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Abstract

The appreciation for the need to record electroencephalographic (EEG) signals from

humans while walking has been steadily growing in recent years, particularly in relation to

understanding gait disturbances. Movement artefacts (MA) in EEG signals originate from

mechanical forces applied to the scalp electrodes, inducing small electrode movements rel-

ative to the scalp which, in turn, cause the recorded voltage to change irrespectively of corti-

cal activity. These mechanical forces, and thus MA, may have various sources (e.g., ground

reaction forces, head movements, etc.) that are inherent to daily activities, notably walking.

In this paper we introduce a systematic, integrated methodology for removing MA from EEG

signals recorded during treadmill (TM) and over-ground (OG) walking, as well as quantify

the prevalence of MA in different locomotion settings. In our experiments, participants per-

formed walking trials at various speeds both OG and on a TM while wearing a 32-channel

EEG cap and a 3-axis accelerometer, placed on the forehead. Data preprocessing included

separating the EEG signals into statistically independent additive components using inde-

pendent component analysis (ICA). We observed an increase in electro-physiological sig-

nals (e.g., neck EMG activations for stabilizing the head during heel-strikes) as the walking

speed increased. These artefact independent-components (ICs), while not originating from

electrode movement, still exhibit a similar spectral pattern to the MA ICs–a peak at the step-

ping frequency. MA was identified and quantified in each component using a novel method

that utilizes the participant’s stepping frequency, derived from a forehead-mounted acceler-

ometer. We then benchmarked the EEG data by applying newly established metrics to

quantify the success of our method in cleaning the data. The results indicate that our

approach can be successfully applied to EEG data recorded during TM and OG walking,

and is offered as a unified methodology for MA removal from EEG collected during gait

trials.
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Introduction

Surface electroencephalography (EEG) allows humanity a glimpse of our minds through the

electrical output generated by the vast networks of neurons in our brains. The faint electrical

signals arise from the joint activity of countless neurons, recorded using the EEG electrodes.

Due to the delicate nature of the recorded signal it is easily overshadowed by various artefacts

such as eye blinks, muscles activations, electromagnetic noise and movement artefacts[1,2].

The latter practically constraining the modern EEG to be recorded only during stationary

settings.

EEG signals recorded during gait activity reflect neural mechanisms associated with healthy

or impaired leg movements[3]. In the past decade, EEG signals were recorded during treadmill

(TM) walking [4–7], identifying a systematic modulation of EEG spectral amplitude during

the gait cycle and coupling of EEG recordings and electromyography recorded from the lower

limbs. Some of the studies involving EEG recordings during human locomotion addressed

gait disturbances, for example, in persons with Parkinson’s disease and in particular the debili-

tating phenomenon of freezing of gait[8–12]. Due to the dynamic nature of the aforemen-

tioned experiments, much effort is involved in studying and removing movement artefacts

[13–15] , with some studies concluding that more sophisticated tools are needed to properly

clean gait-related artifacts [2]. It also became apparent that data preprocessing is an important

first step for MA removal because of the inherent complexity of the EEG data. However, cur-

rently there are no EEG MA studies that utilize an advanced preprocessing tool (i.e., PREP

pipeline [16]) for improving the decomposition algorithm’s (i.e., Independent Component

Analysis (ICA)) performance. The field of ICA algorithms has also evolved, and today better

decomposition algorithms are available [17]. The objective of this study was to remove EEG

MA by developing a new framework that combines the most advanced algorithms in prepro-

cessing and signal decomposition analysis with our own novel methodology for MA identifica-

tion, and to test the results using recently published EEG benchmarking metrics [15].

Movement artefacts (MA) in EEG signals originate from mechanical forces applied on the

scalp electrodes, inducing small electrode movements relative to the scalp which, in turn,

cause the recorded voltage to change regardless of cortical activity. It was previously claimed

that movement artifact should be removed in order to study electro-cortical activity during

locomotion[13]. However, according to recent studies, EEG data recorded during walking is

likely to contain substantial MA that cannot be removed using traditional signal processing

methods[2].

