
foods

Article

Tracing the Geographical Origin of Durum Wheat by
FT-NIR Spectroscopy

Annalisa De Girolamo 1,* , Marina Cortese 1, Salvatore Cervellieri 1, Vincenzo Lippolis 1 ,
Michelangelo Pascale 1 , Antonio Francesco Logrieco 1 and Michele Suman 2

1 Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Via G. Amendola
122/O, 70126 Bari, Italy; marinacortese88@gmail.com (M.C.); salvatore.cervellieri@ispa.cnr.it (S.C.);
vincenzo.lippolis@ispa.cnr.it (V.L.); michelangelo.pascale@ispa.cnr.it (M.P.);
antonio.logrieco@ispa.cnr.it (A.F.L.)

2 Research Development & Quality, Barilla G. & R. Fratelli S.p.A., Via Mantova 166, 43100 Parma, Italy;
Michele.Suman@barilla.com

* Correspondence: annalisa.degirolamo@ispa.cnr.it; Tel.: +39-080-5929351

Received: 25 July 2019; Accepted: 25 September 2019; Published: 2 October 2019
����������
�������

Abstract: Fourier transform near infrared (FT-NIR) spectroscopy, in combination with principal
component-linear discriminant analysis (PC-LDA), was used for tracing the geographical origin of
durum wheat samples. The classification model PC-LDA was applied to discriminate durum wheat
samples originating from Northern, Central, and Southern Italy (n = 181), and to differentiate Italian
durum wheat samples from those cultivated in other countries across the world (n = 134). Developed
models were validated on a separated set of wheat samples. Different pre-treatments of spectral
data and different spectral regions were selected and compared in terms of overall discrimination
(OD) rates obtained in validation. The LDA models were able to correctly discriminate durum Italian
wheat samples according to their geographical origin (i.e., North, Central, and South) with OD rates
of up of 96.7%. Better results were obtained when LDA models were applied to the discrimination of
Italian durum wheat samples from those originating from other countries across the world, having
OD rates of up to 100%. The excellent results obtained herein clearly indicate the potential of
FT-NIR spectroscopy to be used for the discrimination of durum wheat samples according to their
geographical origin.
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1. Introduction

Durum wheat (Triticum durum Desf.) is a cereal crop that represents only 8% of the total wheat crop.
Different from common wheat (Triticum aestivum), which is cropped in several areas of the world, durum
wheat is mainly cropped in the Mediterranean basin—characterized by a relatively dry climate, with hot
days and cool nights during the growing season—contributing to about 60% of the world production
of this crop. The European Union (EU) is the largest producer and consumer of durum wheat in
the world, with production largely concentrated in Italy, Greece, and Spain, together accounting for
about 80% of the total EU production. Canada is the second largest producer of durum wheat in the
world, and is a major durum wheat exporter. The United States, North Africa, Turkey, Syria, Australia,
Mexico, Kazakhstan, and India are also significant producers of durum wheat [1].

The peculiar characteristics of durum wheat, such as its large kernel size, hardness, and bright
yellow color, along with its protein content and gluten strength, make it suitable for manufacturing a
wide range of end products, such as pasta, bread, couscous, and bulgur. Among them, pasta is the
main product of durum wheat technology and is a staple food in several different countries. Italy is
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the country with both the largest production (over 3.4 million tons) and consumption (25.3 kg per
capita/year) of pasta. However, the Italian durum wheat crop is not sufficient in covering national
needs; therefore, the industry utilizes both domestic Italian wheat as well as wheat imported from
abroad [2]. Indeed, it has been estimated that Italy in 2016 produced approximately 3.9 million tons of
durum wheat, yet imported more than 2 million tons of durum wheat selected from different countries
throughout the world (United Nations data retrieval system, UNdata, http://data.un.org). Such a
consistent level of imports serves not only to make up for the shortfall in quantity, but also to regulate
the variation in quality of domestic crops in order to guarantee the quality of the end product. With
the introduction of the “Made in Italy” trademark, identifying food products of very high quality that
are processed and manufactured solely on Italian soil using solely Italian ingredients [3], the demand
of Italian millers and pasta producers for domestic production is gradually increasing.

