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Abstract

Regeneration of the lens in newts is quite a unique process. The lens is removed in its entirety and regeneration ensues
from the pigment epithelial cells of the dorsal iris via transdifferentiation. The same type of cells from the ventral iris are not
capable of regenerating a lens. It is, thus, expected that differences between dorsal and ventral iris during the process of
regeneration might provide important clues pertaining to the mechanism of regeneration. In this paper, we employed next
generation RNA-seq to determine gene expression patterns during lens regeneration in Notophthalmus viridescens. The
expression of more than 38,000 transcripts was compared between dorsal and ventral iris. Although very few genes were
found to be dorsal- or ventral-specific, certain groups of genes were up-regulated specifically in the dorsal iris. These genes
are involved in cell cycle, gene regulation, cytoskeleton and immune response. In addition, the expression of six highly
regulated genes, TBX5, FGF10, UNC5B, VAX2, NR2F5, and NTN1, was verified using qRT-PCR. These graded gene expression
patterns provide insight into the mechanism of lens regeneration, the markers that are specific to dorsal or ventral iris, and
layout a map for future studies in the field.
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Introduction

Amphibians, especially newts, possess regenerative capabilities

that are missing in higher vertebrates. Newts can regenerate their

limbs, brain, heart, tail with spinal cord and other tissues.

Interestingly, newts can also regenerate the lens after its complete

removal (lentectomy). This system provides many advantages for

regenerative studies because the whole organ (lens) is being

removed. Lens regeneration occurs from the iris by a process that

involves the transdifferentiation of pigmented epithelial cells

(PECs) to lens cells. Another interesting aspect of this process is

that lens regeneration occurs only from the dorsal and never from

the ventral iris. This allows the use of the ventral iris as a natural

non-regenerative control in lens regeneration experiments [1,2,3].

Two major hallmarks of lens regeneration are the re-entry of the

cell cycle 4 days post-lentectomy (dpl) and the formation of a

dedifferentiated vesicle 8 dpl [4]. Interestingly, both dorsal and

ventral iris cells re-enter the cell cycle [5]. In the past, limited

expression studies, either using individual gene probes or small-

scale microarray analysis have indicated that dorsal and ventral

irises show no major differences in gene expression. In other

words, most of the examined genes were expressed in both irises.

Thus, to date no clear expression pattern has emerged to account

for the ability of the dorsal iris to be the source of the regenerating

lens. More recently a microarray analysis during early stages of

lens regeneration was performed. In that study expression in 1, 3

and 5 dpl from the dorsal or the ventral iris was compared with

the corresponding intact iris (0 day). While that study indicated

regulation in genes related to DNA repair, extracellular matrix

and redox homeostasis, direct comparisons between gene expres-

sion in dorsal and ventral iris could not be assessed. Thus, a direct

comparison of transcriptomes was needed to delineate global gene

expression differences between dorsal and ventral iris during lens

regeneration in newts [6,7].

Next-generation high-throughput techniques allow transcrip-

tome analysis based on de novo assemblies, making them

extremely useful for non-model systems like the newt. Here, we

investigate transcriptional changes during newt lens regeneration

in an attempt to identify patterns that provide clues for the ability

of dorsal iris but not the ventral to transdifferentiate. We focused

on 4 dpl and 8 dpl for both dorsal and ventral iris as these time

points are crucial stages for lens regeneration because these time

points encompass the events of cell cycle re-entry and dedifferen-

tiation. For RNA-seq we used a de novo assembled trancriptome

making use of short Illumina and longer 454 and Sanger reads [8].
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Here we report and for the first time the expression of more

than 38,000 annotated transcripts in dorsal and ventral iris during

lens regeneration. The analysis has been focused on the

quantitative and qualitative differences between dorsal and ventral

iris of those transcripts. We found very few genes to be dorsal or

ventral iris-specific. However, certain cohorts of genes grouped

according to their function were found to be preferentially up-

regulated in the dorsal iris. Genes involved in the cell cycle,

transcriptional apparatus, cytoskeleton and immune response are

among those with much higher expression in the dorsal than the

ventral iris. This graded expression might provide robust

regulation that allows the dorsal iris to ‘‘win’’ over the ventral iris.

Methods

Animals - Lentectomy
Handle and operations on Notophthalmus viridescens have been

described previously [6]. Briefly, newts were purchased from

Charles Sullivan Inc. Newt Farm. Newts were anesthetized in

0.1%(w/v) ethyl-3-aminobenzoate methanesulfonic acid (MS222;

Sigma) in phosphate buffered saline. Lentectomy was performed

using a scalpel to incise the cornea and tweezers to pull out the lens

through the incision. For the present study newts were kept for 4

and 8 dpl before tissue harvest.

Ethics Statement
All procedures involving animals were approved by the

University of Dayton Institutional Animal Care and Use

Committee (IACUC; Protocol ID: 011-02). All surgical procedures

were performed in anesthetized with MS222 newts. All appropri-

ate procedures were used in order to alleviate pain and distress

while working with newts.

Tissue Harvest and RNA Extraction for qRT-PCR
4 or 8 dpl newts were anesthetized in MS222. Whole eye balls

were removed and placed in dishes filled with RNAlaterH Solution

(Applied Biosciences). Using fine scissors and tweezers, eye balls

were dissected first by separating the anterior from the posterior

part (Figure 1A) and then by removing remaining neural retina

and the ciliary body from the anterior part (Figure 1C). Dorsal or

ventral iris sectors were collected in approximately 135u of the

whole iris leaving out a board area between dorsal and ventral side

which has a black-colored pigmentation (Figure 1B). Dorsal and

ventral sectors were then collected in microcentrifuge tubes filled

with RNAlaterH Solution. The tubes were briefly centrifuged and

RNAlaterH Solution was completely removed. RNA extraction

was performed following TRIzolH Reagent protocol (Applied

Biosciences) for 500 ml of reagent or the aqueous phase was

transferred to RNA Clean & ConcentratorTM (Zymo Research)

columns and the recommended protocol was followed. Quality of

isolated RNA was determined by Nanodrop 2000 spectropho-

tometer (Thermo Scientific). Good quality samples had A260/

A280 ratio greater than 2 and a peak at 260 nm.