Various methods have been proposed for the removal of MA from EEG signals. Gwin et al.,

[13] first removed an MA template from the stride-epoched data using a 20-stride moving

average, and then applied independent component analysis (ICA), a source-separation algo-

rithm, to further clean the data. Leutheuser et al., [17] later compared two ICA algorithms, the

common InfoMax as well as AMICA (Adaptive-Mixture ICA), in terms of their performance

in reduction of EEG artefacts, and found that the AMICA algorithm outperformed the Info-

Max. Later, Onikura et al. [14] suggested an ICA based method to remove head-movement

MA by high pass filtering components whose temporal correlation coefficient with a head

accelerometer crossed a predefined threshold. Kline et al. [2] tested the use of stride-locked

moving average subtraction and Daubechies wavelet transform to remove walking MA of vari-

ous speeds. Automatic subspace reconstruction (ASR) [18] is another novel method for MA

removal in which infected segments of the data are processed using baseline data and principal

component analysis (PCA). While not all of the above methods were reported to successfully

remove MA, they unanimously noted that caution should be exercised as not to remove neural

data along with the MA, leading to subject specific thresholds, manual inspection, etc. In
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addition, they all utilized different benchmarking metrics for performance evaluation, an issue

that was thoroughly addressed by Oliveira et al. [15] who described metrics for benchmarking

EEG technologies during whole body motion. In this paper we primarily introduce an inte-

grated, novel methodology for removing MA from EEG signals recorded during treadmill

(TM) and over-ground walking, as well as inspect the EEG signal for the prevalence of such

artefact in different locomotion settings. We tested our proposed approach using state of the

art benchmarking metrics [15] and equipment. The methodology, that incorporates different

parts of past studies while adding novelty of its own, was aimed at finding a fine line between

retaining as much neural data as possible and reducing MA.

Methods

Participants

The study included 5 young, healthy adult (mean age ± SD: 30.5 ± 5.31) participants. All partic-

ipants gave their written informed consent prior to entering the study. The experimental pro-

tocol was approved by the ethics institutional review board for experiments involving human

participants in the Chaim Sheba Medical Center.

Data collection; signal measurement, apparatus

The participants were fitted with a 32-electrode wireless EEG system (eego sports 32 pro by

ANT-Neuro, The Netherlands), which utilizes passive-wet electrodes arranged in the 10–20

system. Impedances were kept under 20 kOhm (cross-subject mean: 7.19 ± 3.77 KO), while

channels with impedance of over 20 kOhm were excluded from the analysis. Using adhesive

tape, an accelerometer (eego sports 32 pro by ANT-Neuro, The Netherlands) was placed on

the midline of the participants’ forehead in order to determine the mechanical forces that were

applied on the EEG electrodes during locomotion. An instrumented dual belt TM equipped

with bi-lateral force plates was used (R-Mill, ForceLink, The Netherlands. EEG, accelerometer

and ground reaction forces (GRF) data were recorded simultaneously during walking at 1024,

1024 and 120 Hz respectively. In addition, all trials were video-recorded.

Experimental protocol

The experiment began with the recording of a one-minute sitting-baseline (BL), followed by

1-minute during which the participants were asked to nod their head back and forth in a com-

fortable frequency. The participants then performed six walking trials, each lasting two min-

utes. Firstly, four trials were performed on a TM at increasing speeds (0.4, 0.8, 1.6 and 2.2 m/s)

(Fig 1), these were followed by two over-ground (OG) trials, first at the participant’s natural

pace and another later with elevated walking speed. OG trials were performed in a 24 m long

corridor and walking speeds for these trials were determined using the average walking time

for completing a predefined 10 m segment of the corridor. Each participant’s OG walking

speeds were derived from video recordings and accelerometer data.

Data preprocessing

EEG Data preprocessing and analysis was performed in MATLAB [The MathWorks Inc., Natick,

MA] using EEGLAB [19], fitted with the PREP extension [16] and custom scripts as follows:

1. As MA may interfere with Channel rejection (CR), the latter was performed using PREP

according to BL data only and then applied to the participant’s full, continuous, dataset.