The geographical origin, the genotype, the climate conditions of the harvesting year (such as
precipitation, temperature, and sunshine time), and the chemical composition of the soil can have
effects on the wheat composition and thus on the quality of the final products [4]. This is one of the
reasons why the characterization of geographical origin of a raw ingredient, or of a foodstuff, is gaining
increasing interest from consumers and producers, especially when it is used for certification of quality,
authenticity, or typicality. The authenticity of foods has two different aspects, that is, authenticity with
respect to production (such as geographical and botanical origin, organic vs. nonorganic, fresh vs.
frozen, wild vs. farmed) and authenticity with respect to the description reported on the label (e.g.,
adulteration issues). The increased reliance on the international trade of food ingredients, together
with the increased industrialization of food processing, allows food fraud to continue to increase in
scope, scale, and threat. At the same time, the expanding of the global market makes the consumer
more concerned about the origin of the products they consume. In order to achieve a high level of
protection for consumers and to guarantee that consumers are appropriately informed with regards the
food they consume, the European commission has laid down rules for indicating the country of origin
or place of provenance of the primary ingredient of a food [5]. Recently, the European Commission has
implemented the current regulation to better clarify the rules for indicating the country of origin of a
primary ingredient that, depending on the geographical area, should be given as “EU”, “non-EU”, or
“EU and non-EU” [6].

Considering the current legislation and to prevent adulteration practices and mislabeling regarding
geographical origin, reliable analytical methods are required to address authenticity problems. Several
methods have been proposed for determination of geographic origin of food products, including
wheat. In a recent review covering the period from late 2008 until early 2015, the methods used mainly
comprised isotopic analysis, (semi-)nondestructive analysis, compositional analysis, and elemental
analysis [7]. (Semi-)nondestructive methods refers to methods for which minimal or no sample
preparation is required, and the sample is not destroyed by extraction. These features are characteristics
of a range of spectroscopic methods including infrared (IR) spectroscopy working in the near (NIR) and
middle (MIR) spectral ranges and hyperspectral imaging. Furthermore, IR spectroscopy, in combination
with multivariate analysis, can enhance the information generated by the analysis of samples, allowing
for a detection of a pattern in a data set, and for the development of mathematical models to monitor
authenticity and traceability [8,9]. IR spectroscopy has been successfully applied to several applications
in the field of identification of geographical origin, such as virgin olive oil, cheese, wine, honey, tea,
lentils, distillers dried grains with solubles, and other food products [7,9–13]. However, only a few
applications of IR spectroscopy to differentiate wheat samples for geographical origin have been
described in the literature. In a first study, Zhao et al. [14] demonstrated the potential of using NIR
spectroscopy in combination with chemometrics to discriminate common wheat samples originating
from different regions in China. Then, the same authors demonstrated the effect of grown origin,
genotype, and harvest year on NIR spectral fingerprints of common wheat [15]. A successful use
of NIR spectroscopy was also described by Gonzalez-Martin et al. [16] and Wadood et al. [12] to
discriminate common wheat and common wheat flours originating from different regions of Chile and
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China, respectively. However, considering the low number of NIR applications in this field, more data
are needed to demonstrate the effectiveness of NIR spectroscopy to be used as a valid method for
tracing the geographical origin of wheat.

In the light of these results reported in the literature, the aim of the present paper was to report the
use of Fourier transform-NIR (FT-NIR) spectroscopy to discriminate durum wheat samples originating
from different areas of Italy and to discriminate Italian durum wheat samples from those originating
from other countries. This is the first time that FT-NIR spectroscopy has been used for these purposes
and that durum wheat has been investigated.

2. Materials and Methods

2.1. Durum Wheat Samples and FT-NIR Spectroscopy Analysis

Fifty-nine durum wheat (Triticum durum) samples (from 50 to approximately 120 g each) of the
2017–2018 crop season were collected from local Italian producers located in 11 different Italian regions,
namely, Abruzzo, Apulia, Campania, Emilia Romagna, Lazio, Lombardy, Marche, Molise, Tuscany,
Umbria, and Veneto. Official sampling of wheat samples were carried out by a certification body
for Italian origin certification [17]. Furthermore, an additional 29 durum wheat samples (from 50 to
approximately 120 g each) were imported from eight different foreign countries, namely, Australia,
Canada, France, Greece, Russia, Spain, Turkey, and the United State. These selected foreign countries
are among the most relevant local producers of durum wheat, apart from Italy itself. No data about
merceological characteristics were available for collected samples. Each sample was finely ground
by the Retsch ZM 200 (Retsch, Haan, Germany) laboratory mill, obtaining grounded samples with
particle size ≤500 µm.