Reverse Transcription Reaction (RT)
200 ng total RNA was used for RT reactions. First-strand

cDNA synthesis kit (GE healthcare) was used following the

recommended protocol for oligo(dt) primers. Half the volumes

were used for negative RT reaction without using oligo(dt) primers

and the samples were incubated for 5 min at 98uC for enzyme

inactivation. All the samples had a clear band after Polymerase

Chain Reaction (PCR) with RPL27 gene (housekeeping gene).

Dorsal samples needed to be positive for TBX5 and negative for

VAX2. Ventral samples needed to be positive for VAX2 and

negative for TBX5.

Figure 1. Diagram for collecting iris pieces. A. Whole eye ball with anterior side facing up and ventral facing the screen. Iris appears in the
anterior side. Red dashed line indicates the plane that anterior and posterior sides are separated. B. Anterior view of a newt’s anterior part separated
previously. Arrow head indicates black pigments present in the dorsal side of the eye. Arrow indicates the v-shaped pupil in the ventral side. These
marks are indicative of the dorsoventral axis of the iris. Red dash lines indicate the separation of dorsal and ventral iris pieces performed while in the
anterior view of the eye. C. Posterior view of a newt’s anterior part separated previously. Red dash lines indicate the separation of ciliary body and iris
performed in this view. Transparent white dash lines indicate the separation of dorsal and ventral iris sectors performed in the anterior view. di: Dorsal
iris sectors that have been isolated for the experiment, vi: Ventral iris sectors that have been isolated for the experiment. m: pigmented midline, cb:
ciliary body, pu: pupil. Orientation in each panel is indicated above the illustrated eye parts, a: anterior side, d: dorsal side, v: ventral side, p: posterior
side.
doi:10.1371/journal.pone.0061445.g001
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Quantitative Real-Time Polymerase Chain Reaction (qRT-
PCR)

qRT-PCR was performed using iQTM SYBRH Green Supermix

(Bio-Rad) and Bio-Rad iCycler (Bio-Rad) following company’s

protocol for 25 ml. Primer specificity was determined using melt

curve analysis. An extra cycle of 6 sec was added to genes that

were showing detectable signal from primer dimers and the

temperature was determined by the melt curve (usually 2–4uC
lower than the melting temperature; see methods below).

Amplification cycles (Ct) of samples were compared to Ct of a

standard curve created by the cDNA of the gene used. Gene

expressions were then normalized to the expression of the

reference gene (RPL27).

Primers, PCR and qRT-PCR Settings
For the present study the following primers were used (written

from 59 to 39): TBX5 Forward: CTGCCATGCCAGGG-

CGGTTG. TBX5 Reverse: GGTCGTGGGCAGGAGGTCCT.

VAX2 Forward: TGTGCCAGCGCCACCTAACC. VAX2 Re-

verse: AGGTCCCCAAGCCGTACCCC. FGF10 Forward: GC-

TGTGCGTCACCAACTACT. FGF10 Reverse: TTGCTTT-

CTACGCCCCTCAC. NR2F5 Forward: CGGAACCTGAGC-

TACACCTG. NR2F5 Reverse: GGGAGATGAACCCCGT-

CAAG. UNC5B Forward: AGTCCAACCGGGGTGATCCTG.

UNC5B Reverse: CATCTCGCTCTTGCCCATCTCC. NTN1

Forward: GGTTGCTCCACCCACTACAG. NTN1 Reverse:

ACCATTCTCCAGCCTTGTCAG. RPL27 Forward: ATT-

TATGAAACCCGGGAAGG. RPL27 Reverse: CCAGGGCAT-

GACTGTAAGGT.

PCR (performed with Premix TaqTM DNA polymerase

(TaKaRa)) settings for TBX5:40 cycles including 95uC for

30 sec, 65uC for 30 sec and 72uC for 30 sec. VAX2:40 cycles

including 95uC for 30 sec, 64uC for 30 sec, 72uC for 30 sec.

RPL27:40 cycles including 95uC for 30 sec, 55uC for 30 sec, 72uC
for 30 secs. Last extension was 72uC for 10 mins for all the genes.

qRT-PCR settings for TBX5:95uC for 3 mins, 40 cycles of

95uC for 30 sec, 65uC for 30 sec, 72uC for 30 sec and 85.5uC for

6 sec. VAX2:95uC for 3 mins, 40 cycles of 95uC for 30 sec, 64uC
for 30 sec, 72uC for 30 sec and 86.5uC for 6 sec. FGF10:95uC for

3 mins, 40 cycles of 95uC for 30 sec, 57uC for 30 sec, 72uC for

30 sec and 84.5uC for 6 sec. NR2F5:95uC for 3 mins, 40 cycles of

95uC for 30 sec, 57uC for 30 sec, 72uC for 30 sec. UNC5B: 95uC
for 3 mins, 40 cycles of 95uC for 30 sec, 59uC for 30 sec, 72uC for

30 sec and 82uC for 6 sec. NTN1:95uC for 3 mins, 40 cycles of

95uC for 30 sec, 57uC for 30 sec, 72uC for 30 sec and 82.5uC for

6 sec. RPL27:95uC for 3 mins, 40 cycles of 95uC for 30 sec, 55uC
for 30 sec, 72uC for 30 sec.

Statistical Analysis for qRT-PCR Results
Statistical analysis was performed using two-way analysis of

variance (ANOVA) and Student’s t-test for independed samples.

