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Abstract

Mathematical modeling provides the predictive ability to understand the metabolic repro-

gramming and complex pathways that mediate cancer cells’ proliferation. We present a

mathematical model using a multiscale, multicellular approach to simulate avascular tumor

growth, applied to pancreatic cancer. The model spans three distinct spatial and temporal

scales. At the extracellular level, reaction diffusion equations describe nutrient concentra-

tions over a span of seconds. At the cellular level, a lattice-based energy driven stochastic

approach describes cellular phenomena including adhesion, proliferation, viability and cell

state transitions, occurring on the timescale of hours. At the sub-cellular level, we incorpo-

rate a detailed kinetic model of intracellular metabolite dynamics on the timescale of min-

utes, which enables the cells to uptake and excrete metabolites and use the metabolites to

generate energy and building blocks for cell growth. This is a particularly novel aspect of the

model. Certain defined criteria for the concentrations of intracellular metabolites lead to can-

cer cell growth, proliferation or death. Overall, we model the evolution of the tumor in both

time and space. Starting with a cluster of tumor cells, the model produces an avascular

tumor that quantitatively and qualitatively mimics experimental measurements of multicellu-

lar tumor spheroids. Through our model simulations, we can investigate the response of

individual intracellular species under a metabolic perturbation and investigate how that

response contributes to the response of the tumor as a whole. The predicted response of

intracellular metabolites under various targeted strategies are difficult to resolve with experi-

mental techniques. Thus, the model can give novel predictions as to the response of the

tumor as a whole, identifies potential therapies to impede tumor growth, and predicts the

effects of those therapeutic strategies. In particular, the model provides quantitative insight

into the dynamic reprogramming of tumor cells at the intracellular level in response to spe-

cific metabolic perturbations. Overall, the model is a useful framework to study targeted met-

abolic strategies for inhibiting tumor growth.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007053 June 11, 2019 1 / 36

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Roy M, Finley SD (2019) Metabolic

reprogramming dynamics in tumor spheroids:

Insights from a multicellular, multiscale model.

PLoS Comput Biol 15(6): e1007053. https://doi.

org/10.1371/journal.pcbi.1007053

Editor: Philip K Maini, Oxford, UNITED KINGDOM

Received: November 3, 2018

Accepted: April 24, 2019

Published: June 11, 2019

Copyright: © 2019 Roy, Finley. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: SDF acknowledges the support of The

Rose Hills Foundation http://www.

rosehillsfoundation.org/ and the USC Provost’s

Office https://www.provost.usc.edu/. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-6901-3692
https://doi.org/10.1371/journal.pcbi.1007053
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007053&domain=pdf&date_stamp=2019-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007053&domain=pdf&date_stamp=2019-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007053&domain=pdf&date_stamp=2019-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007053&domain=pdf&date_stamp=2019-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007053&domain=pdf&date_stamp=2019-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007053&domain=pdf&date_stamp=2019-06-21
https://doi.org/10.1371/journal.pcbi.1007053
https://doi.org/10.1371/journal.pcbi.1007053
http://creativecommons.org/licenses/by/4.0/
http://www.rosehillsfoundation.org/
http://www.rosehillsfoundation.org/
https://www.provost.usc.edu/


Author summary

Cancer cells expertly alter their metabolism in order to sustain growth, a hallmark of can-

cer. Quantitative details about this metabolic reprogramming are difficult to obtain with-

out the use of predictive mathematical models. Here, we present a robust computational

model of avascular tumor growth. The novel aspect of this work lies in the incorporation

of a detailed model of the dynamics of metabolism within each individual cell, which

directly influence growth of the multicellular tumor as a whole. We apply the model to

simulate how the tumor grows in space and time and to predict how the tumor responds

to targeted inhibition of specific intracellular metabolic reactions. Our results show, first-

hand, the dynamic metabolic reprogramming that occurs in cancer cells. Specifically, the

model provides insight into how the cells alter their metabolism to compensate for the

loss of a nutrient by exploiting alternative pathways for continued tumor growth. Our

work provides a quantitative tool for identifying the impact of cellular and sub-cellular

features on the evolution of a tumor. This framework is useful for developing potential

cancer therapies, complementing experimental studies.

Introduction

Cancer evolution occurs as a complex process between cellular populations and the extracellu-

lar environment spanning over multiple spatial and temporal scales. Understanding the

molecular peculiarities of a malignant tissue relative to healthy tissue primarily involves vari-

ous genome sequencing protocols of a single region of the carcinoma or a single tumor biopsy

averaged over the complete tumor mass. However, this type of molecular data fails to capture

the regional heterogeneities in a tumor mass. Often, these regional differences within the pri-

mary tumor mass mean that portions of the tumor have evolved to be genetically different

from the initial cells that were present when tumor growth began [1, 2]. Both inter- and intra-

tumor heterogeneities influence how the tumor as a whole behaves in different microenviron-

ments, leading to different grades of tumor progression. Hence, it is necessary to understand

not only the temporal evolution of the tumor volume but also the spatial heterogeneities within

the tumor. Most studies of tumor heterogeneity have focused on the evolution of regional dif-

ferences within a tumor due to the tumor’s extracellular environment (including nutrient

availability and physical characteristics such as matrix stiffness [3]), the mechanical properties

of the cancerous cells themselves [4], or the evolution of cellular phenotypes [5, 6]. However,

few studies investigate the internal metabolic dynamics of individual cells, which might influ-

ence how the cells behave in diverse extracellular environments, how they interact with other

cells, and how they transition between different cell types [7, 8].

Studying spatial heterogeneity in the context of metabolism is particularly important in

pancreatic cancer. Pancreatic adenocarcinoma is one of the most aggressive forms of cancer

mostly due to metastatic dissemination and resistance to chemotherapy [9]. Pancreatic cancer

cells rewire their metabolic network to support the energetic and biosynthetic demands of the

exponentially growing tumor. This altered metabolism is a hallmark of cancer and can be

linked to resistance to therapies [10]. Hence, it becomes important to understand the meta-

bolic dynamics of a pancreatic cancer cell not as homogeneous distribution, but within a het-

erogeneous tumor volume, where each cell may be subject to nutrient deprivation and has the

ability to reprogram their pathways to their own individual benefit.

The behavior of a population of cells is a collective phenomena arising from a complex net-

work of mutually interacting cells, the basic entity of biology, that follows a set of stereotypical
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or stochastic rules. Cellular signaling operates over several orders of magnitude in a spatio-

temporal scale where both extracellular and intracellular dynamics are involved [11, 12]. A key

challenge is to consider and understand the interconnection of the extracellular signals to the

intracellular process and how these processes couple together to prompt cellular response and

decisions [13, 14]. While most metabolic reactions occur on the order of fractions of seconds

to seconds, the end result of phenotypic changes or cellular growth and differentiation takes

place on the timescale of hours. Hence, timescale separation is a crucial consideration for

dynamic network analysis and spatio-temporal evolution of network systems [15].

Cell-based models are a class of computational models that can mimic the biophysical and

molecular interactions between cells [16]. Thus, these models are essential tools to simulate

heterogeneous biological behavior. While continuous models are capable of explaining the

overall behavior of the tumor as a whole [17], a discrete model [18] can capture the stochasti-

city of the individual cell’s behavior within the tumor, leading to differential spatio-temporal

evolution and inter-tumor heterogeneity. In this type of modeling, each cell’s decisions are

simulated based on its current state, local environment, and interactions with its neighbors.

Cell-based modeling employs a hybrid approach combining the aspects of discrete cell behav-

ior with a continuum environment, both directly influencing each other. Hybrid models of

tissue growth can be classified as on- or off-lattice, referring to whether a cell’s location is

expressed as specific points on a grid in two- or three-dimensional space [19]. Additionally,

these models vary in their complexity, with respect to the level of detail included, such as the

types of cells and processes included [19]. However, at the basic level, these models are com-

prised of a set of rules that guide the cell’s decisions and the collective “morphodynamic”

behavior of the population of cells [20]. These rules are based on the principles of thermody-

namics and mechanics and relevant aspects of the physical sciences describing cell-cell interac-

tions within the population.

Dynamic, hybrid cell-based models have been previously used to study how the collective

behavior of individual cells drives tissue-level processes, including tumor development. For

example, in foundational work, Hoehme and Drasdo developed a biophysical cell-based model

to study growth of tumor cells in monolayers and spheroids [21]. Macklin and coworkers

developed a mechanistic agent-based cell model of ductal carcinoma in situ, where the model

was calibrated using patient-specific clinical pathology data [22]. Cell-based models of tumor

growth have been previously compiled and reviewed [19, 23]. In addition, some computational

models of cancer predict metabolic interactions between tumor cells [8, 24–26]. However,

these models lump together several metabolic reactions and thus cannot predict how targeting

specific metabolic enzymes influence cell growth.

In this study, we use a multiscale cell-based approach to predict how each individual cell’s

detailed intracellular metabolic dynamics influence the evolution of the tumor as a whole. We

further predict the effects of drugs inhibiting specific enzymatic reactions in inhibiting the

growth of the entire tumor. The novelty of our model of avascular tumor growth described

here lies in the incorporation of a detailed mechanistic metabolic network [27] within each cell

unit. We couple the cells’ behaviors to the diffusion of multiple nutrients, where the cellular

growth and death rates are a function of ATP generation rate of a cell unit. The model is able

to predict the effects of various therapeutic strategies that target individual cells’ metabolism,

i.e., the resulting tumor growth following changes in the expression levels of enzymes (simu-

lated by knockout or knockdown of the enzyme activity), which alter the flux distributions

within the intracellular metabolic network, and hence tumor growth. We apply the model to

explore cell phenotypic changes and hypothesize which enzyme knockdowns have the maxi-

mum influence on reducing tumor growth. Given the intracellular molecular detail of our

model, we are able to explain the mechanisms behind each metabolic perturbation and predict
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their effects at the intracellular level. Our work contributes to a deeper understanding of the

effects of metabolic strategies to regulate tumor growth.

Materials and methods

Modeling platform

We model the spatio-temporal early evolution of a multicellular pancreatic tumor spheroid

using the Cellular Potts model via an open source simulation environment called Compu-

Cell3D (henceforth referred to as CC3D) [28]. Cellular Potts modeling makes it easier

to understand both the intra- and inter-tumor heterogeneity due to differences at the cellular

level. The modeling environment is based on Glazier-Graner-Hogeweg (GGH) model [29, 30],

a multi-cell, lattice-based modeling framework. Here, each individual cell can interact with

each other and its extracellular environment to generate the collective cell behavior.