FT-NIR spectra were recorded using the spectrometer Nicolet iS50 FT-IR (Thermo Fisher Scientific
Inc., Madison, WI, USA) equipped with an interferometer and an integrating sphere, working in
diffuse reflection and with an indium gallium arsenide (InGaAs) detector. Approximately 15–20 g of
grounded wheat samples were placed on the rotary sample-cup spinner, and spectra were recorded by
using 32 interferometer sub-scans in the range from 10,000 to 4000 cm−1, with a resolution of 8 cm−1.
The time analysis was approximately of 30 seconds. Absorbance data were collected with OMNIC
software v 9.0 (Thermo Fisher Scientific Inc., Milwaukee, WI, USA).

2.2. Chemometric Analysis

The FT-NIR spectral data were imported as OMNIC SPA files into The Unscrambler X, v10.1
(CAMO Software AS, Oslo, Norway, 2011) software in order to perform the multivariate statistical
analysis. The principal component analysis (PCA) was performed on both raw and pre-processed
spectra to explore data and to recognize potential clustering (similarities and differences) of wheat
samples. The presence of outliers was evaluated by using the graphical tools of the Unscrambler X
software, that is, the Hotelling T2 line plot using a critical limit of p-value < 5% and the influence plot,
displaying samples with high leverage. The assignment of FT-NIR wheat signals was done through
comparison with the literature [12,14–16,18–20]. Before development and validation of chemometric
models, the FT-NIR spectral data were pre-treated using mean normalization, detrending, or standard
normal variate (SNV) to reduce the spectral baseline shift, noise, and light scatter influence. Pre-treated
data of FT-NIR spectra were then used to classify wheat samples based on their certified geographical
origin using principal components-linear discriminant analysis (PC-LDA).

Wheat Sample Classification

Two different classifications models for geographical origin discrimination were built. In the
first one, Italian wheat samples were classified into three geographical areas depending on the area in
which they were grown. In particular, samples from Emilia Romagna, Lombardy, and Veneto were
classified as belonging to “Northern” Italy; samples from Lazio, Marche, Tuscany, and Umbria as
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belonging to “Central” Italy; and samples from Abruzzo, Campania, Molise, and Apulia were classified
as belonging to “Southern” Italy. Furthermore, in order to increase the number of samples and to
balance the number of samples through the three areas, each sample was split in sub-samples (from
two to six, depending on the available amount of wheat) that were acquired independently, and an
overall set of 181 wheat samples (i.e., n = 56 for Northern; n = 61 for Central; n = 64 for Southern) was
obtained (Table 1).

Table 1. Classification of durum wheat samples originating from different regions of Italy.

Classification Region Number of Samples

Northern
Emilia Romagna 18

Lombardy 20
Veneto 18

Total 56

Central

Lazio 15
Marche 16
Tuscany 13
Umbria 17

Total 61

Southern

Abruzzo 12
Campania 15

Molise 17
Apulia 20

Total 64

Overall total 181

The total of 181 samples were randomly divided into two data sets, that is, the calibration set,
containing 121 wheat samples (n = 37 for Northern; n = 41 for Central; n = 43 for Southern), and the
validation set, containing 60 wheat samples (n = 19 for Northern; n= 20 for Central; n = 21 for Southern).
Both calibration and validation sets contained a balanced number of samples among the three classes.

The second geographical origin classification was aimed at discriminating wheat samples from
“Italy” against wheat samples collected across the world (i.e., Spain, Turkey, Greece, Russia, France,
Australia, the United States, and Canada) that were put together in a unique class named “other
countries”. To have a number of samples from “other countries” (n = 29) comparable to those from
“Italy” (n = 59), each of the samples from “other countries” was split into several sub-samples (from
two to six depending on the available amount) that were acquired independently. A total set of 75
wheat samples from “other countries” was obtained (Table 2).

Table 2. Classification of durum wheat samples collected from across the world.

Classification Countries Number of Samples

Other countries

Spain 3
Turkey 11
Greece 11
Russia 8
France 13

Australia 9
United States 8

Canada 12

Total 75
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Then, samples from “other countries” (n = 75) and samples from “Italy” (n = 59) were randomly
divided into the calibration set, containing 104 wheat samples (n = 44 for “Italy”; n = 60 for “other
countries”), and the validation set, containing 30 wheat samples (n = 15 for “Italy”; n = 15 for “other
countries”). Both calibration and validation sets contained a balanced number of samples among the
two classes. Then, spectral data were pre-treated and used to classify wheat samples on the basis of
their geographical origin using the PC-LDA. The first 15 principal components (PCs), accounting for
more than 99% of the total variance, were selected as input variables for the LDA.

