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Abstract

This is the first time for studying the issue of finite-time H1 synchronization control for the

coronary artery chaos system (CACS) with input and state time-varying delays. Feedback

control is planned for finite-time of synchronization CACS. By constructing the Lyapunov-

Krasovskii functional (LKF) is derived for finite-time stability criteria of CACS with interval

and continuous differential time-varying delays. We use Wirtinger-based integral inequality

to evaluate the upper bound of the time derivative of the LKF. We apply the single integral

form and the double integral form of the integral inequality, according to Wirtinger-based

integral inequality, to ensure that the feedback controller for synchronization has good per-

formance with disturbance and time-varying delay. The new sufficient finite-time stability

conditions have appeared in the form of linear matrix inequalities (LMIs). Numerical checks

can be performed using the LMI toolbox in MATLAB. A numerical example is presented to

demonstrate the success of the proposed methods. This resultant is less conservative than

the resultants available in the previous works.

1 Introduction

In recent decades, the synchronization of chaotic systems get attention a lot of attention in

many areas such as biomedical, electronics, finance, economics, neural network, and so on [1–

5]. In particular, CACS synchronization is an important field. CACS plays a vital role in our

lives as it provides enough oxygen and sustenance to the heart throughout the day. Therefore,

the integrity of the system is critical. Several effective methods are used to achieve the synchro-

nization between the healthy CACS and diseased CACS such as H1 control [6–9], mixed H1
and passive performance index [10], adaptive control [11, 12], fuzzy control [13], observer-

based control [14, 15] and state-feedback control [16]. Particularly, Zhang et al. [6] studied

problems of the synchronization CACS with input disturbances and input time-delay depend-

ing on H1 control. Li et al. [7] investigated H1 control for CACS via free-matrix-based inte-

gral inequality with time-delay. The authors in [8] studied uncertain CACS of synchronization

controller design depending on Wirtinger integral inequality with input saturation and time

delay. The authors in [9] considered the CACS for H1 synchronization problems with input
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time-varying delay and input disturbances. Harshavarthini et al. [10] considered the finite-

time synchronization of the CACS system with mixed H1 and passive performance index. Li

[11] studied the CACS with the adaptive controller depending on the backstepping method to

approve local and global boundedness of the system. Wang et al. [13] studied the fuzzy state

feedback controller for fuzzy-model-based CACS with state time-delay. Zhao et al. [14] investi-

gated the observer-based H1 control for synchronization CACS with time-delay under the

external and state uncertainty. On the contrary, the time delay in treatment can have severe

consequences for human life and lead to death. Furthermore, the time delay in drug consump-

tion and medicine absorption also degrades system performance and can significantly increase

the risk of human life. Therefore, the delay in treatment plays a key role. In addition, Wu et al.

[16] investigated CACS for state-feedback synchronization control with interval time-varying

delay. Especially in the CACS, it is necessary to predict and diagnose a blockage in the myocar-

dium within a specified period of time to ensure human life is safe. Therefore, a rapid percep-

tion of the control system’s work is required. In particular, certain emergency drugs should be

consumed at a specific time to reduce the decomposition of oxygen to the myocardium.

In many systems, consideration of the long-time behavior of status variables is not enough

because the state variable values during the temporary period may be too large or unrealistic

before reaching the equilibrium point. In a chemical process, for instance, the temperature

inside a container must be maintained within certain criteria for a period of time for the chem-

icals to take effect. This situation has been commonly known as finite-time stability (FTS)

introduced by Dorato in 1961 [17]. As a result, many researchers are more interested in study-

ing the FTS of various systems. Many researchers have presented criteria that guarantee FTS of

various systems with finding the smallest upper bound of the norm square of state variables or

finding the maximum time that guarantees values of the state variables to be within the given

bounds for a certain time. Some examples of FTS of linear systems with constant delay are

shown in [18–25]. [26–30] study on linear systems with time-varying delays for FTS, FTS for

synchronization neural networks [31–34] and FTS on other systems [35–41].

In CACS, in particular, it is necessary to predict and diagnose myocardial function within a

given time to save our lives. Therefore, quick perception of the efficiency of a control system is

desired, and in especially, certain emergency drug intakes should be taken at precise times to

reduce the deterioration of the oxygen delivered to the heart muscle. Despite its advantages,

finite-time analysis has been one of the most influential and indispensable tools in stabilizing

many real-world problems.

As mentioned above, FTS is one of the critical topics that should have been further studied.

Thus, in this research, we investigate the finite-time synchronization of CACS with input

time-varying delay. In addition, the main contributions of this work are listed as follows;

• This is the first time for studying the finite-time H1 synchronization control for CACS con-

taining the input and state time-varying delay is defined. Remarkably, we take the state time-

varying delays, which are not considered in [6, 9–11, 14–16].

• A novel LKF is derived for the finite-time H1 synchronization controller for CACS with

input and state time-varying delay.

• Improve criteria of guaranteeing FTS of CACS with input and state time-varying delay.

In this article, we divide the remainder into four sections. In Section 2, we introduce the

CACS and review important definitions and lemmas. A new synchronization criterion for

finite-time synchronization of CACS with input and state time-varying delays is shown in Sec-

tion 3. A numerical simulation is given in Section 4 to show the simulation results of the trajec-

tories of the healthy and diseased CACS. The conclusion is shown in Section 5.
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2 Problem statement and preliminaries

This document uses the following notation: Rq denotes the q-dimensional space; Rq�r repre-

sents real value matrix with dimension q × r; I represents the identity matrix with appropriate

dimensions; PT refers to the transpose of matrix P; P is symmetric if P = PT; λ(P) represents all

the eigenvalue of P; λmax(P) = max{Re λ: λ 2 λ(P)}; λmin(P) = min{Re λ: λ 2 λ(P)}; P< 0 or

P> 0 represents that the matrix P is a symmetric and negative or positive definite matrix; If P,

Q are symmetric, P> Q interprets as P − Q is the positive definite matrix. The symmetric

terms in the matrix are represented by �. The following norm is used: k�k supersedes the

Euclidean vector norm and diag{. . .} represents a block diagonal matrix and

colfa1; a2; :::; ang ¼ ½aT
1
; aT

2
; :::; aT

n �
T
.