Model overview

Our multiscale model of tumor growth incorporates a spatio-temporal evolution of an avascu-

lar tumor spheroid [31] within a two-dimensional stromal tissue compartment (Fig 1). This

Fig 1. Schematic of the simulated tumor environment. The cellular environment is comprised of a continuous stromal tissue

flanked on both sides by an epithelial layer. This epithelial layer is comprised of two cell types—Extracellular Matrix (pink) and Basal

(navy blue). The epithelial layer secretes three main nutrients—glucose, glutamine and oxygen. The tumor cells (outlined in grey) are

discrete entities that reside within the stromal tissue. Tumor cells take up glucose, glutamine and oxygen, and they secrete lactate

into the stromal tissue. The diffusion of these nutrients is modeled using partial differential equations (illustrated by the gradient

field, ranging from low concentration (blue) to a high concentration (red)). Each individual tumor cell has a detailed intracellular

metabolic network, which takes the extracellular glucose, glutamine and oxygen concentrations as inputs to form ATP with lactate as

a by-product of glycolysis. The dynamics of the metabolic network within each cell is modeled using ordinary differential equations.

Cell sizes are not to scale.

https://doi.org/10.1371/journal.pcbi.1007053.g001
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involves a description of central carbon metabolism within a small, homogeneous cluster of

cells (“generalized cell”) via a detailed kinetic model. Cells are assumed to be chemically homo-

geneous internally, i.e., no chemical diffusion is modeled within the intracellular space. The

local extracellular concentrations of glucose, glutamine, lactate and oxygen are described with

reaction-diffusion equations. The generalized cells are located on a two-dimensional lattice,

which represents the tissue domain and the extracellular matrix. Each cell in our model is its

own decision-making unit, where decisions are based on the cell’s immediate extracellular

conditions, interactions with neighboring cells and its intracellular condition.

Below, we describe the cell properties and its dynamics, the extracellular nutrient environ-

ment, and the specific cell behaviors. A flowchart depicting all of the cell state transitions is

shown in Fig 2, giving an overview of what is modeled in this work.

Cell properties. In a Cellular Potts model (implemented using CC3D), each generalized

cell has a unique identity number and is a dynamic entity that responds actively to the nutrient

gradients in its environment. The cells have adhesive properties to their neighbors, change

their shape (volume) and surface properties and exert forces on each other and their environ-

ment. They grow and proliferate via mitosis (division) and die due to necrosis when they

shrink and disappear. Each cell has a type given by τ(σ(x)) where σ(x) is the unique identity of

the cell at a spatial location, x. There can be many cells of the same type, but each has a differ-

ent identity.

Each generalized cell is associated with an effective energy term or Hamiltonian, H, that

encapsulates all its cellular properties (volume and surface area), interactions with other cells

(adhesion to neighbors), and motion (chemotaxis). The effective energy also includes the set of

partial differential equations and boundary conditions that describe the evolution of extracel-

lular nutrients’ gradients in the tumor micro-environment.

Cell dynamics. The cell configuration evolves through stochastic changes (Monte Carlo

method) at individual sites to minimize the effective energy. These are called the Voxel Copy
Attempts. For the motion of a cell from a source site “j” to a target site “i”, the change in energy

(ΔH) required to copy the index in the source site voxel onto the target site voxel is calculated.

The probability of a voxel copy attempt to be accepted or not is given by

P ¼
1; if DH � 0

e
� DH
Tm ; if DH > 0

8
<

:
ð1Þ

Here, Tm is the temperature, which represents the amplitude of cell membrane fluctuations.

The higher the energy of a configuration, the less probable the voxel copy attempt. Overall, the

cellular motion (chemotaxis) is driven by a lowering of the effective energy.

Three major factors determine cellular growth and death rates and cell state transitions in

the model: (a) local ATP generation due to the intracellular metabolic pathways that utilize

glucose, glutamine and oxygen [32], (b) acidity produced by local lactate secretion [33], and

(c) growth-induced or residual solid stress within the interior of the tumor [34–37]. These fac-

tors collectively influence the spatial distribution of proliferating, quiescent, and necrotic cells

within the tumor, thus defining the macroscopic tumor morphology. The detailed intracellular

kinetics of metabolism in a generalized cell is represented by an ordinary differential equation

(ODE) model that relates the cellular uptake of nutrients for the generation of cellular energy

(ATP) leading to cell growth or death. The uptake rate of each nutrient is determined by the

kinetic parameters of the ODE model as well as the amount available at the center of mass of

the generalized cell. While the baseline ODE model framework is based on literature sources

[27, 38], additional features such as tumor response to acidosis and compressive stress [39]
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Fig 2. Cell types and cell transitions. (a) Discrete cell types in the model. Rules for the transition of (b) a quiescent

stem cell, (c) a quiescent cancer cell, (d) a proliferating stem cell or (e) a proliferating cancer cell. (f) Rules for the

transition of all four viable cell types into a necrotic cell.

https://doi.org/10.1371/journal.pcbi.1007053.g002
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were added. The various components of the model, and the parameters associated with them,

are as described below.

Grid space and cell types. The spatial extent of the simulations involves a lattice grid with

dimensions: 400 × 400 × 1 pixels. Voxels on this fixed cell lattice represent generalized cells.

The correspondence of pixel units of a generalized cell to length and volume units are given in

Table A in S1 Text. Based on the volume of a generalized cell, a universal scaling factor is

imposed for all parameters of the model which, assumes that 5 mM corresponds to 0.32 fmol/

voxel [38].

There are a total of eight different cell types in the tumor environment. The lattice space is

occupied by the Medium cells, which represent a stromal compartment. While the Medium

cells are continuous, the other cell types are discrete and represent spatially extended domains

on the space lattice. The stromal compartment is bound on each end by an epithelial layer,

occupying 40 pixels of space. The epithelial layer is comprised of two cell types: the lower layer

is the extracellular matrix (ECM) cells, and the upper layer is Basal cells. While lactate is only

secreted by the stromal compartment, the epithelial layer and the stromal compartment both

secrete glucose, glutamine and oxygen. The schematic of the model is shown in Fig 1.

The model assumes that the growth of a malignant tumor is initiated from a small cluster of

destabilized and disordered cells, which can be either quiescent or possess proliferative capac-

ity, based on the availability of the nutrients. These quiescent and proliferating tumor stem

cells originate at the center of the lattice with a periodic boundary condition imposed on both

x and y directions. As time progresses, the tumor can evolve to include five different types of

cells—PCancer and PStem are the proliferating tumor and stem cells, respectively; QCancer

and QStem are the quiescent tumor and stem cells, respectively; and Necrotic are the cells on

the verge of cell death (either by apoptosis or necrosis).

In this work, we assume that cells first undergo necrosis (the process by which cells shrink

in volume without the rupture of the cell wall, eventually disappearing). The Necrotic cells at

the core of the tumor shrink in size to one fourth of their original volume; however, they do

not disintegrate, due to spatial constraints preventing immune cells from accessing the inner

region of the tumor to clear the cell’s debris. In comparison, dead cells at the periphery

undergo apoptosis (rupture and disintegration of the cell to leave a void space in the grid), as

those are accessible to immune cells that can clear the cellular debris. Since the cells that apop-

tose actually disappear and are removed from the simulation, we retain the term “Necrotic”

for the dead cells, as the ones that remain in the simulation are necrotic, not apoptotic.

In both cases of transitioning into a Necrotic cell, the cell transfers its lactate to the micro-

environment, increasing the local acidity. By only transferring lactate to the microenviron-

ment, we allow all other intracellular metabolites to disappear following necrosis. Although

this does not accurately represent what happens upon cell death, implementing a more realistic

scenario would require modeling the diffusion of each intracellular species (53 in total) in the

extracellular space, creating a local field for every metabolite species around each necrotic

region. This requires knowledge of the diffusion coefficients for each species. Such an imple-

mentation would also increase the computational expense significantly, due to the increase in

the number of diffusion equations. From literature studies, we find that lactate is an important

component in a tumor microenvironment that comes from damaged cells [40]. In addition, in

our simulations using the ODE model of the intracellular metabolic network, the concentra-

tions of other species inside the cell are lower, compared to lactate. For these reasons, we

focused on the diffusion of lactate only.

Nutrient field and chemotaxis. The cells grow in response to availability of nutrients

(glucose, glutamine, oxygen and lactate) in the extracellular space. These concentrations of the

extracellular nutrients are influenced by the cells’ secretion, uptake and chemotaxis. The
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nutrient field is initiated with the assumption that there is no consumption by the tumor cells.

This mimics a scenario where a cluster of malignant cells begins to grow in an environment

where the nutrient field is already established, for example, following migration to a new envi-

ronment. The stromal cells and the epithelial layer in the model secrete nutrients at a constant

rate and have a constant consumption rate such that the physiologically normal ranges of these

nutrients are maintained at all times. We assume a constant secretion rate of nutrients at an

arbitrary value of α. The consumption rate, �, is calculated for each nutrient using the same

approach as Swat et al. [38], so as to maintain the field at a steady state concentration (G(x)) in

the absence of tumor cells.

a ¼ �GðxÞ ð2Þ

The normal physiological concentrations of the nutrients in blood and their correspond-

ing diffusion constants, along with the corresponding consumption rates, are tabulated

in Table A in S1 Text. The nutrient diffusion within the lattice is modeled using the

SteadyStateDiffusionSolver within CC3D. This solver implements the Helmholtz

equation as a time-independent form to solve the diffusion of the nutrients that have very

high diffusion constants.

In the model, a cell can uptake all three nutrients (glucose, glutamine and oxygen), when

available, at its center of mass. This nutrient uptake drives the cell’s intracellular metabolism.

When glucose is no longer available (Gluout = 0), lactate is consumed as an alternative

source of carbon [33]. At a normal glucose concentration, the lactate uptake is null. The nutri-

ents’ field gradient is a net result of secretion and decay by the epithelial layer and consump-

tion by the cells.

The field gradient causes the proliferating cells to chemotax, as glucose, glutamate and oxy-

gen are chemo-attractors [41–43]. However, there is no preferential chemotaxis towards a spe-

cific nutrient, as all three nutrients have the same chemotaxis strength coefficient, λ. The

contribution to the cell’s effective energy, H, due to chemotaxis is given by

DHchem ¼ � lðCðxdestinationÞ � CðxsourceÞÞ ð3Þ

Here C(x) refers to the concentration at the appropriate voxel location, x. Chemotaxis is

simulated by voxel copy attempts, similar to the stochastic fluctuations in the cell configuration

(see above). Here, if the nutrient concentration at the destination pixel is more than the con-

centration at the source pixel, the voxel copy attempt is likely to be accepted, as it leads to a

lowering of energy. This in turn leads the cell movement towards the chemo-attractant. If the

nutrient concentration at the destination pixel is lower than that at the source pixel, the proba-

bility of the voxel copy being made follows Eq (1) shown above.