The performance of the classification models developed for the data of FT-NIR were evaluated from
the results of the analyses of the validation datasets and expressed in terms of overall discrimination
(OD) rate, correctly classified (CC), and misclassified (MSC) samples. The OD rate was calculated
as percentage value by considering the sum of correctly classified wheat samples in all classes with
respect to the total number of samples; CC samples (%) in each class were calculated by considering
the number of correctly classified samples in the class with respect to the number of samples of the
respective class; MSC samples (%) were calculated by considering the number of misclassified samples
in the class with respect to the number of samples of the respective class. The tested pre-treatments
(i.e., mean normalization, detrending, or SNV) were compared in terms of OD rates and CC values.

3. Results and Discussion

3.1. NIR Spectra of Wheat: Assignment of Spectral Bands

The overall raw Italian spectra and the average spectra of the classes Northern, Central, and
Southern Italy are graphically shown in Figure 1a,b, respectively. All samples showed a similar trend
in absorption area without large differences in the shape of spectra. The most noteworthy absorbance
regions observed in the spectra had absorption bands around 8264 cm−1 (1200 nm), 6803 cm−1 (1470 nm),
6300 cm−1 (1587 nm), 5882 cm−1 (1762 nm), 5170 cm−1 (1934 nm), and 4900–4500 cm−1 (2040–2222 nm).
The absorption band at 8264 cm−1 was related to the second overtone of C–H stretch related to lipids;
the big absorbance peaks around 6803 cm−1 was related to the first overtone of O–H stretching and
associated to moisture content; the small absorbance at 6300 cm−1 was related to the first overtone
of O–H stretching and was associated with starches, whereas the small peak around 5882 cm−1 was
related to the first overstone of C–H stretching and was associated with lipids; finally, the absorbance
peaks between 4900–4500 cm−1 were related to a combination of C–H, N–H stretching, and O–H
stretching, and were associated with proteins [18–20]. These noteworthy absorbance regions were in
agreement with those reported elsewhere [12,14–16].

Because of this overlapping of peaks and broad spectral bands, the average spectra of wheat
samples belonging to each class, namely, Northern, Central, and Southern Italy, were calculated and
compared to try to visually differentiate samples on the basis of their geographical origin. As can
be seen in Figure 1b, the mean spectra of the classes Central and Southern Italy were completely
overlapped, while a signal amplification was observed in the average spectra of samples from Northern
Italy, mainly in the region from 7000 to 4500 cm−1.
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Figure 1. Raw Fourier transform near infrared (FT-NIR) spectra of the entire set of 181 Italian wheat
samples with fundamental spectral bands (a), and average FT-NIR spectra of the Northern (blue trace),
Central (green trace), and Southern (red trace) wheat classes. Central and Southern traces completely
overlapped (b).

3.2. Developmnt and Validation of PC-LDA Models for Geographical Origin Discrimination of Durum Wheat

3.2.1. PC-LDA Models for Classification of Durum Wheat Samples Collected from Northern, Central,
and Southern Italy

The spectral data were pre-treated using mean normalization, detrending, or SNV before the
development and validation of classification models to reduce the spectral baseline shift, noise, and light
scatter influence. A clear improvement of absorbance features of raw wheat spectra was observed after
each pre-treatment (Figures 1a and 2); for example, mean normalization reduced bias from the spectra
and spectral distorsions because of the scattering between spectra, detrending eliminated variations in
baseline shift, and curvilinearity, whereas SNV reduced the multiplicative interferences of scatter and
particle size of raw spectra [19].

Then, because of the complexity of FT-NIR spectra and the little differences between wheat samples,
it was essential to apply multivariate data analysis on pretreated spectral data to differentiate wheat
samples on the basis of their geographical origin. Furthermore, other than the entire spectral range
(i.e., from 10000 to 4000 cm−1), reduced spectral regions were singularly considered and compared to
evaluate which of them favored the geographical origin discrimination of durum wheat. The most
promising results were those obtained considering regions from 7700 to 4500 cm−1, from 6000 to
4500 cm−1, and from 5400 to 4000 cm−1) (Figure 1b).
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Figure 2. FT-NIR spectra of the entire set of Italian wheat samples pre-treated with mean normalization
(a), standard normal variate (b), and detrending (c).