The CACS mathematical model is described as follows:

_r1 ¼ � br1 � cr2;

_r2 ¼ � ðsþ bsÞr1 � ðsþ csÞr2 þ sr3
1
þ Ecos$t;

ð1Þ

where r1 is the change of the radius of the blood vessel, r2 represents the pressure change of the

blood vessel, E cos ϖt represents the periodical stimulating disturbance term, β, c and σ are the

system parameters.

The finite-time synchronization of CACS with input and state time-varying delay. Based on

(1), the healthy CACS with the state time-varying delays is written as follows:

_wðtÞ ¼ AwðtÞ þ Âwðt � ZðtÞÞ þ Cf ðwðtÞÞ þ Ĉgðwðt � ZðtÞÞÞ þ GðtÞ: ð2Þ

The diseased CACS with the input and state time-varying delays is written as follows:

_uðtÞ ¼ AuðtÞ þ Âuðt � ZðtÞÞ þ Cf ðuðtÞÞ þ Ĉgðuðt � ZðtÞÞÞ þ GðtÞ

þD$ðtÞ þ uðt � ZðtÞÞ;
ð3Þ

where A, Â, C, Ĉ, and D are the real constant matrices determined by the value of β, c, σ and E,

f ðwðtÞÞ ¼ ½0; w3
1
ðtÞ�, gðwðt � ZðtÞÞÞ ¼ ½0; w3

1
ðt � ZðtÞÞ�, G(t) = [0, 0.3 cos ϖt], χ(t) = [χ1(t),

χ2(t)]T, υ(t) = [υ1(t), υ2(t)]T are the state vectors of the healthy and diseased CACS respectively.

ϖ(t) = [ϖ1(t), ϖ2(t)]T is the disturbance vectors. u(t − η(t)) is control input vector. The continu-

ous input and state time-varying delay functions satisfy:

0 � Z1 � ZðtÞ � Z2; _ZðtÞ � r; ð4Þ

where η1, η2, ρ are known real constant scalars and we denote η12 = η2 − η1, η1t = η(t) − η1, η2t

= η2 − η(t).
Remark 1 CACS delay is caused by a series of blood transport and biochemical reactions.

Therefore, we will call it a state delay. Input delay is often caused by drug absorption or other fac-
tors during treatment. This is a complex process. In actual treatment, things that will affect the
time it takes for the drug to be absorbed are the patient’s gender, age, and personal status. For the
convenience of the study, we suppose input delay and state delay are the same.

Given �(t) = υ(t) − χ(t), we can get the error system by (2) and (3):

_�ðtÞ ¼ A�ðtÞ þ Â�ðt � ZðtÞÞ þ Cf ð�ðtÞÞ þ Ĉgð�ðt � ZðtÞÞÞ

þD$ðtÞ þ uðt � ZðtÞÞ;
ð5Þ

where f(�(t)) = f(υ(t)) − f(χ(t)), g(�(t − η(t))) = g(υ(t − η(t))) − g(χ(t − η(t))). We want to syn-

chronize diseased CACS (3) with healthy CACS (2) through the appropriate u(t − η(t)) taking

into account the delay in drug administration and drug absorption. We can design a time-
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varying input delay feedback controller as follows:

uðt � ZðtÞÞ ¼ ~K�ðt � ZðtÞÞ; ð6Þ

where ~K is the gain matrix of control input. By compiling (5) and (6), the error system

becomes

_�ðtÞ ¼ A�ðtÞ þ Â�ðt � ZðtÞÞ þ Cf ð�ðtÞÞ þ Ĉgð�ðt � ZðtÞÞÞ þ D$ðtÞ

þ~K�ðt � ZðtÞÞ:
ð7Þ

Remark 2 This is the first time for studying the finite-time synchronization of CACS (5) con-
tains the input and state time-varying delay is defined. If Ĉ ¼ 0 the error system (5) turns into
the error system considered by [6] and if Â ¼ 0 and Ĉ ¼ 0 the error system (5) turns into the
error system considered by [9–11, 14–16]. We can see that the finite-time CACS synchronization
of the previous works is already included in our task. This can be considered a special case of
finite-time CACS synchronization.

Assumption 1 The function f(χ(t), υ(t), t) and g(χ(t − η(t)), υ(t − η(t)), t)) satisfy

k f ðuðtÞÞ � f ðwðtÞÞ k � k Lf ðuðtÞ � wðtÞÞ k;

k gðuðt � ZðtÞÞÞ � gðwðt � ZðtÞÞÞ k � k Lgðuðt � ZðtÞÞ � wðt � ZðtÞÞÞ k;

where Lf and Lg mean the Lipschitz constant matrix.

Definition 1 [28] Given a matrix U> 0 and three positive real constants B1, B2, Tf with B1 <

B2, the time-delay system described by (7) and delay condition as in (4) is said to be finite-time
stable with respect to (B1, B2, Tf, η2), if sup

� Z2�s�0
f�TðsÞU�ðsÞ; _�TðsÞU _�ðsÞg � B1 then �T(t)U�(t)

< B2, 8t 2 [0, Tf].

Definition 2 [8] Under zero initial conditions, the error system (7) is based on the H1 perfor-
mance index.