Samples were run in triplicates (n = 3). Statistical significance was

determined with 95% confidence (p,0.05). Equal variances for

student’s t-test were assumed when Levene’s test p value was

greater than 0.05.

Figure 2. Workflow used to select transcripts for comparison of expression between the dorsal and ventral iris. Only transcripts
expressed above the cutoff (see methods, light blue) and up-regulated at least 2-fold (light green) were included. Fisher’s exact test corrected with
multiple selections (FDR ,0.05) was used to compare the GO of the two groups (light purple). Enriched GO terms were found (light yellow).
doi:10.1371/journal.pone.0061445.g002
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Newt Transcriptome, Data Mining and Functional
Annotation

The newt transcriptome [8] was annotated with the BLAS-

T2GO tool [9] using the nr database. We used a cutoff of (e210)

for sequence assignments, collected annotations and correspond-

ing GO terms [10]. Transcripts were selected depending on their

expression and location in the iris as described in Figure 2 for

comparing dorsal iris versus ventral iris groups and as described in

Figure 4 for comparing day 4 and day 8 groups. Fisher’s exact test

corrected for multiple selections (feature available in BLAST2GO

tool) was used for the different groups and statistically significant

enriched GO terms were identified (FDR ,0.05). Transcripts

assigned to enriched terms were selected. Human homologues of

those transcripts were found using the BLAST tool [11].

RNA Expression Calculation
Illumina reads were mapped to the newt transcriptome using

BWA [12]. Reads per kilobase per million mapped reads (RPKM)

values were calculated for each transcript having at least one

unique mapping read. Since intron/exon data are missing for the

newt, we used a recently published microarray experiment for

RPKM cutoff estimation [6]. We selected transcripts presented on

the microarray having a valid spot structure (value for circularity

.80%, intensity variation within the spot very small, flagged as

valid) but lacking a significant signal during microarray analysis

(signal to noise ratio (snr) ,1, significant spots are used that have a

snr ratio .3). We detected 101 spots to be valid for these

parameters. Mapping of array coordinates to the transcriptome

resulted in 81 non redundant individual transcripts. We assumed

these candidates to be a good estimate for RPKM cutoff selection

and calculated the average RPKM value for this transcript set for

each investigated timepoint. We received a RPKM value of 0.64

for 4dv, 1.14 for 4dd, 1.13 for 8dv and 1.1 for 8dd. Illumina

sequencing raw reads can be found in the NCBI sequence read

archive under the accession: ERP001353 [8]. Assembled tran-

scripts and annotation are located in the newtomics database

[8,13].

Results and Discussion

Transcriptome and Analysis Overview
The recently assembled newt transcriptome contains nearly

38,000 annotated genes [8]. After Illumina sequencing, the reads

from the dorsal and ventral iris 4 and 8 dpl were mapped to the

newt transcriptome and RPKM values were calculated. Since the

newt genome is not yet available and reads that map to non-

coding areas can not been found, we calculated the RPKM cutoff

using micorarrays that were previously used during lens regener-

ation (see methods for more details). The cutoff in the RPKM

values were 0.64 for ventral iris 4 dpl, 1.14 for dorsal iris 4 dpl,

1.13 for ventral iris 8 dpl and 1.1 for dorsal iris 8 dpl. Transcripts

Table 1. List of up-regulated (.2 times) transcripts related to cell cycle*.

Function Dorsal Ventral

Mitosis CNTRL PLK1 CLASP1 RAD21 NUSAP1 SMC4 NCOR1

KIF11 Asun STAG1 KATNB1 PARD3 TPX2 2

TACC3 CDCA8 CEP120 KIF2C ZWILCH UBE2E1 2

TUBB CENPE NCAPD2 NDC80 NEK3 ASPM 2

RAB35 CENPF NCAPG SPC24 SGOL1 SMC3 2

ROCK1 CEP192 ERCC6L SPC25 DSCC1 AURKB 2

NUP43 NEDD1 NCAPG2 KNTC1 SKA1 MAD2L1 2

NUF2 NUMA1 2 2 2 2 2

tumor suppressor PSMD10 XRN1 HBP1 MDM4 CENPF MRPL41 PTEN

CCAR1 APC LIN9 E4F1 LIN9 TRRAP 2

Interphase MNAT1 CUL4B CDK2 MCM3 MCM7 LIN9 NR2F2

CDC25A CCNA2 POLA1 MCM4 UHRF1 HECTD3 2

CDK1 CCNB1 POLE MCM5 HEXIM1 MRPL41 2

CENPF CCNE2 MCM2 MCM6 DLGAP5 SMAD6 2

RCC1 DSCC1 E4F1 APP CHAF1A NASP 2

PLK4 SMARCA4 TAF2 RINT1 CHAF1B 2 2

DNA repair HERC2 LIG1 GTF2H1 RAD1 TLK1 TOP2A RNF8

CLSPN FANCI H2AFX CHEK1 2 2 RAD50

APC/C complex ANAPC1 ANAPC7 FZR1+ CDC20 UBE2C UBE2S FZR1+

ANAPC13 CDC27 2 2 2 2 2

proliferation BOP1 CGRRF1 DST HBP1 PHIP SMARCA2 VASH1

BMP2 NR2F2 FGF10 GTPBP4 PRDM4 STRADA 2

BAX DTYMK CDCA7 2 2 2 2

GO:0007049 cell cycle; GO:0022403 cell cycle phase; GO:0000278 mitotic cell cycle; GO:0022402 cell cycle process; GO:0000087 M phase of mitotic cell cycle; GO:0051301
cell division; GO:0000279 M phase; GO:0007067 mitosis.
*Transcript names are from their human homologs.
+Potential isoforms.
doi:10.1371/journal.pone.0061445.t001
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Table 2. List of up-regulated (.2 times) transcripts related to gene regulation*.