Criterions for CR were (Parametric thresholds for the PREP GUI appear in parentheses):
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1. Standard deviation (5)

2. High frequency noise (5).

3. Correlation with neighboring channels (0.4).

2. The channel-rejected, continuous, dataset was then processed by:

1. Data de-trending by high-pass filtering; 1 Hz cutoff frequency.

2. Line noise removal at 50Hz and its harmonics using CleanLine.

3. Re-referencing of the signals to an average reference.

3. The continuous EEG data was cropped to trial specific datasets and each dataset was pro-

cess by:

Fig 1. Exemplary EEG data recorded during different walking speeds before and after removal of movement artifacts. Panels A,B,C and D depict high pass filtered

EEG data recorded during TM walking at speeds of 0.4, 0.8, 1.6 and 2.2m/s, respectively. To the right, panels E, F, G and H depict the same time segments in the data

after movement artefact removal. The x axis represents time in seconds, the y axis shows the voltage vs. time for 10 electrodes (voltage curves are shifted vertically for

clarity).

https://doi.org/10.1371/journal.pone.0197153.g001
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1. Running the AMICA algorithm [20]

2. Removing EOG, EMG and other non-movement artefact component by visual inspection

and comparing the components’ spatial distribution, time course and spectrograms to

typical artefact patterns as outlined in [1].

3. Removal of artefacts is performed using EEGlab’s graphical user interface.

Independent component analysis, MA component identification and

removal from the EEG data

All remaining components and vertical accelerometer data were transformed to the spectral

domain using Fast Fourier transform (FFT). The average stepping frequency (ASF) of each

trial was derived from the power spectrum of the accelerometer’s vertical component using

peak detection (Fig 2) and verified against the recorded video (i.e., counting steps in a time

unit) and heel strike (HS) detection using the GRF data.

Fig 2. Cz electrode and accelerometer power spectra comparison. The top row depicts the accelerometer’s power spectra in the various walking trials, while the

middle and bottom rows depict the power spectra of the Cz electrode after preprocessing and MA-removal, respectively. X and Y axes of the plots stand for frequency

and spectral power, respectively.

https://doi.org/10.1371/journal.pone.0197153.g002
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The MA components have a unique spectral signature compared to their neural counter-

parts—a tall peak at the stepping frequency surrounded by relatively low amplitude. Since

EEG data components usually have most of their spectral energy in the lower frequencies, a

median is used to verify that indeed the MA independent components (ICs) spectral signature

is present.

To assess the amount of MA, each IC was given an MA prevalence (MAP) score, calculated

as

MAPComponent ¼
Power at ASF

Medianð0 � 5 Hz spectral powerÞ

Where ‘Power at ASF’ denotes the component’s spectral peak at the average stepping fre-

quency, and ’Low frequency power median’ is the power spectral density’s median in the 0–5

Hz band. The MAP score is calculated as the ratio between a component’s power at the step-

ping frequency and the median of the spectral power in the 0–5 Hz band. Since components

marked as MA are removed entirely we wanted to make sure little to no neural data was

removed along with them. After inspecting many MA and non-MA ICs’ frequency spectra, we

came to the conclusion that a ratio of 80 can serve as a classifying threshold aiming to remove

components containing mostly MA while retaining as much neural data as possible. A MAP

score of 80 means that there is 80 times more spectral power in the average stepping frequency

compared to its surroundings in the 0–5 Hz range (i.e., where most of the spectral power

resides in non-MA components).

Additionally, we reviewed the power spectra of the different components and discovered

another pattern of MA component spectra. This pattern featured decaying sub-harmonics at

0.5 multiples of the stepping frequency (Fig 3) and is related to lateral sway while walking, in

line with previous studies[21]. These MA components were removed as well.

Validation

In order to determine the prevalence of MA in the cleaned data and to avoid over-cleaning,

the EEG data were benchmarked using two metrics. We utilized a metric described by Oliveira

et al. called the walking/sitting (W/S) ratio [15]. The W/S ratio is calculated by dividing the

spectral power in the 5–80 Hz band, containing the theta (5–8 Hz), alpha (9–13 Hz), beta (13–

30 Hz) and gamma (30–80 Hz) brain oscillations, of a walking trial by the spectral power in

the same band of the sitting BL. The W/S Ratio determines changes in EEG spectral content

related to movement where a ratio that is larger than 1 suggests the existence of MA in the

EEG data and a W/S ratio smaller than 1 may indicate the EEG data were over-cleaned. We

note, however, that although the W/S ratios should ideally be 1, this would require the same

continuous electro-cortical activity between seated and walking conditions. Previous studies

indicated a power drop in the alpha (9–13 Hz) and beta (13–30 Hz) brain oscillations during

motor activity when compared to a resting baseline [22], as well as a related drop in W/S ratios

during locomotion in a different study [15]. These explain why W/S ratios that are only slightly

below 1 are not necessarily an indicator of over-cleaning. We utilized the previously described

drop in alpha and beta power to assess the physiological validity of our results by calculating

the W/S ratio specifically for the alpha and beta bands during the different walking trials,

before and after the proposed MA-removal methodology was applied.