Z Tf

0

�TðsÞ�ðsÞds � g2

Z Tf

0

wTðsÞwðsÞds;

where Tf> 0 represents a sufficiently sizeable real constant, γ> 0 is the disturbance attenuation
rate.

Lemma 1 [9] Given a matrix Z> 0, for derivative functions o 2 ½t1; t2� ! Rn
, we obtain

Z t2

t1

_oTðsÞZ _oðsÞds �
1

t12

s1

s2

" #T Z 0

� Z

" #
s1

s2

" #

;

where

s1 ¼ oðt1Þ � oðt2Þ;

s2 ¼
ffiffiffi
3
p

oðt1Þ þ
ffiffiffi
3
p

oðt2Þ �
2
ffiffiffi
3
p

t2 � t1

Z t2

t1

oðsÞds:

Lemma 2 [42] For a matrix Z> 0, scalars μ and ν with μ< ν and a continuous differential
functiono : ½m; n� ! Rn

, the following integral inequalities are considered:

Z n

m

Z n

u
_oTðsÞZ _oðsÞdsdu � 2O

T
1
ZO1 þ 4O

T
2
ZO2 þ 6O

T
3
ZO3; ð8Þ
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where

k ¼ n � m;

O1 ¼ oðnÞ �
1

k

Z n

m

oðsÞds;

O2 ¼ oðnÞ þ
2

k

Z n

m

oðsÞds �
6

k2

Z n

m

Z n

u
oðsÞdsdu;

O3 ¼ oðnÞ �
3

k

Z n

m

oðsÞdsþ
24

k2

Z n

m

Z n

u
oðsÞdsdu �

60

k3

Z n

m

Z n

u

Z n

r
oðsÞdsdrdu:

Remark 3 In Assumption 1, We suppose that the nonlinear functions f(χ(t), υ(t), t) and g(χ(t
− η(t)), υ(t − η(t)), t)) satisfy Lipschitz’s condition. In solving LMIs, the Lipschitz constant is used
for limiting nonlinear conditions. Lf and Lg refer to the Lipschitz constant matrix.

3 Main results

Before introducing the main result, the following notations are defined for simplicity

ei ¼ ½02�ði� 1Þ2 I 02�ð15� iÞ2�; i ¼ 1; 2; :::; 15;

xðtÞ ¼ col
�

�ðtÞ; �ðt � Z1Þ; �ðt � Z2Þ; �ðt � ZðtÞÞ;
1

Z1

Z t

t� Z1

�ðsÞds;
1

Z2

Z t

t� Z2

�ðsÞds;

1

Z1t

Z t� Z1

t� ZðtÞ
�ðsÞds;

1

Z2t

Z t� ZðtÞ

t� Z2

�ðsÞds;
1

Z2
1

Z t

t� Z1

Z t

r
�ðsÞdsdr;

1

Z2
2

Z t

t� Z2

Z t

r
�ðsÞdsdr;

1

Z3
1

Z t

t� Z1

Z t

u

Z t

r
�ðsÞdsdrdu;

1

Z3
2

Z t

t� Z2

Z t

u

Z t

r
�ðsÞdsdrdu; f ð�ðtÞÞ; gð�ðt � ZðtÞÞÞ; $ðtÞ

�

:

Now, we provide a stability criterion for the error system (7) with time-varying delay η(t)
satisfy (4).

Theorem 1 Given a matrix U> 0, positive scalars B1, B2, T, η1, η2, α and any matrix Lf, Lg.
The error systems (7) satisfying Assumption 1 and the condition (4) is finite-time stable, if there
exist positive scalar λkm, (m = 1, 2, . . ., 10), δ1, δ2, positive definite matrices P, Qi, Rj, Wj 2 R

n�n
,

(i = 1, 2, 3, 4, j = 1, 2) any matrices S1, S2 with proper dimensions such that the following LMIs
hold:

R2 S1

� R2

" #

� 0;
R2 S2

� R2

" #

� 0; ð9Þ

C ¼
C11 C12

� C22

" #

< 0; ð10Þ

lk1I < ~P < lk2I; ~Q1 < lk3I; ~Q2 < lk4I; ~Q3 < lk5I; ~Q4 < lk6I;
~R1 < lk7I; ~R2 < lk8I; ~W 1 < lk9I; ~W 2 < lk10I;

ð11Þ

eaTfLB1 � lk1B2 < 0; ð12Þ
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where

C11 ¼ W11 þ W12 þ W13 þ W14 þ W15 þ W16 þ W17 þ W18 � eT
1
aPe1;

C12 ¼ Z1X
TR1; Z12X

TR2;
Z1ffiffiffi

2
p XTW1;

Z2ffiffiffi
2
p XTW2

� �

;

C22 ¼ diagf� R1; � R2; � W1; � W2g;

X ¼ Ae1 þ Âe4 þ
~Ke4 þ Ce13 þ Ĉe14 þ De15;

G1 ¼ e1 � e2;G2 ¼
ffiffiffi
3
p

e1 þ
ffiffiffi
3
p

e2 � 2
ffiffiffi
3
p

e5;

G3 ¼ e2 � e4;G4 ¼
ffiffiffi
3
p

e2 þ
ffiffiffi
3
p

e4 � 2
ffiffiffi
3
p

e7;

G5 ¼ e4 � e3;G6 ¼
ffiffiffi
3
p

e4 þ
ffiffiffi
3
p

e3 � 2
ffiffiffi
3
p

e8;

p1 ¼ e1 � e5; p2 ¼ e1 þ 2e5 � 6e9; p3 ¼ e1 � 3e5 þ 24e9 � 60e11;

p4 ¼ e1 � e6; p5 ¼ e1 þ 2e6 � 6e10; p6 ¼ e1 � 3e6 þ 24e10 � 60e12;

W11 ¼ eT
1
½P þ PT�X;