Function Dorsal Ventral

Transcription ATF6 CNBP POLR2A FOXN2 ZNF3 SMAD6 NR2F1

APP CBY1 POLR2J GATAD1 KLF15 MYCN POLR1A+

ARNTL NR2F1 POLR1D GTF2H1 KLF7 ZNFX1 HIPK2

ARID4A CBX1 DPF2 GTF2H2 LANCL2 NFKB2 VAX2

KIAA2018 CHD7 E2F3 RAD54L2 LCOR NR4A1 BRWD1

BRMS1L NR2F2 RNF20 HEXIM1 LIMD1 NR6A1 MYPOP

BAHD1 CRTC2 UHRF1 HBP1 LMX1B NR1H2 NR2F2

MYCBP CREB3L2 IKBKAP HMX1 MEF2B NR2C2 NFIB

DENND4A CYLD ELP3 HIPK3 MED12 NFYB NFE2L1

MNAT1 POLR1A+ ELF2 HIPK2 MED23 ESF1 POLR2H

CDCA7 ZNRD1 FOXJ2 IFT57 MED24 NFXL1 ZBED6

POLR1C PUF60 PHTF2 PHF6 PPARG PWP1 PRDM2

PRDM4 PQBP1 POLR1B PHRF1 PHF12 PPARA MLLT3

XAB2 BUD31 RCOR2 SMARCA4 RELB BRF1 ETS2

PFDN5 LBH RARA TBX5 TFAP2B TCF4 RAX

CIAO1 MDM4 RXRA BTAF1 TFAP2C TFB1M RGMB

PHB2 RREB1 STAT6 TEAD1 E4F1 TAF12 LEO1

ZEB1 ZGPAT TWISTNB TRIM33 TLE3 TAF2 SPEN

ZFHX4 ZBTB5 WWTR1 TP53BP1 TLE4 TADA1 SOX6

ZKSCAN1 ZIC1 RLF SLC30A9 CNOT6 CHAF1B TAF9B

CNOT6L CNOT4 CHAF1A 2 2 2 2

Histone
Modifications

BRMS1L RNF20 KAT5+ SETDB1 KDM2A MLL3 ARID1A+

ARID4A TOPORS MYSM1 SUV420H1 KDM2B NAA16 KAT5+

BRPF1 ENY2 RBBP7 KDM6B KDM1B NCOR1 KAT6A

CHD4 EZH2 MLL ARID1A+ MBTD1 NCOA3 MLL2

DMAP1 KAT2B WHSC1L1 MLL5 MTA3 PHF10 KDM5C

WHSC1 SMARCA2 TRIM28 VPS72 PHF2 PHF12 NCOR1

RBBP5 SMARCA4 TADA3 YEATS2 ASXL3 ZGPAT 2

SIRT6 SMARCC2 TRRAP YY1 2 2 2

RNA XRN1 CPSF3 HEATR1 INTS6 WDR77 PPWD1 DHX29

BOP1 DDX23 HNRNPAB AQR+ MBNL2 PUF60 AQR+

CARHSP1 DDX46 INTS1 CLASRP MBNL1 PNPT1 PPIL3

CSTF1 EBNA1BP2 INTS7+ CDK11B PDCD11 PRPF8 INTS7+

GEMIN4 EXOSC10 INTS9 DBR1 PPIH XAB2 2

SF1 SRSF11 SRRM1 RBM28 RP9 DDX41 2

SFSWAP SNRPA1 RSRC1 RBM5 NOP2 UTP11L 2

SCAF1 UTP6 SRSF12 SARNP RBFOX2 PUM1 2

SNRPN THOC2 THOC6 TFB1M TFIP11 MPHOSPH10 2

SMNDC1 THOC5 2 2 2 2 2

translation MRPS18B MRPL14 GFM1 EIF2B5 MRPL17 GTPBP4 EIF2B1+

MRPS14 RPS27L EEF2K QRSL1 MRPL23 RARS2 RPS6KB2+

MRPS5 CPEB2 EEF1E1 IARS MRPL41 PDCD4 2

MRPL15 DUS3L EIF2D MRPL12 MRPS9 TRUB2 2

PUS10 PUS7 TRMT61A TARS GFM2 SRP14 2

TRNAU1AP RPL3 NSUN2 EIF2B1+ EEFSEC EIF2B2 2

DUS2L RPS6KB2+ TRMT2A 2 2 2 2

miRNA DICER1 MOV10 PNPT1 EIF2C3 TNRC6A TNRC6C 2

Other NEO1 AHSA1 AARSD1 A2M DYNC2H1 SIRT5 PRKDC

TACC3 PPIH BAX AKT2 EIF4ENIF1 PCSK1 HTT+

Transcriptome Analysis during Lens Regeneration
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found to have RPKM more than the cutoff were considered to be

expressed and were taken into account for the comparisons below.

Dorsal Iris Shows Enrichment of Up-regulated Genes
Involved in Cell Cycle, Cytoskeleton, Gene Expression and
Immune Response

Since the major purpose of this study is to identify patterns of

gene expression in the dorsal and ventral iris that might correlate

with the ability of the dorsal iris for transdifferentiation, we first

looked into transcripts that were regulated either in the dorsal or in

the ventral iris at both collection points (4 dpl and 8 dpl). Analysis

of the results was performed as outlined in Figure 2.

Interestingly, we only saw a handful of genes that are either

exclusively expressed (no reads were mapped to them) in the dorsal

or the ventral iris. This finding was not surprising because in the

past our laboratory had seen, using limited expression data, that

Table 2. Cont.

