4, pp. 389-391, 2013.

[12] J. Chen,R. Lin,H. Wang, J. Meng, H. Zheng, and L. Song, “Blind-
deconvolution optical-resolution photoacoustic microscopy in
vivo,” Optics Express, vol. 21, no. 6, pp. 7316-7327, 2013.

[13] S. V. Vorontsov, V. N. Strakhov, S. M. Jefferies, and K. J.
Borelli, “Deconvolution of astronomical images using SOR with
adaptive relaxation,” Optics Express, vol. 19, no. 14, pp. 13509-
13524, 2011.

[14] V. Ojansivu and J. Heikkild, “A method for blur and similarity
transform invariant object recognition,” in Proceedings of the
14th Edition of the International Conference on Image Analysis
and Processing (ICIAP °07), pp. 583-588, September 2007.

[15] J. Flusser and T. Suk, “Degraded image analysis: an invariant
approach,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 6, pp. 590-603, 1998.

[16] A. Stern, I. Kruchakov, E. Yoavi, and N. S. Kopeika, “Recog-
nition of motion-blurred images by use of the method of
moments,” Applied Optics, vol. 41, no. 11, pp. 2164-2171, 2002.

[17] B. Chen, H. Shu, H. Zhang, G. Coatrieux, L. Luo, and J. L. Coa-
trieux, “Combined invariants to similarity transformation and
to blur using orthogonal Zernike moments,” IEEE Transactions
on Image Processing, vol. 20, no. 2, pp. 345-360, 2011.

[18] X.Dai, H. Zhang, T. Liu, H. Shu, and L. Luo, “Legendre moment
invariants to blur and affine transformation and their use in
image recognition,” Pattern Analysis and Applications, vol. 17,
no. 2, pp. 311-326, 2014.

[19] L. Yan, M. Jin, H. Fang, H. Liu, and T. Zhang, “Atmospheric-
turbulence-degraded astronomical image restoration by min-
imizing second-order central moment,” IEEE Geoscience and
Remote Sensing Letters, vol. 9, no. 4, pp. 672-676, 2012.

[20] Y. D.Khan, S. A. Khan, F. Ahmad, and S. Islam, “Iris recognition

using image moments and k-means algorithm,” The Scientific

World Journal, vol. 98, pp. 224-232, 2014.

1. Makaremi and M. Ahmadi, “Wavelet-domain blur invariants

for image analysis,” IEEE Transactions on Image Processing, vol.

21, no. 3, pp. 996-1006, 2012.

[22] B.Honarvar, R. Paramesran, and C.-L. Lim, “Image reconstruc-
tion from a complete set of geometric and complex moments,”
Signal Processing, vol. 98, pp. 224-232, 2014.

[21

The Scientific World Journal

[23] S. M. Yoon, Y. J. Lee, G.-J. Yoon, and J. Yoon, “Adaptive total
variation minimization-based image enhancement from flash
and no-flash pairs,” The Scientific World Journal, vol. 98, pp.
224-232,2014.

[24] Y. Zhang, W. Zhang, and J. Zhou, “Accurate sparse-projection
image reconstruction via nonlocal TV regularization,” The
Scientific World Journal, vol. 2014, Article ID 458496, 7 pages,
2014.

[25] Y. Zhang, Z.-M. Tang, Y.-P. Li, and Y. Luo, “A hierarchical
framework approach for voice activity detection and speech
enhancement,” The Scientific World Journal, vol. 2014, Article ID
723643, 18 pages, 2014.

[26] T. Chen, K.-K. Ma, and L.-H. Chen, “Tri-state median filter for
image denoising,” IEEE Transactions on Image Processing, vol. 8,
no. 12, pp. 1834-1838, 1999.

[27] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, vol.
55,1964.

[28] R. C. Gonzalez and R. E. Woods, Digital Image Processing,
Addison-Wesley Longman, Boston, Mass, USA, 2nd edition,
1992.