W12 ¼ eT
1
ðQ1 þ Q2 þ Q3Þe1 � ð1 � rÞeT

4
Q1e4 þ eT

2
ðQ4 � Q2Þe2

� eT
3
ðQ3 � Q4Þe3;

W13 ¼ � GT
1
R1G1 � G

T
2
R1G2;

W14 ¼ � GT
3
R2G3 � G

T
4
R2G4 � G

T
5
R2G5 � G

T
6
R2G6

� GT
3
S1G5 � G

T
5
ST

1
G3 � G

T
4
S2G6 � G

T
6
ST

2
G4;

W15 ¼ � 2pT
1
W1p1 � 4pT

2
W1p2 � 6pT

3
W1p3;

W16 ¼ � 2pT
4
W2p4 � 4pT

5
W2p5 � 6pT

6
W2p6;

W17 ¼ eT
1
d1LT

f Lf e1 � eT
13
d1Ie13;

W18 ¼ þeT
4
d2LT

g Lge4 � eT
14
d2Ie14;

L ¼ lk2 þ Z2lk3 þ Z1lk4 þ Z2lk5 þ Z12lk6 þ
Z3

1

2
lk7 þ

Z3
12

2
lk8 þ

Z3
1

6
lk9

þ
Z3

2

6
lk10;

lk1 ¼ lminð
~PÞ; lk2 ¼ lmaxð

~PÞ; lk3 ¼ lmaxð
~Q1Þ; lk4 ¼ lmaxð

~Q2Þ;

lk5 ¼ lmaxð
~Q3Þ; lk6 ¼ lmaxð

~Q4Þ; lk7 ¼ lmaxð
~R1Þ; lk8 ¼ lmaxð

~R2Þ;

lk9 ¼ lmaxð
~W 1Þ; lk10 ¼ lmaxð

~W 2Þ:

Proof: Consider the LKF candidate as follows:

Vð�ðtÞÞ ¼
X4

i¼1

Við�ðtÞÞ; ð13Þ

PLOS ONE Finite-time synchronization control for coronary artery chaos system with input and state time-varying delays

PLOS ONE | https://doi.org/10.1371/journal.pone.0266706 April 8, 2022 6 / 21

https://doi.org/10.1371/journal.pone.0266706


where

V1ð�ðtÞÞ ¼ �TðtÞP�ðtÞ;

V2ð�ðtÞÞ ¼
Z t

t� ZðtÞ
�TðsÞQ1�ðsÞdsþ

Z t

t� Z1

�TðsÞQ2�ðsÞds

þ

Z t

t� Z2

�TðsÞQ3�ðsÞdsþ
Z t� Z1

t� Z2

�TðsÞQ4�ðsÞds;

V3ð�ðtÞÞ ¼ Z1

Z 0

� Z1

Z t

y

_�TðsÞR1
_�ðsÞdsdyþ Z12

Z � Z1

� Z2

Z t

y

_�TðsÞR2
_�ðsÞdsdy;

V4ð�ðtÞÞ ¼
Z t

t� Z1

Z t

y

Z t

r
_�TðsÞW1

_�ðsÞdsdrdyþ
Z t

t� Z2

Z t

y

Z t

r
_�TðsÞW2

_�ðsÞdsdrdy:

The time derivative of V(�(t)) can be defined as follows:

_V 1ð�ðtÞÞ ¼ 2�TðtÞP _�ðtÞ

¼ x
T
ðtÞW11xðtÞ;

ð14Þ

_V 2ð�ðtÞÞ � �TðtÞ½Q1 þ Q2 þ Q3��ðtÞ � ð1 � rÞ�Tðt � ZðtÞÞQ1�ðt � ZðtÞÞ

þ�Tðt � Z1ÞðQ4 � Q2Þ�ðt � Z1Þ � �
Tðt � Z2ÞðQ3 þ Q4Þ�ðt � Z2Þ

¼ x
T
ðtÞW12xðtÞ;

ð15Þ

_V 3ð�ðtÞÞ ¼ _�TðtÞ½Z2
1
R1 þ Z

2
12
R2� _�ðtÞ � Z1

Z t

t� Z1

_�TðsÞR1
_�ðsÞds

� Z12

R t� Z1

t� ZðtÞ _�TðsÞR2
_�ðsÞds � Z12

Z t� ZðtÞ

t� Z2

_�TðsÞR2
_�ðsÞds;

ð16Þ

_V 4ð�ðtÞÞ ¼ _�TðtÞ
Z2

1

2
W1 þ

Z2
2

2
W2

� �

_�ðtÞ �
Z t

t� Z1

Z t

r
_�TðsÞW1

_�ðsÞdsdr

�
R t

t� Z2

R t
r _�TðsÞW2

_�ðsÞdsdr:
ð17Þ

Using Lemma 1, we get

z1ðtÞ � �
c1ðtÞ

c2ðtÞ

" #T R1 0

� R1

" #
c1ðtÞ

c2ðtÞ

" #

¼ x
T
ðtÞW13xðtÞ;

ð18Þ

z2ðtÞ � �
1

�1

c3ðtÞ

c4ðtÞ

" #T R2 0

� R2

" #
c3ðtÞ

c4ðtÞ

" #

; ð19Þ

z3ðtÞ � �
1

�2

c5ðtÞ

c6ðtÞ

" #T R2 0

� R2

" #
c5ðtÞ

c6ðtÞ

" #

; ð20Þ
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where

z1ðtÞ ¼ � Z1

R t
t� Z1

_�TðsÞR1
_�ðsÞds;

z2ðtÞ ¼ � Z12

R t� Z1

t� ZðtÞ _�TðsÞR2
_�ðsÞds;

z3ðtÞ ¼ � Z12

R t� ZðtÞ
t� Z2

_�TðsÞR2
_�ðsÞds;