In a first step, principal component analysis (PCA) with full cross validation was applied to the
whole set of 181 samples using the pre-treated FT-NIR spectra to extract information on the major
trends in the whole set and to figure out a preliminary discrimination of wheat samples as a function
of their geographic origin. In each case, the corresponding PCA score plots did not reveal any spatial
pattern in the sample score distribution and only led to a slight discrimination of wheat samples grown
in different parts of Italy when restricted spectral regions were used in place of the entire spectrum.

In a second step, the classification tool principal components-linear discriminant analysis (PC-LDA)
was applied to the pre-treated FT-NIR spectra to classify durum wheat samples on the basis of their
geographical origin. The first 15 PCs of the PCA, accounting for more than 99% of the total variance,
were used as input variables for the LDA. All the 181 Italian wheat samples were used to develop
and validate PC-LDA models; in particular, a total of 121 samples was used for the calibration of the
model and 60 samples for its validation. To select the best pre-treatment and spectral region able to
discriminate wheat samples according to their geographical origin, validation results were compared
in terms of overall discrimination (OD) rates. PC-LDA models always yielded good OD rates, ranging
from 95.0% to 100% in calibration and from 90.0% to 96.7% in validation, depending on the pre-treatment
applied to the considered range. The best validation results were those obtained by applying both
the mean normalization baseline (OD between 93.3%–96.7%) or SNV (OD between 91.7%–96.7%)
pre-treatments in the spectral range from 6000 to 4500 cm−1 (1666–2222 nm). These results were
different from those reported by Zhao et al. [15] that selected, besides the wavelength ranges between
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975–990 nm (that were not included in our equipment), the wavelength of 1200 nm and the range
between 1355–1380 nm—as they contain enough information to develop robust discriminant models.

Detailed discrimination results of the PC-LDA models obtained in validation for wheat samples
grown in different geographical areas of Italy (Northern, Central, and Southern) and analyzed in
different FT-NIR spectral regions using the mean normalization pre-treatment are reported in Table 3,
while the PC-LDA score plot is shown in Figure 3. It is noteworthy to mention that the class of wheat
samples grown in the Southern Italy gave almost always a 100% correct classification in both calibration
and validation, whereas some misclassifications occurred for wheat samples grown in Central and
Northern Italy, potentially related to the climatic conditions that are humid and cold in Northern
Italy and are generally warmer and dryer in Southern Italy, leading to the differentiation in chemical
composition of the wheat.

Table 3. Classification table (validation results) of the principal component-linear discriminant analysis
for wheat samples grown in different geographical areas of Italy and analyses by FT-NIR spectroscopy.
Spectral data were pre-treated using mean normalization.

Spectral Region Assigned Class a Predicted Class a

Northern Central Southern

10,000–4000 cm−1

Northern 17 0 0
Central 1 18 0

Southern 1 2 21

CC samples (%) b 89.5 90.0 100.0
OD rate (%) c 93.3

7700–4500 cm−1

Northern 18 1 0
Central 1 19 0

Southern 0 0 21

CC samples (%) b 94.7 95.0 100
OD rate (%) c 96.7

6000–4500 cm−1

Northern 18 1 0
Central 1 19 0

Southern 0 0 21

CC samples (%) b 94.7 95.0 100
OD rate (%) c 96.7

5500–4000 cm−1

Northern 17 1 0
Central 2 19 1

Southern 0 0 20

CC samples (%) b 89.5 95.0 95.2
OD rate (%) c 93.3

a Northern Italy: samples from Emilia Romagna, Lombardy, Veneto; Central Italy: samples from Lazio, Marche,
Toscana, Umbria; Southern Italy: samples from Abruzzo, Campania, Molise, Puglia; b CC, correctly classified; c OD,
overall discrimination.