To compare our method to the current state-of-the-art in MA removal, we also cleaned the

data using ASR and compared the results using the previously described benchmarking crite-

ria. ASR applies Principal Component Analysis (PCA) to the EEG data in a moving window,

decomposing it into subspaces which are compared to a clean BL segment. The subspaces that
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are identified as noisy are reconstructed using an un-mixing matrix which was derived from

the BL using PCA. By so, ASR automatically eliminates eye-blinks, muscle and movement arte-

facts. We referred to data prior to MA removal, data who’s MA was cleaned using our pro-

posed method and data pruned using ASR as ‘Preprocessed’, ‘AMICA’ and ‘ASR’, respectively.

The results of these comparisons were statistically analyzed using a two-way ANOVA by ranks

(Related-samples Friedman’s test) for comparing the different methods and walking speeds.

Statistical analysis. Statistical analysis was performed with the IBM SPSS statistics 21 soft-

ware. Significance level for all test was set to α = 0.05. In order to assess the effect of the MA

induced by the increasing speeds as well as their effect on the EEG data, we analyzed the

parameters obtained from preprocessed-only, pruned using AMICA and pruned using ASR

datasets.

Fig 3. Decaying harmonics at 0.5 multiples of the stepping frequency. Frequency spectrum of an exemplary AMICA component, decomposed from a 1.6

m/s TM trial. Each spectral peak’s frequency and amplitude are depicted in the data-tips. The stepping frequency, as derived from the accelerometer, is shown

as a red dashed line.

https://doi.org/10.1371/journal.pone.0197153.g003
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We evaluated each methods’ ability to remove MA from EEG data recorded during increas-

ing walking speeds, using the W/S ratios, as well as alpha and beta bands’ spectral power

parameters. This was performed using a two-way ANOVA by ranks (Related-samples Fried-

man’s test) for comparing the different walking speeds within each method.

Later, to assess the difference in performance between our proposed method and the cur-

rent state-of-the-art (i.e., ASR), we performed a Related-samples Wilcoxon signed rank test,

directly comparing the two methods, whereas the walking speeds now serving as the within

variables. This was performed utilizing the 3 parameters described in the previous chapter.

Results

The faster a person walks—the more GRFs he/she will be subjected to (Fig 1, Plotnik et al,

2013 [23]) and hence more forces will be applied on the scalp electrodes. Thus, generally

speaking, the faster one’s walking speed—the more MA-infected the recorded EEG data will

be, as demonstrated in Fig 1. As can also be seen in Fig 1, this is particularly true for the Cz

electrode, that is the most prone to MA due to its location at the top of the scalp [2].

Cz electrode and accelerometer spectral comparison

We begin by comparing the frequency spectra of the Cz electrode and of the accelerometer’s

vertical component in Fig 2. Presented are data from all 6 walking trials (TM and OG) of a typ-

ical participant (i.e., HU971), where the peak in the accelerometer’s power spectrum corre-

sponds to the participant’s stepping frequency. It can be seen that (a) the spectral peak of the

accelerometer matches to the spectral peak in the Cz electrode (e.g., Fig 2, 2.2 m/s) (b) the

spectral peak’s amplitude in the EEG and accelerometer data increased along with the walking

speed in the trials before MA removal (c) MA removal considerably reduced the aforemen-

tioned peak.

W/S ratios at various speeds and conditions

As displayed in Fig 4, the W/S ratio for the trials prior to MA removal increased dramatically

in conjunction with the walking speeds, while trials cleaned by our method and ASR displayed

a ratio ranging between 0.87 and 1.25 across all trials While the data cleaned by AMICA and

ASR are not affected by speed (χ2(5) = 1.2,p = 0.94; χ2(5) = 5.6,p = 0.34, respectively), the pre-

processed-only data was clearly speed-dependent (χ2(5) = 22.94,p< 0.0001). For pairwise

comparisons see Fig 4. Ratios>1 were encountered in the AMICA 2.2 m/s and OG-elevated

trials (1.07 and 1.25, respectively) as well as the ASR 1.6 m/s and OG-regular trials (1.09 and

1.05, respectively). The W/S ratios rendered by ASR presented higher SD values when com-

pared to our method, with the exception of OG-elevated. Note that although the MA manifests

predominantly in the stepping frequency (i.e., below 5 Hz), it is clearly apparent in the 5–80

Hz band. Directly comparing our proposed method and ASR produced no statistically signifi-

cant difference (Z = 6,p = 0.68).