�1 ¼
Z1t

Z12

; �2 ¼
Z2t

Z12

;

c1ðtÞ ¼ �ðtÞ � �ðt � Z1Þ;

c2ðtÞ ¼
ffiffiffi
3
p

�ðtÞ þ
ffiffiffi
3
p

�ðt � Z1Þ �
2
ffiffiffi
3
p

Z1

Z t

t� Z1

�ðsÞds;

c3ðtÞ ¼ �ðt � Z1Þ � �ðt � ZðtÞÞ;

c4ðtÞ ¼
ffiffiffi
3
p

�ðt � Z1Þ þ
ffiffiffi
3
p

�ðt � ZðtÞÞ �
2
ffiffiffi
3
p

Z1t

Z t� Z1

t� ZðtÞ
�ðsÞds;

c5ðtÞ ¼ �ðt � ZðtÞÞ � �ðt � Z2Þ;

c6ðtÞ ¼
ffiffiffi
3
p

�ðt � ZðtÞÞ þ
ffiffiffi
3
p

�ðt � Z2Þ �
2
ffiffiffi
3
p

Z2t

Z t� ZðtÞ

t� Z2

�ðsÞds:

It is clear that the real numbers ϕ1 and ϕ2 correspond to ϕ1 > 0, ϕ2 > 0 and ϕ1 + ϕ2 = 1,

then suggest an appropriate dimensional matrix S1 and S2 such that

R2 S1

� R2

" #

� 0;
R2 S2

� R2

" #

� 0: ð21Þ

By reciprocally convex to inequalities (19) and (20), we obtain

z2ðtÞ þ z3ðtÞ � �
1

�1

c
T
3
ðtÞR2c3ðtÞ �

1

�2

c
T
5
ðtÞR2c5ðtÞ

�
1

�1

c
T
4
ðtÞR2c4ðtÞ �

1

�2

c
T
6
ðtÞR2c6ðtÞ

� �
c3ðtÞ

c5ðtÞ

" #T R2 S1

� R2

" #
c3ðtÞ

c5ðtÞ

" #

�
c4ðtÞ

c6ðtÞ

" #T R2 S2

� R2

" #
c4ðtÞ

c6ðtÞ

" #

¼ x
T
ðtÞW14xðtÞ:

ð22Þ

Using Lemma 2, we obtain

�

Z t

t� Z1

Z t

r
_�TðsÞW1

_�ðsÞdsdr � � xT
ðtÞW15xðtÞ; ð23Þ

�

Z t

t� Z2

Z t

r
_�TðsÞW2

_�ðsÞdsdr � � xT
ðtÞW16xðtÞ: ð24Þ
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From the Assumption 1, we have

0 � d1�
TðtÞLT

f Lf �ðtÞ � d1f Tð�ðtÞÞf ð�ðtÞÞ

¼ x
T
ðtÞW17xðtÞ;

ð25Þ

0 � d2�
Tðt � ZðtÞÞLT

g Lg�ðt � ZðtÞÞ

� d2gTð�ðt � ZðtÞÞÞgð�ðt � ZðtÞÞÞ

¼ x
T
ðtÞW18xðtÞ:

ð26Þ

Combining (14)–(26), we get

_V ð�ðtÞÞ � xT
ðtÞUxðtÞ þ aV1ð�ðtÞÞ < x

T
ðtÞUxðtÞ þ aVð�ðtÞÞ; ð27Þ

where

U ¼ C11 þ D;

D ¼ XT Z2
1
R1 þ Z

2
12
R2 þ

Z2
1

2
W1 þ

Z2
2

2
W2

� �

X:

Applying Schur complement lemma the inequalities U is equivalent toC< 0, from (27) we

get

_V ð�ðtÞÞ < aVð�ðtÞÞ: ð28Þ

Multiplying the above inequality by e−αt and integrating form 0 to t with t 2 [0, Tf], we have

Vð�ðtÞÞ < eaTf Vð�ð0ÞÞ; ð29Þ

with

Vð�ð0ÞÞ ¼ �Tð0ÞP�ð0Þ þ
Z 0

� Zð0Þ

�TðsÞQ1�ðsÞdsþ
Z 0

� Z1

�TðsÞQ2�ðsÞds

þ

Z 0

� Z2

�TðsÞQ3�ðsÞd þ
Z � Z1

� Z2

�TðsÞQ4�ðsÞds

þZ1

Z 0

� Z1

Z 0

y

_�TðsÞR1
_�ðsÞdsdy þ Z12

Z � Z1

� Z2

Z 0

y

_�TðsÞR2
_�ðsÞdsdy

þ

Z 0

� Z1

Z 0

y

Z 0

r
_�TðsÞW1

_�ðsÞdsdrdyþ
Z 0

� Z2

Z 0

y

Z 0

r
_�TðsÞW2

_�ðsÞdsdrdy:
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Since I ¼ U1
2U � 1