Results obtained herein were in agreement with those reported by other authors that applied
the NIR spectroscopy in combination with chemometric analysis to the discrimination of common
wheat grown from different regions of China [12,14,15] and Chile [16]. Other successful applications of
NIR spectroscopy to the geographical discrimination of cereals and derived products include arabica
coffee from Brazil [21,22] and corn distillers dried grains from various countries [13]. The majority of
these papers combine NIR spectroscopy with the partial least squares discriminant analysis (PLS-DA)
and, to lesser extent, with LDA chemometric model for the geographical discrimination of wheat.
For example, Zhao et al. [14] applied both PLS-DA and LDA models for determination of geographic
origin of common wheat kernels and wheat flour samples. Overall discrimination rates ranged
from 85% to 95.5% for PLS-DA models and from 72.5% to 85.0% for LDA models. Considering the
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better results obtained with PLS-DA model, the same group of Zhao and co-workers [15] applied this
chemometric model in a further study to the discrimination of common wheat kernels from China
for their grown origin, genotype, and harvest year. Similarly, Gonzalez-Martin et al. [16] proposed
PLS-DA models for discriminating common wheat kernels and durum wheat flours originating from
different regions of Chile. Marquetti et al. [22] proposed a PLS-DA model that achieved in validation
an OD rate of 94.4% for discriminating arabica coffee samples geographically and genotipically. On the
other hand, in our study, we demonstrate the power and the effectiveness of the PC-LDA model to
successfully discriminate wheat samples on the basis of their geographical origin. Indeed the PC-LDA
score plot showed a good separation between the three Italian geographic regions, even though classes
“Northern” and “Southern” were more scattered compared with “Central” Italy (Figure 3). Results
obtained herein were in agreement with those described by Wadood et al. [12] who applied the LDA
chemometric model to discriminate wheat kernels and wheat flour for their geographical origin and
production year. In this case, OD rates ranged from 61.1% to 100%, with wheat flour providing the
best results.
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Figure 3. Principal components-linear discriminant analysis (PC-LDA) score plot for wheat samples
(validation results) grown in different geographical areas of Italy (North, Central, and South) analyzed by
FT-NIR in the spectral region between 6000–4500 cm−1 and using the mean normalization pre-treatment
of spectral data. Samples from different geographical origin are presented by different symbols.

3.2.2. PC-LDA Models for Classification of Durum Wheat Samples Grown in Italy and in Several Other
Countries across the World

As previously observed for FT-NIR spectra of Italian durum wheat samples, it was also observed
that in the wheat samples originating from different countries across the world (i.e., Spain, Turkey,
Greece, Russia, France, Australia, the United States, and Canada) the same noteworthy absorbance
regions existed around 8264 cm−1, 6803 cm−1, 6300 cm−1, 5882 cm−1, 5170 cm−1, and 4900–4500 cm−1,
thus confirming previously reported results [12,14–16]. The spectral data of wheat samples grown in
several other countries across the world were then pre-treated using mean normalization, detrending,
or SNV, as previously done with wheat samples grown in Italy. As expected, a clear improvement
of absorbance features of raw wheat spectra was observed after these pre-treatments. Then, the
multivariate statistical analysis was applied to FT-NIR spectra to discriminate wheat samples grown in
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Italy from those grown in other different eight countries across the world, which are often mixed with
locally produced wheat.

The PCA with full cross validation was applied to the pre-treated FT-NIR spectra of the whole set
of 134 wheat samples (i.e., 59 from “Italy” and 75 from “other countries”). The entire spectral region
(i.e., from 10,000 to 4000 cm−1), as well as the reduced spectral regions (i.e., from 7700 to 4500 cm−1,
from 6000 to 4500 cm−1, and from 5400 to 4000 cm−1) were investigated and compared as previously
done for Italian wheat samples. In each case, the corresponding PCA score plot revealed two major
clusters of samples corresponding to wheat samples grown in Italy and wheat samples grown in “other
countries”, respectively (Figure 4a). This separation between the origin was also evident by comparing
the average spectra of the two classes (“Italy” and “other countries”) in the spectral region between
7000 and 4500 cm−1, related to the content of starch, lipid, and proteins that, in the case of wheat grown
abroad of Italy, were more rich (Figure 4b).
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Figure 4. Average Principal component analysis (PCA) score plot for the entire set of wheat samples
grown in “Italy” and in “other countries” across the world, analyzed by FT-NIR in the spectral region
between 10000–4000 cm−1 and using the detrending pre-treatment of spectral data. Samples from
different geographical origin are presented by different symbols (a). FT-NIR spectra of wheat classes
“Italy” and “other countries” (b).