Function Dorsal Ventral

CENPF PPWD1 FGF10 TNFSF13B MYO6 SERPINE1 INPPL1+

C3 PFDN5 HTT+ BMP2 PEX1 NDFIP2 PTEN

CCNA2 CDK2 MAPKAPK2 CCAR1 SORT1 NLK RPS6KA4

PSEN1 DISP1 RRAGC RIPK1 MTOR PHIP PCM1

EIF1AD PPP3CB RASSF8 ATP6AP2 TRIP11 INPPL1+ XPO5

TBL3 TLR2 2 2 2 2 2

GO: 0010467 gene expression; GO:0010468 regulation of gene expression; GO:0006350 transcription; GO:0045449 regulation of transcription.
*Transcript names are from their human homologs.
+Potential isoforms.
doi:10.1371/journal.pone.0061445.t002

Table 3. List of up-regulated (.2 times) transcripts related to cytoskeleton*.

Function Dorsal Ventral

microtubule CNTRL TUBA1A CEP120 DNAH7 KIF22 KNTC1 CLIC5

SSNA1 BBS2 CYLD TUBGCP6 KIF23 DYNLT1 MARK1

CHEK1 TUBB DYNC1I2 HTT+ KIF2C AURKB HTT+

CENPF TUBB4B DYNC2H1 IFT57 KIF14 LYST PCM1

KIF11 CAMSAP3 DYNC1LI1 KATNB1 KIF20A MAP1B KIF1B

PLK1 CEP170 CLIP2 KIAA1279 KIF13A MACF1 KIAA0284

APC CLASP1 DNM2 KIF13B NDC80 MAST2 NCOR1

PSKH1 SMC3 CCNB1 CDC27 TUBB3 PLK4 2

ARL2BP RIF1 MAD2L1 CEP350 TUBD1 SNTB2 2

TPX2 ASPM NUP85 CEP192 ZNF415 SKA1 2

CDCA8 CENPE RANGAP1 CBX1 NEDD1 DCX 2

NIN NINL NUMA1 NUSAP1 SHROOM2 SHROOM3 2

RAB3IP AURKA 2 2 2 2 2

actin WASH1 CTNNA1 MYO1E MYO5A PLEK2 VASP ACTA2

ARPC1B INTS6 MYO9A MYO7A DIAPH1 WDR1 INPPL1+

ARPC5L IQGAP1 MTSS1 PPP1R9A SSH2+ INPPL1+ SSH2+

ACTR6 KLHL3 MYO1G MYO1D RAB3IP SNTB2 RDX

SCIN MYO10 MYO6 PDLIM5 IQGAP2 SYNE1 TPM1

CNN2 LANCL2 MYO9B MACF1 ROCK1 2 UTRN+

Other MPP1 GAN LMNB1 SYNM NES BAG1 DES

FERMT3 DLGAP5 NF2 UTRN+ TNS1 UBR4 RAI14

GNE RAPH1 NF1 CORO1A ANK3 SLC26A5 SLC4A1

APP FRMD6 TRIB2 PTPN14 SLC30A9 STOML2 MICALL2

PSEN1 2 2 2 2 2 2

GO:0005856 cytoskeleton; GO:0015630 microtubule cytoskeleton; GO:0044430 cytoskeletal part.
*Transcript names are from their human homologs.
+Potential isoforms.
doi:10.1371/journal.pone.0061445.t003
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the ventral and dorsal irises show similar patterns of gene

expression (see below).

Next, we investigated potential patterns of up-regulated genes.

Specifically we asked which genes are consistently up-regulated in

the dorsal or the ventral iris (both at 4 and 8 dpl). Fisher’s exact

test with multiple testing correction for Gene Ontology (GO) from

transcripts that are up-regulated at least 2 fold in dorsal iris 4 and

8 dpl compared to the ventral iris, and transcripts that are up-

regulated at least 2 fold in ventral iris 4 and 8 dpl compared to the

dorsal iris are shown in Table S1. Interestingly, we found that

more GO terms are enriched in the dorsal samples than in the

ventral. In particular, GO terms related to cell cycle, regulation of

gene expression, cytoskeleton and immune response were over-

represented. In contrast, ventral samples, which generally gener-

ated fewer enriched GO terms, primarily showed GO terms

related to transposons like RNA-directed DNA polymerase

activity, RNA-directed DNA replication and DNA integration.

Although we did not find major qualitative differences in the

expression patterns between dorsal and ventral irises, a clear-cut

difference in the expression level of several genes were evident:

GO terms related to cell cycle (indicating proliferation), cytoskel-

eton (indicating cell migration and morphological changes),

transport of molecules and cytokinesis (indicating altered gene

regulation), and immune response (indicating responsiveness to

injury) were enriched at the site where lens regeneration

commences. Strikingly, in these gene categories 609 genes were

up-regulated in the dorsal iris and only 66 in the ventral iris, which

will provide much needed insights into the mechanisms that allow

the dorsal to ‘‘win’’ over the ventral iris.

Cell Cycle-related Transcripts
Most of the factors related to cell cycle were up-regulated in the

dorsal iris when compared to ventral iris (124/7) (Table 1). In

detail:

Mitosis: Table 1 shows factors related to all steps of mitosis

including spindle formation, microtubule-associated, chromosom-

al movement and mitosis progression, which are up-regulated in

dorsal samples. Interestingly, proteins that act as complexes are

concomitantly up-regulated including NDC80 complex, cohesin

complex and chromosomal passenger complex (CPC). NDC80

complex is essential for chromosome segregation and spindle

formation [14], and NDC80, SPC24, SPC25 and NUF2 are up-

regulated. Cohesin complex is required for the packing of the

chromosomes [15], and STAG1, RAD21, SMC3, SMC4, PLK1

and SGOL1 are up-regulated. CPC is related to centromere

functions during mitosis [16], and AURKB and CDCA8 are up-

regulated.

Anaphase promoting complex/cyclosome (APC/C) is a com-

plex that is instrumental for mitosis progression and division [17].