2 ¼ U � 1
2U1

2, ~P ¼ U � 1
2PU � 1

2, ~Qi ¼ U � 1
2QiU �

1
2, ~Rj ¼ U � 1

2RjU �
1
2,

~Wj ¼ U � 1
2WjU �

1
2, (i = 1, 2, 3, 4, j = 1, 2), thus V(�(0)) can be written as

Vð�ð0ÞÞ ¼ �Tð0ÞU
1

2~PU
1

2�ð0Þ þ

Z 0

� Zð0Þ

�TðsÞU
1

2 ~Q1U
1

2�ðsÞds

þ

Z 0

� Z1

�TðsÞU
1

2 ~Q2U
1

2�ðsÞdsþ
Z 0

� Z2

�TðsÞU
1

2 ~Q3U
1

2�ðsÞds

þ

Z � Z1

� Z2

�TðsÞU
1

2 ~Q4U
1

2�ðsÞdsþ Z1

Z 0

� Z1

Z 0

y

_�TðsÞU
1

2 ~R1U
1

2 _�ðsÞdsdy

þZ12

Z � Z1

� Z2

Z 0

y

_�TðsÞU
1

2 ~R2U
1

2 _�ðsÞdsdy

þ

Z 0

� Z1

Z 0

y

Z 0

r
_�TðsÞU

1

2 ~W1U
1

2 _�ðsÞdsdrdy

þ

Z 0

� Z2

Z 0

y

Z 0

r
_�TðsÞU

1

2 ~W2U
1

2 _�ðsÞdsdrdy

� ½lmaxð
~PÞ þ Z2lmaxð

~Q1Þ þ h1lmaxð
~Q2Þ þ Z2lmaxð

~Q3Þ þ Z12lmaxð
~Q4Þ

þ
Z3

1

2
lmaxð

~R1Þ þ
Z3

12

2
lmaxð

~R2Þ þ
Z3

1

6
lmaxð

~W1Þ þ
Z3

2

6
lmaxð

~W2Þ�

sup
� Z2�s�0

f�TðsÞU�ðsÞ; _�TðsÞU _�ðsÞg

� ½lmaxð
~PÞ þ Z2lmaxð

~Q1Þ þ Z1lmaxð
~Q2Þ þ Z2lmaxð

~Q3Þ þ Z12lmaxð
~Q4Þ

þ
Z3

1

2
lmaxð

~R1Þ þ
Z3

12

2
lmaxð

~R2Þ þ
Z3

1

6
lmaxð

~W1Þ þ
Z3

2

6
lmaxð

~W2Þ�B1

¼ LB1:

Because Vð�ðtÞÞ � V1ð�ðtÞÞ ¼ �TðtÞU
1
2 ~PU1

2�ðtÞ � lminð
~PÞ�TðtÞU�ðtÞ. Thus, for any t 2 [0,

Tf], we obtain

�TðtÞU�ðtÞ <
eaTfLB1

lk1

< B2: ð30Þ

Hence, the condition (12) holds and the proof is complete.

Remark 4 The condition defined in the Theorem 1 can be used for analyzing the stability of
error systems based on unknown ~K . For the sake of solving the problem of the matrix ~K , sufficient
conditions can be provided as follows:

Theorem 2 Given a matrix U> 0, positive scalars B1, B2, T, η1, η2, α and any matrix Lf, Lg. If
there exist positive scalar θm, (m = 1, 2, . . ., 10), �d1, �d2, positive definite matrices X, �Qi,

�Rj,
�Wj 2
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Rn�n
; ði ¼ 1; 2; 3; 4; j ¼ 1; 2Þ any matrix Y; �S1;

�S2 with suitable dimensions such that the follow-
ing LMIs hold:

�R2
�S1

� �R2

2

4

3

5 � 0;

�R2
�S2

� �R2

2

4

3

5 � 0; ð31Þ

�C ¼

�C11
�C12 e1XLT

f e4XLT
g

� � �C22 0 0

� � � �d1 I 0

� � � � �d2 I

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

< 0; ð32Þ

Mk1 < P11 < Mk2; P12 < Mk3; P13 < Mk4; P14 < Mk5;

P15 < Mk6; P16 < Mk7; P17 < Mk8; P18 < Mk9; P19 < Mk10;
ð33Þ

eaTYB1 � y1B2 < 0; ð34Þ

where

�C11 ¼ �W11 þ
�W12 þ

�W13 þ
�W14 þ

�W15 þ
�W16 þ

�W17 � eT
1
aXe1

þeT
1
Ie1 � g

2eT
15
Ie15;

�C12 ¼ Z1
�XT; Z12

�XT;
Z1ffiffiffi

2
p �XT;

Z2ffiffiffi
2
p �XT

� �

;

�C22 ¼ diagfX�R � 1
1

X;X�R � 1
2

X;X �W � 1
1

X;X �W � 1
2

Xg;
�X ¼ AXe1 þ ÂXe4 þ Ye4 þ Ce13 þ Ĉe14 þ De15;

�W11 ¼ eT
1

�X þ �XTe1;

�W12 ¼ eT
1
ð�Q1 þ

�Q2 þ
�Q3Þe1 � ð1 � rÞeT

4
�Q1e4 þ eT

2
ð�Q4 �

�Q2Þe2

� eT
3
ð�Q3 �

�Q4Þe3;

�W13 ¼ � GT
1
�R1G1 � G

T
2
�R1G2;

�W14 ¼ � GT
3
�R2G3 � G

T
4
�R2G4 � G

T
5
�R2G5 � G

T
6
�R2G6

� GT
3
�S1G5 � G

T
5
�ST

1
G3 � G

T
4
�S2G6 � G

T
6
�ST

2
G4;

�W15 ¼ � 2pT
1

�W 1p1 � 4pT
2

�W 1p2 � 6pT
3

�W 1p3;

�W16 ¼ � 2pT
4

�W 2p4 � 4pT
5

�W 2p5 � 6pT
6

�W 2p6;

�W17 ¼ � eT
13

�d1Ie13 � eT
14

�d2Ie14;

Y ¼ y2 þ Z2y3 þ Z1y4 þ Z2y5 þ Z12y6 þ
Z3

1

2
y7 þ

Z3
12

2
y8 þ

Z3
1

6
y9 þ

Z3
2

6
y10;

y1 ¼ lminðO1Þ; y2 ¼ lmaxðO1Þ; y3 ¼ lmaxðO2Þ; y4 ¼ lmaxðO3Þ;

y5 ¼ lmaxðO4Þ; y6 ¼ lmaxðO5Þ; y7 ¼ lmaxðO6Þ; y8 ¼ lmaxðO7Þ;

y9 ¼ lmaxðO8Þ; y10lmaxðO9Þ;
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then, the error systems (7) satisfying Assumption 1 and the condition (4) is finite-time stable. In
this case, the desired controllers are given as follows:

~K ¼ YX� 1: ð35Þ

Proof: The H1 performance will be proved in this theorem. The proof of this theorem is a

consequence of Theorem 1. Now by following the Theorem 1 along with the same LKF candi-

date (13) for any non-zero disturbance ϖ(t), it is easy to get

_V ð�ðtÞÞ þ �ðtÞT�ðtÞ � g2$ðtÞT$ðtÞ � xðtÞT½C11 þ F�xðtÞ; ð36Þ

where the elements in C11 are same as in (10), F ¼ eT
1
Ie1 � g

2eT
15
Ie15.

Now, by using Schur complement lemma and setting X = P−1, then pre-multiplying and

post-multiplying with diag{X, X},

diagf12X; � � � ;X
zfflfflfflfflffl}|fflfflfflfflffl{12

; I; I; I;R� 1
1
;R� 1

2
;W � 1

1
;W � 1

2
g;

to (9) and (10) respectively, the inequality in (11) and (12) multiplies by X from both left and

right sides. By setting

Y ¼ KX; �Qi ¼ XQiX; �Rj ¼ XRjX; �Wj ¼ XWjX; �d j ¼ d
� 1

j ;

ði ¼ 1; 2; 3; 4; j ¼ 1; 2Þ;

Mk1 ¼ Xðlk1IÞX;Mk2 ¼ Xðlk2IÞX;Mk3 ¼ Xðlk3IÞX;Mk4 ¼ Xðlk4IÞX;

Mk5 ¼ Xðlk5IÞX;Mk6 ¼ Xðlk6IÞX;Mk7 ¼ Xðlk7IÞX;Mk8 ¼ Xðlk8IÞX;

Mk9 ¼ Xðlk9IÞX;Mk10 ¼ Xðlk10IÞX;

P11 ¼ X~PX;P12 ¼ X ~Q1X;P13 ¼ X ~Q2X;P14 ¼ X ~Q3X;P15 ¼ X ~Q4X;

P16 ¼ X~R1X;P17 ¼ X~R2X;P18 ¼ X ~W 1X;P19 ¼ X ~W 2X;

the inequalities (31)–(34) can be attained, which completes the proof.

Remark 5 Because Theorem 2 contains nonlinear terms X�R � 1
j X;X �W � 1

j X; ðj ¼ 1; 2Þ, the feasi-
ble solutions to this problem can be found by the cone complementary linearization algorithm
(CCLA). Hence, the inequality (32) can be modified using the iterative algorithm.

Firstly, we define new variables Uj and Zj(j = 1, 2), such that

X�R � 1
j X � Uj;

X �W � 1
j X � Zj;

ð37Þ

which can be transformed to

� �R � 1
j X� 1

� � U � 1
j

2

4

3

5 � 0;

� �W � 1
j X� 1

� � Z� 1
j

2

4

3

5 � 0; ðj ¼ 1; 2Þ:

ð38Þ
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By introducing variables X−1 = Xn, �R � 1
j ¼ Jj, �U � 1

j ¼ Hj,
�W � 1

j ¼ Lj,
�Z � 1

j ¼ Tj; ðj ¼ 1; 2Þ,

which is equivalent to

� Jj Xn

� � Hj

2

4

3

5 � 0;

� Lj Xn

� � Tj

2

4

3

5 � 0; ðj ¼ 1; 2Þ:

ð39Þ

According to the CCLA, the original problem of Theorem 2 can be replaced by the following
minimization problem.

Minimize

trðXnX þ
X2

j¼1

ðJj �Rj þHjUj þ Lj
�Wj þ Tj

�ZjÞÞ;

subject to (31)–(34), and

�C11
�C12 e1XLT

f e4XLT
g

� O22 0 0

� � � �d1I 0

� � � � �d2I

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

< 0; ð40Þ

Xn I

� X

2

4

3

5 � 0;

Jj I

� Rj

2

6
4

3

7
5 � 0;

Hj I

� Uj

2

6
4

3

7
5 � 0;

Lj I

� Wj

2

6
4

3

7
5 � 0;

Tj I

� Zj

2

6
4

3

7
5 � 0; ðj ¼ 1; 2Þ;

ð41Þ

where O22 = diag{−U1, −U2, −Z1, −Z2}.

4 Numerical simulation

A numerical simulation is performed to show the performance of the schemes proposed in

this section.
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The parameters of the healthy CACS (2) and diseased CACS (3) are as follows;

A ¼
� 0:1 1:5

0:55 � 0:25

" #

; Â ¼
� 0:05 0:2

0:025 � 0:1

" #

; C ¼
0 0

0 � 0:4

" #

;

Ĉ ¼
0 0

0 � 0:1

" #

; D ¼
0:2 0

0 0:1

" #

; Lf ¼
0 0

0 4:8

" #

;

Lg ¼
0 0

0 1:2

" #

; wð0Þ ¼
1

0:5

" #

; uð0Þ ¼
� 0:5

� 1

" #

:

For simulation purpose, we assume B1 = 0.1, B2 = 5, Tf = 10, α = 0.1, ρ = 0.2, U = I.

Case 1. When η(t) = 0.24 + 0.025sin(t), η1 = 0.1, η2 = 0.55, with disturbance ϖ(t) = [0.3 sin

(40t), 0.1 sin(30t)]T.

Case 2. When η(t) = 0.4 + 0.02sin(t), η1 = 0.1, η2 = 0.5, with disturbance ϖ(t) = [0.3 sin(40t),
0.1 sin(30t)]T.