Then, the PC-LDA chemometric tool was applied to the pre-treated FT-NIR spectra using the
different spectral regions. The first 15 PCs of the PCA, accounting for more than 99% of the total
variance, were used as input variables for the LDA. All the 134 wheat samples were used to develop
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and validate PC-LDA models; in particular, a total of 104 samples was used for the calibration of
the models and 30 samples for their validation. PC-LDA models always yielded good OD rates that
ranged from 93.3% to 100% in calibration and from 86.7% to 100% in validation, depending on the
pre-treatment applied and the FT-NIR spectral region considered. The best results were those obtained
by applying the detrending pre-treatment in the spectral region from 6000 to 4500 cm−1 and from 7700
to 4500 cm−1, as previously observed for discrimination of Italian samples into three geographical
areas, together with the spectral region from 5500 to 4000 cm−1 (Table 4).

Table 4. Classification table (validation results) of the principal component-linear discriminant analysis
for wheat samples grown in “Italy” and in several “other countries” across the world, and analyzed by
FT-NIR spectroscopy. Spectral data were pre-treated using detrending.

Spectral Region Assigned Class a Predicted Class a

Italy Other Countries

10,000–4000 cm−1

Italy 13 1
Other countries 2 14

CC samples (%) b 86.7 93.3
OD rate (%) c 90.0

7700–4500 cm−1

Italy 15 1
Other countries 0 14

CC samples (%) b 100 93.3
OD rate (%) c 96.7

6000–4500 cm−1

Italy 15 0
Other countries 0 15

CC samples (%) b 100 100
OD rate (%) c 100

5500–4000 cm−1

Italy 15 1
Other countries 0 14

CC samples (%) b 100 93.3
OD rate (%) c 96.7

a Italy: samples from different areas, i.e., Emilia Romagna, Lombardy, Veneto, Lazio, Marche, Toscana, Umbria,
Abruzzo, Campania, Molise, and Puglia; other countries: samples from Spain, Turkey, Greece, Russia, France,
Australia, the United States, and Canada; b CC, correctly classified; c OD, overall discrimination.

The PC-LDA score plot showed a clear separation between the two classes. Furthermore,
in the cluster of Italian samples, it was possible to see a smaller group of five wheat samples from
Central–Southern Italy that, even if correctly classified, were close to wheat samples from France and
Canada (Figure 5).

The excellent results obtained herein clearly indicate the potential of FT-NIR spectroscopy
to be used for the discrimination of samples from “Italy” against samples from “other countries”
across the world. Other authors have described the application of infrared spectroscopy and near
infrared microscopy to the discrimination of corn distillers dried grains originating from different
countries [11,13,23]. To the best of our knowledge, this is the first time that a similar study has
been conducted on durum wheat samples using FT-NIR spectroscopy. Other techniques, including
isotope ratio mass spectrometry, high-resolution inductively coupled plasma mass spectrometry,
and gas chromatography have been proposed for the geographical discrimination of durum wheat
samples [24–29]. Although all these techniques are effective and showed their potential to be used for
this purpose, all of them are destructive, time-consuming, and require expensive instrumentations
and skilled personnel to perform the analysis, as compared with FT-NIR spectroscopy, which is rapid,
easy-to-use, cost-effective, and does not require skilled personnel for the analysis.
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4. Conclusions

In the last decade, food traceability has gained an increasing interest from both consumers and
producers because the claim of the geographical origin of foodstuffs may be used as one of the criterion
for certification of quality.

In this study, two LDA models based on the use of FT-NIR spectroscopy were developed and
validated to discriminate durum wheat samples on the basis of their geographical origin. In particular,
the first LDA model was able to discriminate wheat samples originating from different Italian
areas, namely Northern, Central, and Southern Italy. The evaluation of external validation results
demonstrated the robustness and reliability of the model, having an overall discrimination rate of up
to 97%. The second LDA model was able to discriminate Italian wheat samples from the samples
originating from eight different countries across the world and grouped in a unique class of samples,
having overall discrimination rates of up to 100%. However, these results should be further validated
through the use of samples originating from different growing seasons.

The existence of clearly distinct groups for wheat samples originating from the different regions
of the same country, as well as from different countries, supports the use of FT-NIR spectroscopy for
the characterization of Italian wheat samples according to their geographical origin. Furthermore,
considering that the traceability of geographical origin of Italian wheat is very important for the “Made
in Italy” brand and for the Italian food industry, the potential of using FT-NIR spectroscopy as a
reliable, rapid, and easy-to-use method for the fingerprinting of Italian durum wheat is evident.
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