There are 8 APC/C-related transcripts which are up-regulated in

dorsal samples: ANAPC1, ANAPC13, ANAPC7, CDC27, FZR1,

UBE2S, CDC20 and UBE2C.

Interphase: Factors related to all phases of the interphase are

up-regulated in dorsal samples. Cyclins and cyclin-dependent

kinases that play a key role in G1/S, G2/M, G1 and S phases are

up-regulated including CCNA2 [18], CCNB1 [19], CCNE2 [20],

CDK1 [21] and CDK2 [22]. Proteins that act upon cyclins and

cyclin-dependent kinases are up-regulated too, including MNAT1

[23], CDC25A [24] and HEXIM1 [25]. Factors that play a role in

DNA synthesis during the S phase are up-regulated including

POLA1, POLE [26], all the MCM complex (MCM2–7) [27],

NASP [28], DSCC1 [29], CHAF1A and CHAF1B [30].

Tumor suppression, proliferation-related, p53/TP53-associated

and RB1-associated proteins are up-regulated in dorsal iris. These

proteins promote or repress proliferation and cell cycle. It has been

previously shown that newt muscle cells re-enter the cell cycle after

inactivation of RB. After entering the S phase these cells were

resting in G2 phase. So, it was hypothesized that factors should be

expressed, which promote the G2/M checkpoint after phosphor-

ylation of RB [31]. Our data suggests that transcripts that regulate

the G2/M transition and thereby proliferation include CDC25A,

CDK1, CCNB1, the APC/C complex and PLK1.

Factors playing a role in DNA repair need to be seen in the

context of cell proliferation and cell cycle, since the failure to

repair DNA damage will prevent proliferation. In previous studies

using qRT-PCR, it was shown that rad1 is up-regulated at 3 and

5 dpl in the dorsal compared to ventral iris showing activation of

robust DNA repair mechanism to prevent accumulation of

mutations in dividing cells [6]. A similar pattern emerged in the

current RNA-seq analysis: many factors that play a role in DNA

repair are at least 2 fold up-regulated in the dorsal compared to

the ventral iris. Among them RAD1 along with CHEK1, a kinase

that has a key role in cell cycle arrest and apoptosis decisions after

DNA damage [32].

Gene Regulation-related Transcripts
It is expected that the process of transdifferentiation is marked

by activation and regulation of many genes of the transcriptional

apparatus. Indeed, we do find many genes related to gene

regulation. Such genes are listed and categorized in Table 2

depending on the level of gene expression that they regulate

(transcription, histone modification, RNA, translation). Again the

majority of these genes show up-regulation in the dorsal iris (314

transcripts) and only a few show up-regulation in the ventral (39

transcripts).These include a number of proteins that play a role in

Table 4. List of up-regulated (.2 times) transcripts related to immune response*.

Dorsal Ventral

A2M TNFSF13B TUBB4B CD97 CCL5 C3 C1QBP DDR1 TIMM50

SIVA1 TUBB CTNNBL1 CADM1 C1S C1QB CHUK TOPORS INPPL1+

RELB ENPP2 STAT6 PPP3CB INPPL1+ NCF2 GAB2 SMAD6 2

SYK FCN1 TLR2 RARA PSEN1 NFKB2 LYST DDX58 2

ZEB1 GPR183 TLR7 INPP5D DCLRE1C 2 2 2 2

GO:0006955 immune response.
*Transcript names are from their human homologs.
+Potential isoforms.
doi:10.1371/journal.pone.0061445.t004
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the general transcriptional apparatus that transcribe all types of

RNA including POLR1A, POLR2A, POLR1B, POLR1C,

POLR1D, POLR2J, ZNRD1, GTF2H1, GTF2H2, MED12,

MED23, MED24, ESF1, BRF1, TWISTNB and some factors

from the CCR4-NOT complex (CNOT6, CNOT6L, CNOT4,

CHAF1A, CHAF1B) [33]. Transcriptional factors and factors that

link them to the basal transcriptional apparatus to regulate specific

types or families of genes include ATF6 and CREB3L2, which

activate certain genes upon stress [34,35]. Furthermore, MYCBP

and CDCA7 regulate MYC activity [36,37], CBY1 inhibits Wnt

via beta-catenin [38], NR2F2, RARA and RXRA are involved in

gene activation after binding to retinoic acid [39,40,41], NR2C2 is

a receptor that represses retinoic acid receptors [42], CYLD,

RELB and NFKB2 are related to NF-kappaB pathway [43,44,45],

RNF20 is involved in Hox gene activation [46], SMAD6 is a

TGF-beta signaling-induced inhibitor of BMP signaling [47,48],

TBX5 is involved in dorsal eye patterning and in limb

regeneration [49,50], NR4A1 is a receptor found to play a role

in liver regeneration [51], MDM4 inhibits p53 [52], and TEAD1

is involved in hippo pathway [53], are all up-regulated in the

dorsal iris. It is noteworthy that VAX2 is up-regulated in the

ventral iris, which is a major player in formation of ventral eye axis

during embryogenesis [54]. It is interesting to speculate that the

differential regulation of TBX5 and VAX2 in the dorsal and

Figure 3. qRT-PCR expression validation of TBX5, FGF10, UNC5B, VAX2, NR2F5 and NTN1. Expression of the different genes at the RNA
level is indicated as relative expression. Bars indicate standard deviation. Statistical test was performed with two-way ANOVA and Student’s t-test.
Asterisks above the bars indicate statistical significance (*: p,0.05, ***: p,0.001) between dorsal and ventral iris samples of the same day.
doi:10.1371/journal.pone.0061445.g003

Transcriptome Analysis during Lens Regeneration

PLOS ONE | www.plosone.org 12 April 2013 | Volume 8 | Issue 4 | e61445



ventral iris demarcates their regenerative ability. TBX5 is

expressed over 32-fold higher in the dorsal and VAX2 is expressed

32 fold higher in the ventral iris (see also below).