Case 3. When η(t) = 0.3 + 0.05sin(t), η1 = 0.1, η2 = 0.45, with disturbance ϖ(t) = [0.09 sin(4t),
0.03 sin(5t)]T.

Case 4. When η(t) = 0.15 + 0.04sin(4t), η1 = 0.1, η2 = 0.4, with disturbance ϖ(t) = [0.09 sin(4t),
0.03 sin(5t)]T.

For the case 1–4, we obtain an appropriate gain matrix ~K by solving LMIs (31)–(34)

obtained in Theorem 2 and represented in Table 1.

Accurately, Figs 1–7 show the simulation results associated with the controller designed in

(6). Especially, Fig 1 demonstrates the phases of healthy CACS (2) under ϖ(t) = 0 with no con-

trol input. Fig 2 demonstrates the phase of the diseased CACS (3) under ϖ(t) = 0 with no con-

trol input. The error systems between the healthy CACS and diseased CACS without the

controller is plotted in Fig 3. Therefore, Fig 3 presents the importance of the regulator in main-

taining a normal heart rhythm. Moreover, the synchronization error systems between (2) and

(3) through the controller (6) under the various time-vary delays and disturbances for case 1–4

is plotted in Fig 4. The controller, therefore, changes with the upper bound of the time-varying

delay with increasing time. In natural treatment, things that will affect the time it takes for the

drug to be absorbed are the patient’s gender, age, and personal status. We must endorse the

effectiveness of treatment in other cases. The efficiency of our strategy can be expressed as Fig

Table 1. Gain matrix ~K for distinct delay and disturbance function.

Case η(t) ϖ(t) Gain matrix ~K
1 0.24 + 0.025 sin(t) 0:3sinð40tÞ

0:1sinð30tÞ

" #
� 1:1984 � 0:1004

� 0:1003 � 0:8445

" #

2 0.4 + 0.02 sin(t) 0:3sinð40tÞ

0:1sinð30tÞ

" #
� 1:8887 � 0:0806

� 0:0805 � 1:4075

" #

3 0.3 + 0.05 sin(t) 0:09sinð4tÞ

0:03sinð5tÞ

" #
� 2:7084 � 0:0748

� 0:0747 � 2:2705

" #

4 0.15 + 0.04 sin(4t) 0:09sinð4tÞ

0:03sinð5tÞ

" #
� 3:7204 � 0:0424

� 0:0423 � 2:8897

" #

https://doi.org/10.1371/journal.pone.0266706.t001
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Fig 1. The healthy CACS phase portraits under ϖ(t) = 0 with no control input.

https://doi.org/10.1371/journal.pone.0266706.g001

Fig 2. The diseased CACS phase portraits under ϖ(t) = 0 with no control input.

https://doi.org/10.1371/journal.pone.0266706.g002
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Fig 3. System behavior error under ϖ(t) = 0 with no control input.

https://doi.org/10.1371/journal.pone.0266706.g003

Fig 4. System behavior error under ϖ(t) 6¼ 0 with the control input for the cases 1–4.

https://doi.org/10.1371/journal.pone.0266706.g004
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Fig 5. Response of the state for the healthy and diseased CACS for cases 1–4.

https://doi.org/10.1371/journal.pone.0266706.g005
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5. From Fig 5, it is seen that within a short time, the control input can effectively synchronize

the diseased system with the health system for the different delay and disturbance input which

is shown in Table 1. Fig 6 displays the immediate cognizance of the system (2) and (3) within a

specific time period guaranteed by planning the trajectories of �T(t)U�(t) with the finite-time

Fig 6. Evaluation of �T(t)U�(t) for the cases 1–4.

https://doi.org/10.1371/journal.pone.0266706.g006

Fig 7. Control response for the cases 1–4.

https://doi.org/10.1371/journal.pone.0266706.g007
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bound B2. The control response for all four cases is shown in Fig 7. The designed controller

performs a vital role in the synchronization and necessity of today’s studies.

Therefore, from the results of these simulations, it is seen that the proposed controller (6)

approves synchronization between healthy and diseased CACS at precise intervals. Signifi-

cantly, the inherent potential of the developed theoretical results is realized with the minimum

attenuation index. In addition, the control vector is resistant to delays and therapeutic risks

and maintains the health of diseased CACS even under unpredictable factors.

Remark 6 The advantage of this numerical simulation is the lower bound of the delay η1 6¼ 0.

Moreover, we still study the CACS with input and state time-varying delays. Hence, the stability
conditions derived in [6, 9–11, 14–16] cannot be applied to this simulation.

5 Conclusion

This is the first time studying the finite-time H1 synchronization control for CACS containing

the input and state time-varying delay is defined. Significantly, the reliable controller is devised

to suppress abnormal heart rhythms, which is necessary to supply the heart with nutrients and

oxygen all day. This compares to the unpredictable side, for example, drug consumption, emo-

tional volatility, and so on. By constructing a new LKF and using Wirtinger-based inequality,

improved single/double integral inequalities and stability criteria conditions are in the term of

LMIs, which are sufficient to ensure that the diseased system synchronizes with the health sys-

tem for a limited time. The simulations show that our synchronization strategy effectively syn-

chronizes the convulsive coronary system with the healthy cardiovascular system under input

delay and disturbance. In future work, the results and methods in this work are expected to

use to other various systems in real-word application, for instant, H1 control [6–9], mixed

H1 and passive performance index [10], adaptive control [11, 12], fuzzy control [13],

observer-based control [14, 15] and state-feedback control [16], projective synchronization of

chaotic systems [43] and stochastic differential equations [44]. Furthermore, input delay and

state delay will be considered in different values to get more closer to reality.
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