Cell volume and cell surface. Each cell has a defined volume (V) and a deformable shape

and surface area (S), which contribute to the effective energy, H, as follows:

H ¼
P
lvðV � VtÞ þ

P
lsðS � StÞ ð4Þ

An energy penalty increases with the deviation of the cell’s instantaneous volume and sur-

face area from a designated target volume (Vt) or target surface (St), respectively, which

imposes volume and surface area constraints on the cells. The λv and λs parameters can be cor-

related to the Young’s modulus, with higher values reducing the magnitude of fluctuations of a

cell’s volume or surface area about its target value. The λ values chosen for tumor cell types

(PCancer, PStem, QCancer, QStem and Necrotic) are given in Table B in S1 Text. The λ values

were based on [38], where they were assumed to be the same for the different cell types. We

only altered this setting to account for different target values for cells in the epithelial layer
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compared to tumor cells, corresponding to higher values of λ. A detailed investigation of the

mechanical properties of tumor cells is outside of the focus of our study; therefore, we did not

explore a range of values for these size constraint parameters. Instead, we held them fixed at

values that enable the fluctuations of the cell volume and surface area to be balanced. This

assumption can be explored in future work.

Interaction with other cell types. The contact adhesion or repulsion of a cell with its

nearest neighbors contributes to the effective energy, H, via the function

H ¼
X

i;j

JðtðsiÞ; tðsjÞÞ ð5Þ

Higher or more positive value of the coefficient J leads to repulsive behavior among cell

types, whereas more negative or lower J values result in greater adhesion. Hence, the cells that

adhere together should have a low J value in order to lower their overall energy. Each cell type

has different grades of adhesion with identical or different cells, as given in Table C in S1 Text.

These values are chosen relative to each cell type. For example, to limit necrosis to the core of

the tumor, the adhesion coefficient of the necrotic cells with stromal and epithelial cells is cho-

sen to be high relative to the other cell types.

Altogether, the net effective energy for the generalized tumor cells due to cell properties,

interactions with other cells, and chemotaxis is given by

H ¼ � lðCðxdestinationÞ � CðxsourceÞÞ þ
P

i;jJðtðsiÞ; tðsjÞÞ þ
P
lvðV � VtÞ þ

P
lsðS � StÞ ð6Þ

Stability of the epithelial layer. The epithelial layer is constrained with higher target vol-

ume and surface area values, as given in Table B in S1 Text. The layers of ECM and Basal cells

are constrained using the FocalPointPlasticity, a length constraint imposed to maintain the

maximum number of cell-cell junctions. The energy contribution to the effective energy, H, is

given as

H ¼
X

i;j

lijðlij � LijÞ
2

ð7Þ

where lij is the distance between the center of masses of the two neighboring cells, and Lij is the

target distance between them. The strength of the links between the cells is given by the coeffi-

cient λij. An energy penalty is incurred when the distance between the center of masses of the

cells reaches MaxDistance and the link breaks. However, cells in the process of reconnecting

can also come closer to other separated neighboring cells and restore the broken link in order

to lower the energy. The parameter values governing this stability of the epithelial layers are

tabulated in Table B in S1 Text. The total effective energy, H, for the epithelial layer is there-

fore given by

H ¼
X

i;j

JðtðsiÞ; tðsjÞÞ þ
X

lvðV � VtÞ þ
X

lsðS � StÞ þ
X

i;j

lijðlij � LijÞ
2

ð8Þ

The complete set of parameters mentioned above remain fixed and are tabulated in Table B

in S1 Text.

Simulation time. Due to the discrete and multiscale aspects of this modeling approach, it

is computationally very expensive and infeasible to simulate the growth of large tumors.

Hence, we limited the model simulations to mimic the growth of an avascular tumor, focused

on reproducing the volume fold change as observed in multicellular tumor spheroids. Tumor

evolution is simulated for a total time period of 25 days, based on the experimental data for
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multicellular tumor spheroid growth of various cancer cell lines [44–46]. In CC3D, the gener-

alized cells migrate at the speed of 0.1 pixel per Monte Carlo Step (MCS) unit. Based on the

tumor cell migration speed of 4 μm/hr observed experimentally [47], the correspondence of

real time to MCS is 6 minutes. This brings the total simulation time to be 6000 MCS, equiva-

lent to 25 days.

Cellular decisions and interactions take place on different time scales, quite different from a

cell’s intracellular dynamics. While the metabolic reactions are fast, and metabolites in the net-

work achieve steady state in several minutes, the growth of the tumor is on the order of days.

Hence, we assumed that the cellular decision-making processes, which are mediated by the

intracellular dynamics, occur on an intermediate time scale of hours [48]. Thus, the “fast” reac-

tions (the intracellular metabolic dynamics) could be considered to be at quasi-steady state.

That is, the intracellular condition of the metabolic network is not changing with the time

scale in which the cellular transitions occur.

Intracellular dynamics. Both proliferating (PCancer and PStem) and quiescent cells

(QCancer and QStem) have an elaborate intracellular metabolic network, simulated though an

ODE model [27], implemented as SBML code (S2 Text). This ODE model initiates with the

uptake of glucose, glutamine, oxygen and in certain specific cases (as mentioned above), lactate

from the stromal compartment (Medium cells). As a result of metabolizing those nutrients, the

ODE model produces ATP, which is then recorded for each cell (Fig 1). These simulations are

continuous. That is, after each MCS, the cell’s intracellular state is updated with its final state

from the previous MCS. This updating occurs every 6 minutes.

We integrate the different time scales by updating the various processes at different times:

the intracellular dynamic concentrations are updated every MCS (every 6 minutes), and the

cellular decisions of growth, cell state transition and mitosis occur every 5 hours. Technically

this means that the ODE network model is simulated for 6 minutes (at each MCS), generating

the state of each cell’s intracellular network at each MCS. The ODE model simulations are

repeated for a total simulation time of 5 hours. The cellular decisions are updated every 5

hours, where the intracellular state at every 5-hour time interval is recorded to determine if the

cell has enough ATP to gain health or damage. We describe these cell decisions and interaction

below.

Cell growth, death and mitosis. Cell growth in the model is limited to proliferating cells

(PCancer and PStem), with their growth dependent on the amount of ATP produced by the

cell [27]. The rate of production of ATP depends on the total amount of intracellular glucose

and glutamine, as well as additional intracellular components generated from glycolysis, the

tricarboxylic acid cycle (TCA) and the pentose phosphate pathway (PPP). This means that the

production of these components is dependent on the amount of extracelllular nutrients taken

up by the cell and their metabolism via the metabolic network to generate ATP. Cell growth

occurs for a particular cell when the total intracellular concentration of ATP, glucose and glu-

tamine produced by that cell is above a certain growth threshold: PGrThr and SGrThr for

PCancer and PStem cells, respectively. For the cells that meet this threshold, the cell’s target

volume is incremented by a constant rate at the time interval for cell growth (5 hours). The

new cell volume (Vtf) is given by:

Vtf ¼ Vti þ incvol � ððATP þ Glucoseþ GlutamineÞnow � thresholdÞ ð9Þ

where Vti is the initial volume, incvol is the growth rate in units of voxels2/fmol and threshold is

PGrThr or SGrThr for PCancer and PStem cells, respectively. We note that this equation relates

to the volume constraints given in Eq (4), such that the cell volume to remain close to its target

volume.
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Cells can become necrotic due to very low production of ATP. Here, we assume that cell

necrosis is only a function of the cell’s ATP production. The volume of necrotic cells decreases

at a constant rate, decvol (given in units of fmol/voxel), mimicking cellular apoptosis. The new

cell volume is given by:

Vtf ¼ Vti � decvol ð10Þ

The volume of necrotic cells that appear at the tumor periphery can decrease to zero, as

these cells get cleared from the environment or turn into debris. When a necrotic cell develops

in the core of the tumor, the cell shrinks following the equation above, but its volume only

decreases to one fourth of the size of a proliferating or quiescent cell. In both cases, all of the

necrotic cell’s intracellular lactate is transferred from the interior of the cell to the microenvi-

ronment, mimicking the rupturing of the cell membrane and increasing the acidity of the local

microenvironment.

Cell mitosis (cell division) occurs when a cell’s volume increases such that it reaches the

maximum allowable size: Pvolmaxmit or Svolmaxmit for PCancer or PStem cells, respectively.

We use the same values for Pvolmaxmit and Svolmaxmit, equal to twice the initial cell volume

(2.0�Vo).

Accumulation of cell attributes. The cell’s transition from one state to another is depen-

dent on its local environment and intracellular dynamics. We define the Health attribute to

characterize the health of a cell, which depends on its rate of production of ATP. A cell can

also accumulate damage through the Starvation and Acidity attributes. Starvation is a func-

tion of the ATP production and occurs due to low glucose and glutamine. Acidity occurs due

to over-exposure to lactate. Starvation, Health and Acidity acquired by the cell are calculated

via a fitness factor, F, as follows:

Fðx;Vmax; kÞ ¼ Vmax
xa

xa þ ka
ð11Þ

where x is ATP concentration (for Health and Starvation) or lactate concentration (for Acid-

ity). Vmax is the maximum ATP or lactate production by the cell. For a quiescent cell, the Vmax

is 75% of that of a proliferating cell, a is the Hill coefficient, and k is the Michaelis constant.

For the calculation of Health, F is multiplied by a coefficient, exp(C), a measure of utilization

of ATP and intracellular glucose and glutamine for cell growth. At each time step, the cell attri-

butes of Starvation, Health, and Acidity are incremented by an amount such that:

Final CellAttribute ¼ Initial CellAttributeþ Fðx;Vmax; kÞ ð12Þ

Finally, a cell accumulates Stress due to interactions from nearby cells over a prolonged

period of time. That is, we model interactions between cells, assuming each cell exerts mechan-

ical stress on its neighbors. We assume that this mechanical stress increases linearly (propor-

tional to StressIncrement), instead of an increasing Michaelis Menten function and is

dependent on how many immediate neighbors the cell has for a consecutive number of time

steps. After each state transition, the cell’s attributes are reinitiated to zero.