MA distribution across the scalp

The scalp distribution maps portrays a more detailed picture of Fig 4 W/S ratios by spatially

displaying the various electrodes’ ratios as they are spatially spread across the scalp. Cross-sub-

ject scalp distribution maps of the W/S ratios across the 32 electrodes and in all trials are pre-

sented in Fig 5. Each electrode is represented by a dot while inter-electrode values were

generated using spline interpolation. It can be seen how in the TM setting, the lowest speed

(i.e., 0.4 m/s) presents practically no MA to begin with while right after, at 0.8 m/s, MA begin
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to appear and increase along walking speeds where in 2.2 m/s the W/S ratios values are well

over 3 and the scalp distribution maps are saturated. Further, as a control, we applied the pro-

posed methodology to artificial ‘simulated walking noise’ added to a baseline recording, and

confirmed that after applying our method, W/S ratios dropped to 1.002 (see full description of

this procedure in S3 File).

Fig 4. Walking/Sitting (W/S) ratios. W/S ratios are presented for the various walking trials for the preprocessed-only, AMICA-cleaned and ASR-cleaned EEG data in

blue, orange and gray, respectively. X and y axes depict the various trials and the corresponding W/S ratios, respectively. The mean cross-subject regular and elevated

OG walking speeds were 1.37 and 1.81 m/s, respectively. Shown are the cross-subject group average and standard deviation. For the preprocessed data (blue), all

multiple comparisons are significantly different for TM walking (p<0.01, as indicated by the asterisks), as opposed to AMICA and ASR cleaned data.

https://doi.org/10.1371/journal.pone.0197153.g004

Fig 5. W/S ratios spatial distribution across the scalp. Quantitative comparison between 6 EEG signals before and after MA removal. The spectral energy in the 5–80

Hz band was compared to the measured baseline’s spectral energy of the same frequency band. The values, spatially distributed across the scalp, depict the spectral

energy ratios between walking and sitting (i.e., baseline), around the stepping frequencies associated with the different speeds (warmer colors reflect higher ratios). The

mean cross-subject regular and elevated OG walking speeds were 1.37 and 1.81 m/s, respectively. Black dots depict scalp electrodes.

https://doi.org/10.1371/journal.pone.0197153.g005
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Alpha and beta bands analysis during motor activity

The energies of the alpha and beta bands were normalized in reference to each participant’s sit-

ting baseline of the same band, in order to assess changes in alpha and beta power during loco-

motion. Fig 6 presents these values for each trial. It can be seen how prior to MA removal, the

expected drop in energy is realized, for both bands only in the slowest speed, 0.4 m/s. Prior to

MA removal, the data presented a power increase at higher speeds (1.6 m/s and 0.8 m/s and

above for the alpha and beta bands, χ2(5) = 19.51,p = 0.002; χ2(5) = 17.8,p = 0.003, respec-

tively). For pairwise comparisons see Fig 6.

Data cleaned by our proposed method consistently exhibited the expected power drop in

both the alpha and beta bands across all trials, with the exception of OG-elevated. ASR, in

comparison, presented the beta band’s power drop in most of the trials, but also displayed an

unexpected increase in alpha power during the 1.6 m/s, 2.2 m/s and OG-elevated trials. Never-

theless, Friedman’s tests yielded non-significant results (χ2(5) = 1,p = 0.96 for our method and

χ2(5) = 5.57,p = 0.35 for ASR), indicating that these deviations are non-significant. Directly

comparing our proposed method and ASR in the alpha and beta bands, no statistically signifi-

cant difference was found (Z = 7;p = 0.89 and Z = 7,p = 0.686).

Increased electro-physiological signals during higher speeds

Fig 7 depicts neck muscle activations during the various TM trials, as separated by the AMICA

algorithm. An increase in component activation is apparent along with the walking speed

(standard deviation (SD) values for the 0.4, 0.8, 1.6 and 2.2 m/s are 3.17, 3.5, 6.37 and 8.59,

respectively).