Factors that are involved in post-transcriptional regulation and

in pre-mRNA maturation like splicing and alternative splicing and

are up-regulated in the dorsal group include: GEMIN4 [55],

DDX23, DDX41, AQR, PPWD1, XAB2, SRRM1, TFIP11 [56],

DDX46 [57], CLASRP, CDK11B [58], DBR1 [59], WDR77

[60], MBNL2, MBNL1 [61], PPIH [62], PUF60 [63], PRPF8

[64], RBFOX2 [65], RBM28 [66], RBM5 [67], RSRC1 [68],

SRSF12 [69], SRSF11 [70], SFSWAP [71], SCAF1 [72] and

SMNDC1 [73], or other ways of pre-mRNA maturation using

CSTF1 [74], CPSF3 [75] and EXOSC10 [76]. Factors that play a

role in ribosomal RNA maturation include BOP1 [77],

EBNA1BP2 [78], HEATR1 [79], PDCD11 [80], UTP11L,

UTP6 [81] and MPHOSPH10 [82]. Factors that play role in

the stability and transport of the RNA include CARHSP1 [83],

PUM1 [84] and part of the TREX complex (THOC2, THOC5,

and THOC6) [85].

Protein complexes and related factors involved in histone

modifications and are up-regulated in dorsal group include the

SIN3A/HDAC1 complex (BRMS1L, ARID4A, TOPORS,

RBBP7, NCOR1 and SMARCC2), the NuRD complex (CHD4,

RBBP7, MTA3, TRIM28 and ZGPAT) [86],the NuA4 complex

(DMAP1, KAT5, TRRAP and VPS72) [87], the PRC2/EED-

EZH2 complex (EZH2 and RBBP7) [88], the MLL1/MLL

complex (MLL and RBBP5) [89], and the SWI/SNF complex

(BAF complexes) (ARID1A, PHF10, SMARCA2, SMARCA4 and

SMARCC2) [90], and are all up-regulated in the dorsal iris.

Likewise, most of the transcripts that were identified to act on

translation (and miRNA processing and function) are up-regulated

in the dorsal iris. Only 1 transcript, eIF2B, was found to be up-

regulated in the ventral iris.

Cytoskeleton-related Transcripts
Table 3 shows transcripts that are up-regulated in dorsal iris at

least 2 fold than the ventral iris and the opposite. Most of the

transcripts are shown to be up-regulated in the dorsal iris (134/18).

Microtubules-associated: In this category some of the transcripts

are related to the cell cycle like in spindle formation and

chromosome movement and we have discussed them previously.

Other transcripts that are up-regulated in the dorsal group have a

role during signal transduction: APC negatively regulates Wnt

signaling [91], MACF1 positively regulates Wnt signaling [92],

CYLD and MAST2 positively regulates NF-kappaB pathway [93].

Transcripts involved in microtubule organization and stability

include CAMSAP3 [94], CEP170 [95], CLASP1 [96], KATNB1

[97], KIAA1279 [98], MAP1B [99], NIN [100], NINL [101] and

NUSAP1 [102]. Transcripts involved in transport of molecules

include DYNC1I2 [103], DYNC1LI1 [104], DYNC2H1 [105],

DNM2 [106], HTT [107], LYST [108], DYNLT1 [109] and

PSKH1 [110], in cilia formation include BBS2 [111], DNAH7

[112] and IFT57 [113], in cell shape and movement include

ELMO2 [114] and GAN [115].

Actin-related: Transcripts up-regulated in the dorsal group and

included in this category play roles in actin polymerization and

organization in order to support cell shape, movement and cell

adhesion with the extracellular matrix, and the linkage of actin

Figure 4. Workflow used to select transcripts for comparison of gene expression 4 and 8 days post-lentectomy. Only transcripts
expressed above the cutoff (see methods) in the day of interest and up-regulated more than 2-fold in both dorsal and ventral iris (light blue) were
considered. Fisher’s exact corrected for multiple selections (FDR ,0.05) was used to compare the GO of the groups versus the remaining transcripts
of the transcriptome. Enriched GO terms were found (light purple).
doi:10.1371/journal.pone.0061445.g004
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with other proteins in order to facilitate transport or contraction.

WASH1 [116], ARPC1B, ARPC5L [117], SSH2 [118] SCIN

[119], IQGAP1 [120], PPP1R9A [121] and DIAPH1 [122] are

playing roles in actin polymerization and organization. CNN2,

MYO10, MYO1E, MYO9A, MYO1G, MYO6, MYO9B,

MYO7A, MYO1D and ROCK1 are involved in contraction

[123,124]. CTNNA1 and MTSS1 are related to cell adhesion with

the extracellular matrix and cell-cell contact [125,126]. KLHL3

and MYO5A are playing roles in molecular transport [127,128].

PLEK2 and VASP are related to cell movement [129,130] and

SYNE1 and WDR1 are linking cytoskeleton with other proteins

[131,132].

In addition to factors that are actin or tubulin-related, Table 3

shows other proteins that are related to cell adhesion, movement

and linkage of plasma membrane with cytoskeleton that are up-

regulated in the dorsal iris. For lens regeneration, cell adhesion

and locomotion is very important since PECs need to change their

environmental behavior to transdifferentiate and change their cell

fate. Previous studies have found that extracellular matrix is being

remodeled and matrix metalloproteinases are up-regulated already

1 day post-lentectomy to prepare the environment for the onset of

lens regeneration [6]. Our data clearly show changes in the

molecules that determine the interaction of PECs with the

environment and remodeling of cytoskeleton components and

networks of PECs. Another interesting aspect is that many factors

involved in tumor metastasis are up-regulated in the dorsal iris

which indicates a role of these molecules at the onset of cell

locomotion.