Cell state transitions due to ATP production. The cell’s production of ATP due to

metabolizing glucose, glutamine and lactate for a specified period of time enables the transi-

tion from quiescent to proliferating. Specifically, the thresholds to acquire Health are calcu-

lated based on the cell’s consistent production of ATP, along with intracellular glucose and

glutamine concentrations over a time period (Totaltime).

QSSThr ¼ QCPThr ¼ Totaltime � Vatpmax
Posconc

Posconc þ atpK

� �

ð13Þ
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where QCPThr and QSSThr are the threshold values for the conversion of QCancer and

QStem cells to proliferating cells, PCancer and PStem cells, respectively. Vatpmax and atpK are

the rate constants needed such that the threshold value saturates with increasing Posconc, fol-

lowing Michaelis-Menten kinetics. Posconc is the sum of the concentration of glucose, gluta-

mine and lactate.

Cell state transitions due to lack of ATP. The cells start to acquire Starvation when ATP

production is lower than a certain threshold (atpD) and otherwise acquire Health. The thresh-

old value for a proliferating cell to become necrotic, PNeThr, is calculated based on the cell’s

exposure to very low ATP (NegconcATP) persistently for a time period (Totaltime). When

the proliferating cell crosses this threshold, it transitions into a necrotic state, an irreversible

change. The threshold value is calculated as:

PNeThr ¼ Totaltime � Vatpmax
NegconcATP

NegconcATP þ atpK

� �

ð14Þ

where Vatpmax and atpK are the rate constants needed such that the threshold value saturates

with increasing NegconcATP, following Michaelis-Menten kinetics. NegconcATP is a fixed concen-

tration of ATP.

We assume that the quiescent and stem cells take a longer time to transition into the

necrotic state, as compared to proliferating cells, and hence have higher thresholds, as tabu-

lated in Table B in S1 Text.

We note that Eqs (13) and (14) directly relate a cell’s ATP production to accumulation of

Health and Starvation, respectively (given by Eq (11)). Cells must be producing ATP for a spe-

cific length of time, which defines the threshold value given in Eq (12), in order to accumulate

Health and transition from a quiescent to proliferating state. Alternatively, if the cell lacks a

minimum amount of ATP for a specific length of time, which defines the threshold value

given in Eq (13), the cell will transition to a necrotic state.

Cell state transition due to acidosis. The microenvironment invariably becomes acidic

in nature due to an increased lactate secretion by necrotic cells as the tumor grows. This acidic

environment, in turn, leads to more necrosis if cells experience an external lactate concentra-

tion greater than a certain maximum threshold. Both proliferating and quiescent cells become

necrotic from acidosis, i.e., continuous overexposure to excess lactate in the microenviron-

ment. The threshold values for acidosis are calculated in a similar way as those for the lack of

ATP, with the assumption that the cells are in a continuous exposure of lactate, PosconcLac,

greater than a threshold, LacDeath and this exposure persists for a definite time period,

Totaltimelac. As above, it is assumed that the threshold for acidosis to set in for quiescent and

stem cells is higher than that of proliferating cells.

PNeThra ¼ Totaltimelac � Vlacmax
PosconcLac

PosconcLac þ LacK

� �

ð15Þ

where Vlacmax and LacK are the rate constants needed such that the threshold value saturates

with increasing Posconc, following Michaelis-Menten kinetics. The Michaelis constant LacK has

a constant value 1 mM (0.064 fmol/voxel).

Cell state transition due to compressive stress. The cells at the core of the tumor transi-

tion into necrotic cells due to stress induced by the neighboring cells. The cell’s Stress factor is

an added attribute that leads to necrosis and starts developing at the core of the tumor, when

the cells consistently have more than a certain number of surrounding neighbors, N. Every

time step that a cell has more than N neighbors, StressIncrement is added to the cell’s Stress

attribute. When the cell’s Stress crosses a threshold, StressThr, it becomes necrotic.
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Cell mitosis: Senescence and differentiation. Cell mitosis is a function of cellular vol-

ume. When a cell reaches its doubling volume, it divides. This only applies to a proliferating

cells whose Health attribute has reached the threshold value and whose volume fulfills the cri-

teria for a cell to divide. As this cell (referred to as the “parent cell”) divides, its voxels are

equally divided between the parent cell and daughter cell, and both cells acquire quiescence.

The daughter cell inherits all properties and the last intracellular metabolic state of the parent

cell. That is, the intracellular material (having units of concentration) is inherited from the par-

ent cell to the daughter cell at the same concentration present at the time of division. The cell

attributes (Starvation, Acidity, Stress and Health) are reinitiated to zero for both the parent

and daughter cells.

Upon division, both the proliferating parent cell and its daughter cell become quiescent

cancer cells. Proliferating stem (PStem) cells follow a different process. When a PStem cell

divides, this parent cell becomes a quiescent stem (QStem) cell. However, its daughter cell has

a probability of being a quiescent stem (QStem) or quiescent cancer (QCancer) cell, mimick-

ing differentiation. This is decided by a probability, probstem. At each division step, a random

number between 0 and 1 chosen from a Gaussian distribution (with a mean of maxdiv and

standard deviation of two) is compared with the probability of transitioning into a Stem cell,

probstem. If the random number is less than or equal to probstem, the daughter cell becomes a

quiescent stem cell, otherwise it becomes a quiescent cancer cell.

For a proliferating cell (either proliferating cancer cell or proliferating stem cell), mitosis is

arrested (i.e., senescence occurs) when the cell has undergone a maximum number of divisions

[49, 50], after which the cell becomes necrotic. We assume proliferating stem cells also have a

maximum number of divisions. To keep an account of when senescence should occur, a

counter, temp, is introduced. The value of temp for each proliferating cell is chosen as a ran-

dom number from a Gaussian distribution with a mean of maxdiv and standard deviation of

two. When a proliferating cell reaches its doubling volume, but that cell has already undergone

a number of cell divisions exceeding the value of temp, the cell does not divide and instead

becomes necrotic.

Model calibration through parameter exploration

The results from numerical simulation of a mathematical model are dependent on the values

of the model parameters. Hence, it becomes important to determine the parameter values of a

mathematical model to ensure the simulated results recapitulate experimental observations. In

this work, the model is trained and calibrated to qualitatively match the experimental data of

multicellular tumor spheroid growth [44–46], shown in Fig 3. Due to the computational

expense, it was not feasible to start with the actual number of cells present within a cell culture

(approximately 105) or to simulate the same number of generalized cells as found in a real

tumor. With the available computational resources, we instead focused on capturing the exper-

imentally-measured fold-change in tumor spheroid volume. We compiled experimental data

for the growth of multicellular tumor spheroids for various cancer cell lines from multiple lit-

erature sources [44–46]. The model parameters were sampled within the ranges tabulated in

Table 1 and trained so as to reproduce, both quantitatively and qualitatively, the growth profile

of a multicellular spheroid. Our intracellular metabolic core model is trained to data from

PaTu8988T cells [27] (a pancreatic cancer cell line). Ideally, we would use spheroid growth

data from the same cell line to constrain the parameter values for this cell-based model of

tumor growth; however, we were unable to find tumor spheroid growth data for this specific

cell line. In addition, the literature data collected represents the growth of tumor spheroids

under varying growth conditions that are not accounted for in our model (such as cells
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cultured in media containing specific components including glucose, sodium pyruvate, L-glu-

tamine, and growth factors). Therefore, we chose a 10-fold change in tumor volume in approx-

imately 15 days to be the standard for the model-simulated tumor growth, based on the entire

set of heterogeneous data extracted from the literature.

We varied several model parameters in order to capture the 10-fold change in the volume

of the tumor spheroids. Specifically, model parameters that could not be based on a literature

source, were adjusted within a given range to reproduce the experimental fold-change. These

model parameters were categorized as internal kinetic parameters, concentration threshold

parameters and external parameters that depend on the tumor microenvironment. An initial

range for each parameter was defined (Table 1) based on literature values [27, 38], and the

Fig 3. Experimental data of in vitro tumor spheroids for various cancer cell lines. With a range of growth profiles

[44–46] observed for different multicellular tumor spheroids generated from human cancer cell lines under various

growth conditions, a 10-fold change in volume in approximately 15 days was set as the standard for calibrating the

model simulations to experimental measurements.

https://doi.org/10.1371/journal.pcbi.1007053.g003
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parameter space was sampled using Latin hypercube sampling (LHS) to generate 100 sets of

parameters. Multiple initial runs were conducted to identify an appropriate set of parameters

using LHS within the parameter space defined by the range given in Table 1. Thus, we did not

explicitly fit the model parameters in that we did not perform parameter optimization (i.e.,

implementing a global or local parameter fitting algorithm). Out of the 100 sets of parameters,

we selected a set that produces a tumor that satisfies the following physiologically reasonable

criteria: (1) the expected tumor volume (normalized to day zero) exhibits a 10-fold change in

approximately 15 days, (2) the tumor exhibits significant necrosis [51–54] and (3) there is an

appropriate distribution of the various cell types (proliferating, quiescent and necrotic) [55].

Moreover, the actual parameter values also satisfy the following criteria, based on the cell

behavior and state transitions described above: (1) the value of NegconcATP has to be lower than

atpD, (2) the value of Posconc has to be greater than atpD and (3) the value of PosconcLac has to

be higher than LacDeath.

The set of parameter values that meet all of these criteria are tabulated in Table 1 and are

referred to as the “baseline” parameters throughout the text.

Results

Cancer initiates at the sub-cellular level through events that involve multiple intracellular com-

ponents interacting with each other. These interactions regulate cellular decisions of growth,

death or cell-state transitions. Our model relies on a robust intracellular metabolism network

at the sub-cellular level with metabolic rate parameters trained to pancreatic cancer data [27].

The parameter values corresponding to cell decisions of proliferation and apoptosis were

subsequently varied to capture the growth curves of tumor spheroids (see Methods). The

Table 1. Range over which the parameters are varied in iterations to calibrate the model for multicellular tumor spheroid growth. Latin hypercube sampling is used

to generate 100 sets of parameter values within the specified minimum an maximum values. The model was simulated 100 times with different combinations of parameter

values. The ideal parameter set generates a 10-fold change in tumor volume in approximately 15 days (“baseline” parameter values, last column).