Discussion

In this article we have measured the effects of locomotion on recorded EEG data and proposed

a novel methodology for the removal of the associated MA. Currently there are no EEG MA

studies, that utilize an advanced integrated preprocessing tool (i.e., PREP pipeline), which

greatly affects the decomposition algorithm’s (i.e., AMICA) performance. Our procedure was

Fig 6. Alpha and beta bands analysis during motor activity. W/S ratios specifically calculated for the alpha [7.5–12 Hz] and beta [13–30 Hz] bands are presented in

panels A and B, respectively. Ratios of the preprocessed-only, AMICA and ASR cleaned data are displayed in blue, orange and gray, respectively. The mean cross-subject

regular and elevated OG walking speeds were 1.37 and 1.81 m/s, respectively. X and y axes depict the various trials and band’s W/S ratio, respectively. For preprocessed

data (blue), significance in the pairwise comparisons are indicated by asterisks (single asterisks denotes p<0.01 and double asterisks p<0.05). AMICA and ASR cleaned

data showed no statistically significant power increase.

https://doi.org/10.1371/journal.pone.0197153.g006
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successfully applied for TM and OG walking alike, and is offered as a unified methodology for

MA removal from EEG collected during gait trials.

In general, the proposed approach removes MA based on stepping frequency information.

In order to substantiate this approach we began with presenting evidence pointing that there

is, in fact, correlation between the frequency spectrum of the recorded, uncleaned, data from

the EEG electrodes and the forces applied on the scalp during locomotion. Given the periodic

nature of human locomotion, our analysis of the ICs’ frequency spectra serves as a straightfor-

ward and powerful way to detect and remove locomotion-originated MA. We also tested our

methodology by applying it to data from baseline recordings with added artificial noise (i.e.,

simulating MA) and demonstrated that those artificial artefacts were successfully removed (see

Figure A in S3 File).

Our approach offers a systematic way of evaluating MA through the analysis of spectral

components. We propose a full ‘step by step’ approach from start to finish, as well as combine

multiple state-of-the-art signal processing methods (i.e., PREP pipeline, AMICA) with our

novel methodology for assessing and removing MA.

Fig 7. Increased electro-physiological signals during higher speeds. Presented are 10-second temporal segments of occipital neck muscle components, as

separated by the AMICA algorithm (exemplary component map presented on the right), recorded during the various TM speeds of a single participant. Speeds

increase from top to bottom, x and y axes depict time and amplitude [V], respectively.

https://doi.org/10.1371/journal.pone.0197153.g007
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Cz electrode and accelerometer spectral properties

Since the Cz electrode is the most prone to MA, we decided to examine this electrode’s power

spectrum before and after MA removal to provide a worst-case scenario overview.

Looking at the vertical accelerometer data (Fig 2, top row), it is apparent that the faster the

participant walked, the more MA was induced to the EEG data (i.e., wider, taller spectral peaks

at the stepping frequency; Fig 2, middle row). This can be observed by the increasing ampli-

tude of the spectral peaks along with the walking speed. Additionally, it can be seen that OG

walking leads to more MA compared to TM at similar speeds.

Differential considerations on MA removal for TM and OG walking

In the lowest speed, 0.4 m/s, MA was negligible (i.e., low MAP score) and therefore the power

spectra of the preprocessed and MA-removed data are the same. The spectral peak in the stepping

frequency grew as the TM’s speed was increased, while the higher speeds proved to be harder to

clean (i.e., more EMG and MA components detected). Additionally, OG walking trials were

harder to clean than trials performed on the TM because of two reasons: (i) Higher GRFs while

walking OG, compared to similar TM speeds, due to the TM’s suspension dampening and (ii)

The self-paced nature of OG walking results in small variations to the stepping frequency across

the trial thus, providing a quasi-periodic signal that’s harder for the AMICA algorithm to separate

from the neural data. On par with other observations in this study, the Cz electrode frequency

spectra show our proposed method was able to prune the data from MA in all TM walking speeds

and provide a substantial improvement in TM running and OG locomotion.

W/S ratios at various speeds and conditions

The W/S ratio, as seen growing alongside the walking speed in Fig 4, offers an opportunity to

examine the increase of spectral energy contents in the brainwaves band of EEG data recorded

during locomotion. While at the lowest speed (i.e., 0.4 m/s), both pre and post MA removal

ratios are close to 1, an increase at the W/S ratio is already apparent at 0.8 m/s, indicating the

presence of MA in the EEG data. This increase further escalades intensely at higher speeds.