Parameters Minimum Maximum Optimized set of parameters

incvol 10 50 15.0

decvol 0.001 0.1 0.025

PGrThr 0.0032 0.192 0.09983

SGrThr 0.0032 0.192 0.09983

StressIncrement 0.25 1 0.95

StressThr 20 100 50.5

N 7 10 6

Vatpmax 1.68e-03 4.2 0.6

atpD 0.064 0.032 0.021

Totaltime 50 240 95.0

NegconcATP 0.0001 0.015 0.00095

Posconc 0.0064 0.192 0.0628

Vlacmax 1.11e-02 27.75 15.393

LacDeath 0.1256 2.75 1.68

PosconcLac 0.1256 2.75 2.22

Totaltimelac 50 240 168.2

maxdiv 4 10 9

probstem 0.1 0.8 0.5

C 6 11 6

https://doi.org/10.1371/journal.pcbi.1007053.t001
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simulated growth of the tumor is in good agreement, both quantitatively and qualitatively,

with the experimental measurements and observations.

Model exploration

Tumor growth due to initial heterogeneity. In order to get a better idea of the tumor

growth under different conditions, model simulations were conducted iteratively to observe

the variance in the tumor growth profile with different initial configurations of the generalized

cells. We started with five different cases representing different amounts of initial tumor het-

erogeneity, depending on the number of cell types present in the initial cluster (Fig 4(a)). Case

1 represents the most heterogeneous scenario with all four cell types present (PCancer, PStem,

QCancer and QStem). In Case II, only proliferating cells (PCancer and PStem) are initially

present. Case III includes only quiescent cells (QCancer and QStem). In Case IV, only prolifer-

ating cancer cells (PCancer) are present. Finally, for Case V, only proliferating stem cells

Fig 4. Model calibration. (a) Five scenarios of initial tumor cell clusters were simulated with different combinations of cells present:

(I) All four types of cells (PCancer, QCancer, PStem and QStem), (II) Only proliferating cells (PCancer and PStem), (III) Only

quiescent cells (QCancer and QStem), (IV) Only proliferating cancer cells (PCancer) and (V) Only proliferating stem cells (PStem).

The ratio between each cell type is randomly generated by CC3D to have a total of nine cells. (b) Model-simulated tumor growth

profiles using the optimized parameter set, initiated with the five different cell cluster configurations. Ten iterations for each case

were simulated. The black solid line is the mean of all 50 simulations, and the shaded grey area represents the standard deviation of

the simulations. (c) Fraction of each type of cell as the tumor grows with time. The bar height is the mean value of all 50 simulations

while the standard deviation is represented by the error bars. Time evolution of the number of each cell type differs for five starting

cell clusters, shown in Figure B in S1 Text.

https://doi.org/10.1371/journal.pcbi.1007053.g004
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(PStem) are present. Two other possible cases initiating with only quiescent stem or quiescent

cancer cells were not simulated, as we do not expect them to be much different than Case III,

which had a combination of both. The trained cellular parameters produce very similar growth

curves in all cases (Fig 4(b)), further providing confidence in the calibrated parameters. Addi-

tionally, we compared the baseline model predictions for the fold-change in the tumor volume

obtained with the calibrated parameters to additional experimental data extracted from the

literature but not used in model calibration (Figure A in S1 Text) [56, 57], which includes

recently published results. We ran 50 simulations (10 per case), and find that the model predic-

tions are able to capture these validation data without additional changes to the baseline

parameter values.

The range of model predictions for the volume growth curve show little variability. How-

ever, looking at the different cell numbers and their variance with time (Fig 4(c)) is where we

observe differences between the five cases. The fraction of each of the different cell types varies

for the five cases, particularly during the initial days of growth. However, the large variations

in the distribution of the cell types decreases as the tumor grows with time (see also Figure B in

S1 Text).

The development of a necrotic core has been shown to be an important feature of tumor

spheroids. Our model simulations reproduce this feature, where the number of necrotic cells

increases with time, as illustrated in a representative simulation shown in S1 Movie. Alto-

gether, these results indicate that our model simulations are reliable and that the optimized

parameter set is able to successfully reproduce the experimental data, both quantitatively and

qualitatively.

Below, we present model predictions under different scenarios: with varying the values of

parameters that significantly affect tumor growth, and following perturbations that affect spe-

cific metabolic reactions. In all cases, we run the model multiple times for each setting, in

order to capture the inherent stochasticity in the CC3D software. Theoretically, it is possible to

simulate many iterations for each set of parameter values or metabolic perturbation; however,

we selected 10 iterations for the parameter sensitivity study and 30 iterations for the metabolic

perturbations. This balances the computational expense for each scenario simulated with the

stochasticity in the model simulations. We confirm that additional model simulations do not

show outlier behavior, as even 50 simulations (10 for each case) performed with very different

starting configurations (Fig 4(a)) results in a rather narrow standard deviation in Fig 4(b). We

further confirm this by performing additional simulations, 100 total runs (20 for each case).

The fold-change in the tumor volume, as well as the distribution of the number of cells, is very

consistent across all cases (Figures C and D in S1 Text). Additionally, after simulating tumor

growth for 25 days, the distribution of the cell types and volume fold changes are consistent

for 50 and 100 simulations (Table D in S1 Text). Thus, we present the results from 10 iterations

for the parameter sensitivity study and 30 iterations for the metabolic perturbations.

Parameter sensitivity. Since the cellular parameters are specific to the model, we sought

to understand how varying the model parameters affected the growth of the overall tumor. We

focused on the intracellular threshold levels of ATP and lactate, which directly influence the

cellular behavior and hence, inter-tumor heterogeneity. To do so, we varied two important

parameters related to cell death and growth: atpD, the ATP threshold value (which influences

cell proliferation, cell state transition and cell death) and LacD, the lactate threshold (which

influences cell death). Since all cellular decisions such as cell growth and death and cell state

transitions, depend predominantly on these two parameters, they were varied two orders of

magnitude from their baseline values, and the fold-change in the tumor volume was recorded

after 25 days of growth. The ATP threshold value (atpD) was found to have a more dominant

effect in changing the tumor volume. This parameter determines when quiescent cells
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transition into proliferating cells. The model predicts that the fold-change in tumor volume is

two times higher than the calibrated volume (baseline) as the ATP threshold value was

decreased by 10-fold from the baseline (Fig 5(a)). The snapshots of tumor mass at the end of

25 days clearly illustrate the increase in tumor volume due to lowering of the ATP threshold

value, which leads to more cell growth and division (Fig 5(b)). The threshold value for lactate

(lacD) is not as influential in affecting a change in tumor volume. This result illustrates that

within the simulation time window (25 days), the extracellular concentration of lactate does

not reach the limit of inflicting acidosis and subsequent cell death (found by increasing lacD),

nor are the cells directly dependent on lactate as a nutrient source [33] (found by decreasing

lacD). Overall, these simulation results indicate that the growth or shrinkage of the tumor is

highly dependent on the amount of intracellular ATP being generated by the cell.

Varying the initial metabolite concentrations

In the context of metabolism, the network of metabolic reactions occurring inside of a cancer

cell defines its “metabolic phenotype” [58, 59] that would ultimately lead to inter-tumor het-

erogeneities within tumors of same origin. Additionally, there is intrinsic cell-to-cell heteroge-

neity with respect to the initial concentrations of the cells and the activity of the proteins for a

population cells. Overall, heterogeneity can result in very different growth patterns among

tumors of similar origin, as well as influence their response to therapeutic agents [60]. Under-

standing this heterogeneity is a critical step towards designing improved therapeutic strategies.

Thus, we applied the model to investigate the effect of cell-to-cell heterogeneity at the level of

intracellular metabolite concentrations.

Our model can successfully capture the variation arising from different initial conditions

within the population. We simulated a setting where each cell within the initial cluster of cells

starts with a different set of intracellular concentrations. Since the base values for initial

Fig 5. Parameter sensitivity. (a) The fold-change in tumor volume recorded after 25 days with different values of the threshold

parameters atpD and lacD. For each combination of threshold values, the model was simulated five times, and the mean value is

reported in the heat map (the transition from blue to purple on the colorbar corresponds to an increase in the volume fold-change).

(b) Representative snapshots of tumor volume on the 25th day with extreme values of atpD and lacD, compared to the base value.

The tumor volume fold change is increasing on the vertical axis, as labeled. Cells are color-coded as follows: Neon green,

proliferating cancer cells; Dark green, Proliferating stem cells; Light blue, Quiescent cancer cells; Dark blue, Quiescent stem cells;

Red, Necrotic cells.

https://doi.org/10.1371/journal.pcbi.1007053.g005
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intracellular concentrations of metabolites was already validated for a pancreatic cancer cell

line [27], a tight range of deviation from the base value was maintained. To execute this, we

allowed the initial condition of each metabolite to vary around its base value and generated a

set of 90 initial concentrations drawn from a Gaussian distribution with standard deviation of

10%. Since the initial conditions and parameter values used in the model of intracellular

metabolism had been previously fit to quantitative experimental measurements, we chose to

constrain the variations in the initial concentrations such that they did not deviate too much

from the fitted values. In total, the model is simulated 10 times, where each time, the nine cells

start with a slightly different initial intracellular condition. For each simulation run, nine intra-

cellular conditions are randomly chosen, such that each cell within the initial cluster of nine

cells has a different initial condition. Even though the initial growth phase of the tumor in

these 10 cases are not distinctly different, the variation in tumor evolution increases progres-

sively with time (Figure E in S1 Text, blue boxes). Our results highlight the fact that even a

modest variation in initial intracellular conditions within a small population of cells can trans-

late into significant differences in the size of the tumor as time progresses. Such heterogeneity

can also influence the response to metabolic perturbations, which are investigated in the next

section.

Metabolic perturbations

In order to identify ideal metabolic targets that can be modulated to reduce tumor growth, we

subjected our model to various in silico metabolic perturbations. We specifically focused on

predicting the effect on tumor volume in response to inhibition of specific metabolic reactions.

The use of this kind of computational approach to explore the response of cancer cells could

help identify and validate metabolic targets for anticancer therapeutics [61], complementing

experimental and pre-clinical studies. Genetic perturbations have been implemented experi-

mentally via complete and partial gene knockdowns [62]. Therefore, we enforced the same

type of perturbations in our model by altering the reaction velocity parameter (Vf) in the intra-

cellular ODE model, as was done in our previous work [27]. This strategy mimics targeted

inhibition of a particular enzymatic reactions, for example using shRNA.

Up-regulation of glycolysis is a hallmark of solid tumors [63], where glycolysis is preferred

over oxidative phosphorylation to generate ATP for cell growth. In addition, pancreatic cancer

cells have been reported to depend heavily on glutamine [64] as an important source of nitro-

gen and to replenish carbons for TCA cycle intermediates. Hence, we simulated targeted inhi-

bition of each of these pathways. We targeted the reactions OXPHOS (responsible for

mitochondrial production of ATP) and ASCT2 (glutamine uptake reaction) to directly inhibit

the production of ATP and uptake of glutamine. However, we did not target GLUT1, which

would simulate the direct inhibition of glucose uptake. In clinical trials, GLUT1 inhibitors

were found to have a limited effect [65, 66], ultimately leading to increased glutaminolysis or

increased production of ATP by oxidative phosphorylation. Thus, we chose instead to limit

the activity of an identified potential target in the glycolytic cycle, GAPDH [27, 67] (responsi-

ble for the conversion of glyceraldehyde 3-phosphate to 1,3-bisphosphoglyceric acid).

We implemented both complete inhibition (at the 0th day of tumor growth) and partial

time-based inhibition (0th day, 5th day, 10th day or 20th day) of the three reactions (GAPDH,

OXPHOS and ASCT2) independently. We acknowledge that practically, therapeutic inhibition

cannot be carried out from Day 0. However, we believe it is useful to compare the inhibition

strategies (complete and partial) to the results from treating the tumor at Day 0, as this pro-

vides the extreme case and gives an upper bound for the amount of growth inhibition that is

feasible. During complete inhibition, the reaction velocity Vf of the targeted reaction was given
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a value of zero. Since the simulations are stochastic, we repeated this complete inhibition 30

times to get a sense for the variability in the model predictions. Partial knockdown or inhibi-

tion was implemented by allowing the value of Vf to vary around 10% of the original value, fol-

lowing a Gaussian distribution with standard deviation of 20%. A total of 30 values were

generated from this distribution, and these values were used to repeat the model simulations

30 times, with one value from the distribution used per simulation. We implemented this vari-

ability in the partial knockdown to account for the fact that, experimentally, the effect of

shRNA is not exact. The recorded fold-change in tumor volume was compared to a control

case with no inhibition.

Metabolic perturbation I—Complete inhibition. Complete inhibition of these reactions

at the very initial phase of growth has differential effects on the tumor volume (Fig 6). The

tumor does not exhibit substantial growth when OXPHOS or ASCT2 are inhibited, similar to

experimental results [68]. Inhibiting the GAPDH reaction has the initial effect of reducing the

Fig 6. Metabolic perturbation I—Complete inhibition. Fold-change in tumor volume with complete inhibition of

GAPDH (purple), OXPHOS reaction (grey) and ASCT2 (teal) compared to a control case (black). The error bars

represent the standard deviation between 30 iterations of model simulations for each case.

https://doi.org/10.1371/journal.pcbi.1007053.g006
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tumor growth rate and flattening the growth curve, compared to the control case. However,

this effect appears to lessen as time progresses, since the growth curve goes up again between

days 20 and 25, matching the slope of the control case during that time period. This is indica-

tive of the cell’s strategy to recover from the growth inhibition as time progresses by exploiting

alternative routes for cell growth besides glycolysis, such as the TCA cycle or pentose phos-

phate pathway [69].

To dig deeper into these responses, we looked at the predicted intracellular concentrations

of the metabolites. The detailed metabolic network incorporated within each cell gives us the

advantage of profiling each metabolite concentration with time within a discrete cell, as well

within the population as a whole. We first looked at the spatially-averaged behavior of each

metabolite concentration to correlate with the behavior of the whole tumor. That is, we exam-

ined the total concentration of each metabolite for a slice along the width of the tumor. The

metabolite concentration values from all 30 iterations were then averaged. We then plotted the

averaged metabolite concentration along the slice, at successive time points.

We first examine the concentration profiles of the metabolites directly affected by the meta-

bolic perturbations (Fig 7). For the control case, intra-tumoral glucose is high at early times,

and then decreases after three days of tumor growth (Fig 7(a), Column I). Additionally, there

is a slight rebound in the glucose concentration for the control case at day 15. For all of the

Fig 7. Intracellular response of complete inhibition. Concentration profiles of total (a) Glucose, (b) ATP and (c) Glutamine in

tumor slices along the y-axis in case of control with no inhibition (black, Column I), complete inhibition of GAPDH (purple,

Column II), complete inhibition of OXPHOS (grey, Column III) and complete inhibition of ASCT2 (teal, Column IV). Each time

profile is an average of 30 iterations of model simulation with the reaction velocity, Vf, of the targeted reaction set equal to zero in

each case.

https://doi.org/10.1371/journal.pcbi.1007053.g007
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knockdown strategies, the glucose concentration is also predicted to have a slight time-delayed

decrease (Fig 7(a), all columns). However, the glucose level does not rebound when GAPDH,

OXPHOS or ASCT2 are knocked down. In fact, with OXPHOS or ASCT2 knockdown, intra-

cellular glucose goes to zero after approximately 12 days of growth.

The predicted intracellular ATP concentration also helps to explain the tumor growth pro-

file. For the case of no inhibition, ATP is high at early times, and then decreases to a low level

(Fig 7(a), Column I). Similar to the glucose concentration, ATP slightly increases after the per-

turbation, in this case, starting at day 10. When GAPDH is knocked down, the ATP concentra-

tion profile is similar to that of glucose (Fig 7(a), Column II). This non-zero concentration

indicates there is an alternate production of ATP outside of the GADPH reaction. In contrast,

knocking out OXPHOS or ASCT2 significantly affects the intracellular ATP level, which goes

to zero in both cases (Fig 7(b), Columns III and IV).

An interesting response is observed in case of glutamine concentration, particularly for the

metabolic perturbations. The glutamine concentration is similar to glucose and ATP for the

control case, and intracellular glutamine is slightly reduced when GAPDH is knocked down

(Fig 7(c), Columns I and II), compared to the control case. Interestingly, glutamine concentra-

tion is predicted to increase sharply when the OXPHOS reaction is inhibited (Fig 7(c), Column

III), compensating for the loss of ATP (Fig 7(b), Column III). This shows that in initial phases

of tumor growth, glutamine is used to provide metabolites for the TCA cycle, allowing the

tumor reach a slightly larger volume when OXPHOS is knocked down, as compared to com-

plete inhibition of ASCT2 (Fig 6). In contrast, intracellular glutamine levels are completely

diminished when the ASCT2 reaction is inhibited (Fig 7(c), Column IV), leading to the lowest

tumor volumes across the three metabolic perturbations (Fig 6). To our knowledge, the pre-

dicted increase in glutamine upon inhibition of the OXPHOS reaction has not been demon-

strated or confirmed experimentally. However, we believe that this novel and interesting

prediction can prompt further experimental studies to confirm the predicted behavior.

An intriguing effect was noticed for the intracellular metabolite, fumarate, which has been

identified as an oncometabolite [70]. For the control case (no inhibition), fumarate concentra-

tion is high at early times and decreases over time, going to nearly zero between days 13 to 20

(Fig 8(a)). However, the concentration of fumarate then increases across the tumor until the

simulation time ends. Although fumarate is not directly related to the targets of the three reac-

tions that were inhibited (GAPDH, OXPHOS and ASCT2), the model predicts that its concen-

tration is altered as a result of the metabolic inhibition. Complete knockdown of GAPDH has

the effect of decreasing fumarate concentration throughout the tumor (Fig 8(b)), with the low

level of fumarate (near zero) occurring more rapidly (at the 5th day) and for a longer period of

time, compared to the control case. This reduction in the fumarate concentration correlates

very well with the tumor growth profile, which is predicted to decrease after the 5th day and

begin growing more rapidly after day 20. Inhibiting OXPHOS also has the effect of reducing

the intracellular fumarate concentration throughout the tumor (Fig 8(c)). Interestingly, com-

plete repression of ASCT2 also brings down the concentration levels of fumarate to nearly zero

(Fig 8(d)), and its concentration remains very low, as compared to the control case. This

matches the significantly lower tumor volume with ASCT2 knockdown compared to no inhi-

bition. Overall, the time course of the fumarate concentration profile for each of the metabolic

perturbations is linked to the changes in the overall growth of the tumor (Fig 6).

We applied the model to further explore which pathways are being utilized to allow the

tumor to recover from GAPDH inhibition, as seen in Fig 6. We specifically look at the concen-

tration profiles of all metabolites in both the TCA cycle and PPP. To better understand the

effect and obtain a visible correlation with the overall tumor growth, we plotted the time pro-

file of the metabolites aggregated over space, similar to the output from a homogenous
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population of cells (Fig 9). The model predicts that the concentrations of TCA cycle metabo-

lites such as malate and α-ketoglutarate (Fig 9(a) and 9(b)) correlate with the rescue in growth

of the tumor that occurs between days 20 and 25. Interestingly, the dynamics of PPP metabo-

lites such as ribose-5-phosphate (R5P) and sedoheptulose-7-phosphate (S7P) (shown in Fig

9(c) and 9(d)) differ in the control case compared to complete GAPDH inhibition immediately

at day zero, the same time as when the GAPDH reaction is inhibited. The concentrations of

these species are higher when GAPDH is inhibited compared to the control case. Altogether,

these changes in the metabolites’ concentrations indicate that the tumor utilizes the TCA cycle

and PPP reactions to compensate for inhibition of the glycolysis pathway. More broadly, these

results demonstrate the utility of the model to not only predict the tumor growth as a function

of major nutrients but also explore the reprogramming that occurs at the level of each sub-net-

work within the complete metabolic network.

Metabolic perturbation II—Partial inhibition. The growth profile of the tumor was sim-

ulated to mimic time-based partial inhibition (90%) of three reactions—GAPDH, OXPHOS

and ASCT2 (Fig 10). We again examined the intracellular concentration profiles of glucose,

Fig 8. Intracellular fumarate upon complete inhibition. Time profile of the total fumarate concentration in tumor

slices along the y-axis. (a) Control with no inhibition (black), (b) complete inhibition of GAPDH (purple), (c)

complete inhibition of OXPHOS (grey) and (d) complete inhibition of ASCT2 (teal). Each time profile is an average of

30 iterations of model simulations with the reaction velocity, Vf, of the targeted reaction set equal to zero in each case.

https://doi.org/10.1371/journal.pcbi.1007053.g008
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Fig 9. Intracellular response of complete GAPDH inhibition. Spatially-aggregated concentration of intracellular

metabolites: (a) Malate, (b) α-Ketoglutarate, (c) Ribose 5-phosphate and (d) Sedoheptulose-7-phosphate for complete

inhibition of GAPDH (purple) compared to a control case (black). Lines are an average of 30 iterations of the model

simulation.

https://doi.org/10.1371/journal.pcbi.1007053.g009

Fig 10. Metabolic perturbation II—Partial inhibition. Fold-change in tumor volume with time-based partial inhibition of (a)

GAPDH (purple), (b) OXPHOS reaction (grey) and (c) ASCT2 (teal) compared to a control case (black). The error bars represent

the standard deviation between 30 iterations of model simulations for each case.

https://doi.org/10.1371/journal.pcbi.1007053.g010
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ATP and glutamine as potential explanations for the predicted tumor growth curves, and we

plotted the time profile of glucose, ATP and glutamine aggregated over space (Figs 11 to 14).