The MA pruned data, on the other hand, presents ratios slightly below 1 for all walking speeds,

both on the TM and OG, which is in line with previous studies [15] as well as studies that have

demonstrated a reduction in alpha and beta power during motor activity [22].

It can also be observed that the W/S ratio’s standard deviation increased alongside the walk-

ing speed. These increasing SDs are a result of small differences in setup between subjects (i.e.,

small variations in the<20 impedance, different weight, walking style, sole cushioning, etc.).

These differences, while miniscule at lower speeds, increase and hyper-manifest as the walking

speed increases, and come to an extreme at OG locomotion. This points at how caution should

be practiced when recording EEG during OG locomotion or TM running, due to the higher

GRFs. We found no statistical difference in the performance at removing MA between our

method and the current state-of-the-art (i.e., ASR). Nevertheless, our suggested method pres-

ents lower inter-electrode variance (i.e., smaller error bars in Fig 4), which suggests a more

homogeneous removal of MA across the scalp and thus cleaner EEG data.

MA distribution across the scalp

Looking at Fig 5, we see again how for the three TM-walking speeds, as well as the OG-regular,

the proposed method is able to clean the data well while at the TM-running (i.e., 2.2 m/s) and

OG-elevated trials some MA is still present in the signal. In the latter conditions, the MA con-

stitutes a very large portion of the data. So much so, that the AMICA algorithm struggles to
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separate it from the neural data, resulting in mixed neural-MA components. This gives us an

idea about the method’s abilities and limitations in various walking conditions. Additionally,

It can be seen how MA appears first (i.e., at lower speeds) mainly at the top of the scalp, in the

area around the Cz electrode, and later spreads to the peripheral areas, consistent with prior

studies[2].

Alpha and beta bands analysis during motor activity

Past studies have demonstrated a link between motor activity and a reduction in the alpha and

beta bands’ power of the recorded EEG [22,24]. Moreover, a more prominent drop has been

shown in the alpha band when compared to the beta band. This property can serve as a good

physiological validity benchmark of the EEG data, both prior to and after the MA-removal

process, as depicted in Fig 6. Looking at the preprocessed-only data, an increase is evident in

both the alpha and Beta bands’ normalized spectral power. ASR displayed better values com-

pared to the preprocessed datasets, but on the other hand also presented an unexpected

increase in power evident in the alpha band during TM trials at speeds of 1.6 m/s and above, as

well as in the OG-elevated trial, which may originate from non-cortical artifacts.

Due to the slighter change in the beta band’s power during motor activity, its power drop is

more susceptible to MA as it diminishes in lower speeds then the drop in the alpha band’s

power (the power drop in the preprocessed data is diminished at 1.6 and 0.4 m/s for the alpha

and beta bands, respectively). This delicate nature of the beta band also explains why it is first,

and only, at displaying an increase in the MA-removed data (i.e., at the OG-elevated trial,

which also displays the highest ratio after MA-removal).

The alpha and beta bands analysis shows how MA removal is important in order to reveal

physiological changes in EEG that may be hidden beneath the MA. Moreover, our results dem-

onstrate that MA removal is essential in order to detect physiological changes in EEG during

locomotion.

Increased electro-physiological signals during higher speeds

An interesting observation we made using AMICA is how electro-physiological signals, such

as the neck muscles activations as separated by the algorithm, increased with the walking

speed. We presume these increasing activations are in order to stabilize the participant’s head

during heel strikes at the growing TM speeds. While these components do not originate from

scalp electrodes movement, and thus will probably be categorized as EMG artefacts and

removed at the preprocessing stage, they exhibit a power spectrum similar to the MA’s–a peak

in the stepping frequency. This serves as an example of how physiological systems (e.g., mus-

cles, heart rate, etc.) are engaged more intensively when walking faster–therefore possibly

introducing electro-physiological (i.e., non-MA) noise to the recorded EEG.

Thus, while our bodies engage physiological systems (e.g., muscles, heart rate, etc.) more

intensively to walk faster, further care is needed to isolate the noise related to the elevated

activity within the EEG signal and remove it, in order to obtain a signal that reflects primarily

brain activity.
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