GAPDH inhibition. Partial repression of the GAPDH reaction at time zero (Day 0)

shows a slightly delayed response in lowering the tumor volume. But when the reaction is

inhibited at later time points (Day 5, 10 or 20), the effect of reducing the tumor volume is

immediate (Fig 10(a)).

Partial repression of GAPDH reaction at day zero in not seen to have any immediate effect

on the concentration of intracellular glucose, since this species is upstream of the GAPDH

reaction. Glucose concentration is predicted to increase after inhibition, as clearly seen when

GAPDH is inhibited on the 10th day of growth (Fig 11(a), Column IV). In all cases of the

time-based partial inhibition, the effect of targeting GADPH is only seen after the 5th day (Fig

11(a), Column II to V) compared to no inhibition (Fig 11(a), Column I), even if the inhibition

is executed on day zero.

Intracellular ATP is minimally affected by the inhibition of GAPDH in the initial days (Fig

11(a), all Columns). For the control case, there is a decrease in ATP at day five and subsequent

rebound in its concentration between days 10 and 15. When GAPDH inhibition occurs at Day

0 or 5, that rebound is delayed until after 15 days of growth (Fig 11(b), Columns II and III).

Interestingly, if GAPDH is inhibited at Day 10 or 20, the rebound in the ATP concentration

happens at nearly the same time as in the control case (Fig 11(b), Columns IV and V). This

Fig 11. Intracellular response of partial time-based—GAPDH inhibition. Spatially-aggregated concentration of intracellular

metabolites: (a) Glucose, (b) ATP and (c) Glutamine. (Column I) No inhibition. With GAPDH inhibition at various times: (Column

II) zeroth day, (Column III) 5th day, (Column IV) 10th day and (Column V) 20th day. Lines are an average of 30 iterations of the

model simulation. For each iteration, the reaction velocity is taken from a Gaussian distribution based on the original velocity Vf,

with a mean value of 0.1 � Vf and a standard deviation of 0.2 � Vf.

https://doi.org/10.1371/journal.pcbi.1007053.g011
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Fig 12. Intracellular response of partial time-based—OXPHOS inhibition. Spatially-aggregated concentration of intracellular

metabolites: (a) Glucose, (b) ATP and (c) Glutamine. (Column I) No inhibition. With OXPHOS inhibition at various times:

(Column II) zeroth day, (Column III) 5th day, (Column IV) 10th day and (Column V) 20th day. Lines are an average of 30 iterations

of the model simulation. For each iteration, the reaction velocity is taken from a Gaussian distribution based on the original velocity

Vf, with a mean value of 0.1 � Vf and a standard deviation of 0.2 � Vf.

https://doi.org/10.1371/journal.pcbi.1007053.g012

Fig 13. Up-regulation of glycolytic pathway. Spatially-aggregated concentration of intracellular metabolites: (a) PEP and (b)

Lactate (Column I) No inhibition or with GAPDH inhibition at various times: (Column II) zeroth day, (Column III) 5th day,

(Column IV) 10th day and (Column V) 20th day.

https://doi.org/10.1371/journal.pcbi.1007053.g013
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insight into the intracellular dynamics of key metabolites helps explain the overall tumor

growth being similar to the no inhibition case (Fig 10(a)).

The concentration of glutamine is not noticeably affected by GAPDH inhibition, since it is

far from the main target of this inhibition (Fig 11(c), all Columns). Thus, the tumor continues

to produce the necessary metabolites to generate metabolites needed for tumor growth.

Overall, in the case of GAPDH inhibition, tumor volume initially follows the growth curve

for the control case, and the effect of inhibiting the GAPDH reaction is only predicted to occur

after approximately five days. This illustrates a growth surge during the initial phases of tumor

growth, when the nutrients are present at sufficient levels. At this stage, a partial repression of

GAPDH is not very successful in immediately producing the desired response of reduced

tumor volume. However, executing the partial repression when the tumor has optimally uti-

lized the nutrients (in our simulations, at Day 10 or 20) and has passed the growth surge is

more effective in immediately reducing tumor volume (Fig 10(a)]. During the later stages of

tumor growth even though the perturbations have an immediate effect on the intracellular

concentrations of glucose and ATP, their concentrations seem to quickly relax back to the val-

ues they would have achieved if GAPDH were not inhibited at all. However, these effects on

the intracellular metabolite concentrations are not pronounced enough to be reflected in the

growth of the tumor as a whole, and tumor volume is only slightly decreased, compared to the

control case.

Fig 14. Intracellular response of partial time-based—ASCT2 inhibition. Spatially-aggregated concentration of intracellular

metabolites: (a) Glucose, (b) ATP and (c) Glutamine. (Column I) No inhibition. With ASCT2 inhibition at various times: (Column

II) zeroth day, (Column III) 5th day, (Column IV) 10th day and (Column V) 20th day. Lines are an average of 30 iterations of the

model simulation. For each iteration, the reaction velocity is taken from a Gaussian distribution based on the original velocity Vf,

with a mean value of 0.1 � Vf and a standard deviation of 0.2 � Vf.

https://doi.org/10.1371/journal.pcbi.1007053.g014
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These predictions provide mechanistic insight into the dynamic reprogramming that cells

can exhibit at the intracellular level to respond and adjust to metabolic perturbations and con-

tinue along a similar growth trajectory as the control case.

OXPHOS inhibition. The partial inhibition of OXPHOS on the zeroth day has an imme-

diate effect on the tumor growth, which is significantly reduced compared to the control case

(Fig 10(b)). However, the suppression of OXPHOS at times after the tumor has had a chance

to grow has an antagonistic effect on tumor volume. Specifically, inhibiting the OXPHOS reac-

tion at Day 5, 10 or 20 triggers an immediate increase in the tumor volume, after which the

tumor volume remains steady.

We investigated the concentration profiles of key intracellular metabolites, spatially-aver-

aged over the entire cell population (Fig 12), in order to explain this unexpected behavior. An

interesting observation is seen for intracellular glucose. The slight increase in glucose concen-

tration that was observed in case of time-delayed partial GAPDH repression is much more

prominent for OXPHOS inhibition (Fig 12(a), Columns III to V). That is, the model predicts

that targeting oxidative phosphorylation by reducing the reaction velocity of the OXPHOS

reaction leads to increased glycolysis. It has been known that cancer cells have increased flux

through the glycolysis pathway in the absence of oxygen (the Pasteur effect [63]), which is also

observed even in the presence of oxygen (the Warburg effect). Thus, our simulations directly

match experimental observations [17].

The intracellular concentration of ATP immediately decreases once the OXPHOS reaction

is inhibited, irrespective of the timing of the inhibition (Fig 12(b), all columns). However, the

cells’ growth rate depends not only on the concentration of ATP, but also on intracellular glu-

cose and glutamine, which can be used to produce cellular components for proliferating cells

besides energy. Thus, tumor growth is still possible even in the absence of ATP.

Although OXPHOS inhibition has an immediate effect on the intracellular concentrations

of glucose and ATP (Fig 12(a) and 12(b)), any noticeable effects on glutamine concentration

are more delayed (Fig 12(c)). The concentration of intracellular glutamine is predicted to

increase when OXPHOS is inhibited on the zeroth day (Fig 12(c), Column II). For this case,

glutamine concentration increases after both glucose and ATP are depleted; however, the

tumor volume remains low (Fig 10(b)). This indicates that increased glutamine is not sufficient

to enable tumor growth. Rather, glutamine is used to maintain the tumor volume. This also

occurs for the time-delayed inhibition. For example, when OXPHOS is inhibited at Day 5 (Fig

12(c), Column III), the increased glucose concentration leads to an increase in the tumor

growth rate (between days 5 to 10). But once glucose is depleted at day 18, the tumor volume

remains constant, even though glutamine concentration begins to increase at the same time.

In addition to investigating the concentrations of the key metabolites used for proliferation,

We also look to glycolytic intermediates to explain the increased tumor growth after OXPHOS

inhibition (Fig 13). The increased reliance on glycolysis when the OXPHOS reaction is inhib-

ited (indicated by the higher glucose levels shown in Fig 12(a)) is also reflected in the concen-

trations of PEP (Fig 13(a)) and lactate (Fig 13(b)). Specifically, PEP and lactate are both

increased when OXPHOS is inhibited, complementing the glucose concentration profile. The

predicted increases in PEP and lactate are consistent with experimental observations [71].

Altogether, the simulation results show that with OXPHOS inhibition, the cells become more

glycolytic as an alternative mechanism to produce the cellular components needed for tumor

growth.

In summary, by studying the intracellular concentration of glucose, ATP and glutamine, we

find that simulating inhibition of the OXPHOS reaction demonstrates the ability of the cancer

cells to rewire their pathways to sustain tumor growth. Specifically, the simulations show that
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the primary fuel for cell proliferation and overall tumor growth switches from ATP to glucose

to glutamine, all in a relatively short timescale (on the order of hours to days).

ASCT2 inhibition. Partial inhibition of the ASCT2 reaction does not have an immediate

effect on tumor volume (Fig 10(c)). This indicates the preferential dependence of the tumor

cells on glycolysis and mitochondrial production of ATP during its initial phase. It also points

towards the cell’s ability to utilize the minimal glutamine available due to the remaining 10%

activation of the ASCT2 reaction to provide the necessary nutrient for cell growth.

By investigating the intracellular metabolite concentrations, the model predicts that glucose

is not affected by the inhibition of ASCT2 (Fig 14(a)). In addition, the ATP concentration is

robust to ASCT2 inhibition, as the ATP concentration profile is nearly the same across all four

cases (Fig 14(b)). Only when the ASCT2 reaction is inhibited at Day 10 or 20 (Fig 14(b), Col-

umns IV and V) does the ATP concentration exhibit a sharper decrease from Days 10 to 12,

compared to inhibition at Day 0 or 5 (Fig 14(b), Columns II and III). Interestingly, the partial

inhibition of ASCT2 does not have a noticeable direct effect on the concentration of glutamine

(Fig 14(c)), further emphasizing that fact that even a 10% activation of ASCT2 pathway is

enough to sustain enough glutamine supply for the downstream pathways to remain

functional.

Discussion

Main findings

In this paper, we present a multiscale model of tumor growth and use the model to investigate

the effect of targeted perturbations of intracellular metabolism on the growth of the tumor as a

whole. We simulate tumor growth initiating from a discrete cluster of cells. Our cell-based

model incorporates three levels of cellular decision-making processes integrated in a multiscale

manner. At the extracellular level, a system of partial differential equations models nutrient

diffusion. At the cellular level, a discrete Cellular Potts modeling approach is used to simulate

cellular motility and inter-cellular interactions. At the sub-cellular level, a detailed kinetic

model in the form of ordinary differential equations accounts for intracellular metabolism.

Together, these processes contribute to the initial cluster of tumor cells increasing in number

and volume. Specifically, the cells take up extracellular nutrients and use them to fuel prolifera-

tion via the metabolic network. In our simulations, a small cluster of tumor cells evolves into a

layered tumor consisting of proliferating and quiescent cells surrounding a central core of

necrotic cells. At any point in time, the tumor volume and total number of viable cells depend

not only on the surrounding extracellular environment but also the response of each discrete

cell due to its intracellular state.

Our model is able to capture the growth profile of an avascular tumor and identify a robust

set of parameters. This is evident when considering cross-sectional views of the tumor in a rep-

resentative simulation of the tumor growth (S1 Movie) and in Fig 5. Due to the computational

expense in simulating a detailed mechanistic model of the metabolic network within each

discrete cell, we chose not to model tumor vascularization. In the avascular stage of tumor

growth, the tumor depends on the nutrient supply from neighboring tissues. We achieve this

in our model by letting the stromal tissue layer (ECM and Basal cells) secrete glucose, gluta-

mine and oxygen. During the initial stage of growth, an avascular tumor exhibits “quasi-expo-

nential” growth followed by a saturation phase in which it maintains a constant volume, since

without angiogenesis, these avascular tumors are not capable of procuring enough nutrients to

continue an exponential growth [72]. Our model of avascular tumor growth produces spher-

oid volumes and growth profiles that are in agreement with experimental data, where the set of

parameters needed to match the data was identified by sampling the space for parameters that
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significantly influence the tumor growth. Given this confidence in the model and the identified

parameter sets, we applied the model to investigate various aspects of tumor growth.

We find that tumor growth is more dependent on the intracellular ATP threshold values

than on lactate, emphasizing that ATP is more important in the initial growth of tumor. Low-

ering the threshold values of ATP at which a quiescent cell can transition into a proliferating

cell that continues to grow and divide by 10-fold, increases the tumor volume by almost three-

fold. Interestingly, the heterogeneity in tumor growth profile at low and high values of the

ATP threshold is more pronounced, as a higher standard deviation is observed in tumor vol-

umes during iterative simulation runs.

We next applied the model to investigate the effects of phenotypic heterogeneity in tumors

originating from slight variations in the intracellular conditions within each discrete cell. The

model simulations show that the variation in intracellular conditions do not produce a notice-

able impact on tumor volume during the initial phase of avascular tumor growth. However,

the effects of different intracellular initial conditions for each cell are more prominent during

the later stages of growth. Specifically, there was a high standard deviation for the average

tumor growth profile, indicating the divergence of individual growth trajectories.

Most excitingly, we applied the model to understand the complex intracellular responses

following targeted metabolic perturbations. That is, we simulated the effects of inhibiting the

uptake of major nutrients (glucose and glutamine) as well as the primary reaction used for

ATP production. Since each cell consists of a detailed mechanistic metabolic network, the

model can be used to simulate inhibition of the specific target within each discrete cell and to

predict how those perturbations affect the behavior of the tumor as a whole. We simulated tar-

geted inhibition of: (a) the GAPDH reaction, a glycolytic pathway reaction responsible for con-

verting glyceraldehyde 3-phosphate to 1,3-bisphosphoglyceric acid, (b) the OXPHOS reaction,

which is responsible for the conversion of ADP to ATP, representing mitochondrial ATP pro-

duction and (c) the ASCT2 reaction, an enzymatic reaction responsible for the uptake of extra-

cellular glutamine. While a complete repression of these reactions had an expected outcome of

reducing tumor growth, the model simulations generated an unexpected response for the

tumor volume when partial time-based inhibition of OXPHOS reaction was implemented.

Specifically, inhibiting OXPHOS at various times after tumor growth had begun, enables the

cancer cells to dynamically change their reliance on the available nutrients and continue grow-

ing (“metabolic reprogramming”). Through the simulated perturbations, the model provides

direct insight into how the cells up-regulate glucose utilization via the glycolytic reactions

when deprived of ATP (as reflected in the increased concentrations of PEP and lactate). Inter-

estingly, this increased glycolysis does not take place if the cells are deprived of ATP at the start

of tumor growth. Rather, the reprogramming becomes apparent when the ATP deprivation

occurs during the exponential growth phase.

In addition, our model simulations of various metabolic perturbations provided a first-

hand proof of preferentially active pathways during tumor progression. As the tumor initiates

its growth, every cell has sufficient nutrient availability. This is supported by the complete low-

ering of tumor growth when oxidative phosphorylation or glutamine uptake is completely

inhibited. However, the tumor growth is not as affected with complete repression of GAPDH.

We suspect that this is because of two reasons. First, GAPDH is downstream in the glycolytic

pathway, and a complete repression of a downstream target takes time to be effective. Second,

we hypothesize that glycolysis becomes a major player to support tumor growth at intermedi-

ate phases, most importantly, during hypoxia (as modeled by inhibition of OXPHOS). The gly-

colytic pathway is up-regulated under partial repression of oxidative phosphorylation during

the exponential growth phase. During this phase, the tumor alters its metabolic pathway to

compensate for the loss of one nutrient by maximizing an alternative pathway to supply ATP.
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Additionally, our model simulations demonstrate clearly the role of glutamine in tumor

growth as an alternative but necessary nutrient. Glutaminolysis provides the cells with car-

bons to replenish TCA cycle intermediates and generate building blocks for cell growth.

While complete inhibition of the glutamine uptake (the ASCT2 reaction) has a profound

influence on tumor growth, partial inhibition of glutamine uptake prompts the cells to

utilize the minimal glutamine available, as well as rely more heavily on glucose and genera-

tion of ATP to sustain tumor growth. Thus, the model predictions indicate that during

avascular growth, the tumor cells heavily depend on oxidative phosphorylation and

glutaminolysis.

Taken together, our simulations for the effects of metabolic perturbations indicate that

while it is important to identify the optimal targets for inhibiting tumor growth, it is equally

necessary to identify the time at which the targeted therapies should be administered.

Although a single optimal target of inhibition may be sufficient to impede tumor growth dur-

ing the initial phases of tumor growth, that same target may not be as effective during later

stages of tumor growth. At this stage, synergistic combinatorial therapies targeting various

pathways of nutrient utilization and ATP production could be more successful to impede

tumor growth.

Limitations

We acknowledge some limitations of our model. Firstly, due to the high computational

expense in simulating a detailed sub-cellular kinetic network in a large number of cells, vascu-

lar growth (angiogenesis) was not modeled. This also limited our model to a two-dimensional

grid since inclusion of diffusion in the third dimension would have exponentially increased

the computational expense. However, given the multiscale nature of our modeling approach,

this limitation may be addressed in future extension of the model by incorporating vasculari-

zation or angiogenesis through a signaling network at a different timescale. Secondly, we can

expand the model to more explicitly account for “hetero-cellular interactions” [73] that occur

between different cells. This means including interactions between stromal and malignant

cells, not only in terms of the availability of nutrients but also how these close interactions

influence the metabolism dynamics within each cell. We currently have a static metabolic net-

work within each cell, but that network can be rewired and influenced by neighboring cells. In

future extensions of the model, we would also like to include cellular phenotype transition at

the level of detailed intracellular network, i.e., transitioning into a different cell type with a

shift in their metabolic activity [8]. In addition, our current model does not simulate metasta-

sis. We provide the basic framework that could be further extended to include metastasis and

invasion into the epithelial layer by enabling the daughter cells to have a random distribution

of growth rates and adhesivity values, increasing stochasticity and heterogeneity and providing

a more realistic picture of pancreatic tumor growth. Finally, we note that the model does not

include other cells known to be present in the tumor microenvironment, such as fibroblasts

and immune cells. These can be included in future studies, as we and others expand upon the

fundamental framework presented here.

Lastly, we note that our analysis focuses on the how the metabolic perturbations affect the

tumor growth. It is possible and of relevance to also investigate how inhibiting specific meta-

bolic enzymes influence the composition of the tumor (i.e., the relative numbers of cancer and

stem cells or the numbers of quiescent and proliferating cells). However, in the current study,

we aim to first develop and verify a modeling framework that incorporates an intracellular

metabolic network that directly influences the level of the growth of the whole tumor and

determine the effects of perturbing that network. Excitingly, our model provides a platform to
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also study the composition of the tumors and simulate metabolic interventions that preferen-

tially target specific types of cells. In that context, it may be of interest to identify metabolic

perturbations that produce a tumor with more quiescent cells and fewer proliferating cells, a

tumor considered to be more benign, rather than aggressive. Despite some limitations in

model construction and analysis, we believe our model provides a novel and useful tool to

investigate the effects of metabolic perturbations on cancer cells residing in a tumor.

Conclusion

Altered cellular metabolism is a hallmark of tumorigenicity and malignancy. Mathematical

models serve as “non-invasive” tools [74] to understand better the prevalent heterogeneities in

tumors and assess the potential effects of various therapeutic strategies. We developed a multi-

scale cellular model of avascular tumor growth and apply it to predict the effects of how target-

ing specific intracellular metabolic reactions influences tumor growth. The particularly novel

aspect of our model is the detailed metabolic network at the sub-cellular level that directly

influences growth at the cellular and tissue levels. The multiscale cell-based model presented

in this study enables an investigation of how cellular-level features impact the evolution of a

tumor. In addition, the stochastic modeling approach provides a more detailed picture of both

intrinsic and extrinsic heterogeneities that are prevalent in tumors. We modeled the response

of the tumor as a whole to several targeted perturbations and provide mechanistic explana-

tions of the response as a function of the intracellular dynamics of metabolism. Our model is a

useful tool to screen potential therapeutic strategies in cancer, complementing experimental

studies.
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