Immunity-related Transcripts
Most of the transcripts related to immune response are up-

regulated in the dorsal iris samples (Table 4). Only 2 transcripts

were up-regulated in the ventral iris versus 37 that were up-

regulated in the dorsal iris. Factors in this category regulate NF-

kappaB activity among others and include SIVA1 [133], CHUK,

NFKB2, TLR7 [134] and RELB. Factors involved in immune

cells activation and migration include TNFSF13B [135], CD97

[136], GPR183 [137], ENPP2 [138], DCLRE1C [139] and TLR2

[140]. Complement component -related transcripts include C1S,

C3, C1QB and C1QBP and other factors involved in cytokine

secretion and inflammation include CCL5, DDX58, STAT6 and

ZEB1.

The role of immune response and its involvement in the

initiation of regeneration has been extensively investigated in the

past [141,142]. It has been hypothesized that molecules involved

in the regulation of the immune response have a novel role in

regeneration or that the immune response itself is crucial for

regeneration. The issue has not been settled yet. Nevertheless,

complement components seem to be important for liver regener-

ation [143] and have also found to be expressed in limb and lens

regeneration [144,145]. The present results provide strong

evidence of a crucial role of injury response in regeneration,

which needs to be investigated further.

Transposon-related Transcripts
Interestingly, transposons are the only transcripts that are

enriched in ventral compared to dorsal samples (Table S2).

Transposons have many types and they do not have an assigned

biological function. They can be transcribed, reverse-transcribed

and integrated back to the genome (retrotransposons) or not. So

far, we have no specific role of transposons in regeneration (or

rather, inhibition of it?). Since transposon-related transcripts are

enriched in ventral samples it would be interesting to learn more

about a specific role in repressing specific programs.

Highly Regulated Transcripts
Summing up, we have identified patterns of gene expression

that are predominant in the dorsal iris. Genes that are involved in

cell cycle, gene regulation, cytoskeleton and immune response

show a graded expression along the dorsal/ventral iris. Thus, our

study is the first to show how the dorsal iris differs from the ventral

iris, and how specific patterns of gene expression correlates with

the dorsal iris’ regenerative ability. Comparisons comprised two

critical time points, 4 and 8 dpl. Interestingly, comparison of gene

expression patterns at each time point separately, recapitulates our

primary finding that most transcripts of these gene categories are

up-regulated at 4 dpl in the dorsal iris in comparison to 4 dpl in

the ventral iris, or in 8 dpl in the dorsal iris in relation to 8 dpl in

the ventral iris. In Tables 5 and 6 we show a selected group of

genes to exemplify this point. The tables also allow a view on the

top regulated transcripts. It becomes clear that a few of them are

either dorsal-specific or ventral-specific. Only 3 transcripts were

found to be exclusively present in the dorsal iris. These transcripts

correspond to protein-1 like (ras associated and pleckstrin

domains-containing), transmembrane protein 185A-like (TMEM

family) and to chromatin assembly factor 1 (CAF1). Other

transcripts that show very high expression in dorsal iris were

TBX5, TMEM185A, E3 ubiquitin-protein ligase HERC2-like

(HERC2) (.32 times), TMEM116, ephrin–B2, and netrin

receptor (UNC5B) (.16 times). In the ventral iris, except

transposons, we find that netrin-1 (NTN1), nuclear receptor

2F5-like (NR2F5), and VAX2 are expressed 32 times higher than

in the dorsal iris. The function of TBX5 and VAX2 were discussed

above, but it is interesting to note here that they might provide a

dorsal or ventral identity to the adult iris. Currently, it is not

known to what extent these genes control regeneration but

functional assays will settle this issue. Nevertheless, TBX5 and

VAX2 can be used as markers for dorsal and ventral iris,

respectively. Interestingly, we find NTN1 in the ventral iris but its

receptor (UNC5B) in the dorsal iris. Likewise, we find ephrin-B2 in

the dorsal and its receptor in the ventral iris, which might reveal a

so-far unsuspected communication between dorsal and ventral iris.

Despite its role in axon guidance, NTN1 has also been shown to

inhibit leukocyte migration. Thus, NTN1 up-regulation might

protect injured tissues [146]. UNC5B is responsible for apoptosis

and because NTN1 is up-regulated by p53 it is considered as an

oncogene [147]. Ephrin receptors activated by ephrins have been

shown to inhibit signaling by oncogenes. The case of TMEM

proteins is interesting as well. Even though not much is known for

TMEM185A and TMEM116, TMEM16F is known to form a

Ca2+-activated channel, which plays a role in blood coagulation

that is also mediated by thrombin activation [148]. In turn, blood

coagulation has been implicated in the induction of lens

regeneration from the dorsal iris [142].

We have also verified some of these patterns via qRT-PCR,

which confirm this remarkable difference in expression along the

dorsal/ventral iris. The up-regulation of TBX5, FGF10 and

UNC5B in the dorsal iris and the up-regulation of VAX2, NR2F5

and NTN1 in the ventral iris are shown in Figure 3. Interestingly,

the expression of these genes is also dependent on time, suggesting

a potential role of those genes during regeneration (ANOVA;

a,0.05). In addition, we further verified the up-regulation of

NTN1 in the ventral iris and its receptor (UNC5B) in the dorsal

iris.

What Genes are Regulated Specifically at 4 or 8 dpl?
We showed only minor qualitative differences in gene expres-

sion between the dorsal and ventral iris. Quantitative changes are

dominant and seem to correlate with regenerative abilities. To
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answer the question whether there are any differences at day 4

(both dorsal and ventral) versus day 8 (dorsal and ventral), which

might uncover the importance of timing rather than spatial

regulation, we compared the 4 day group with the 8 day group as

shown in Figure 4.

Fisher’s exact test with multiple testing corrections for GO from

transcripts that are up-regulated in both dorsal and ventral iris

4 dpl compared to 8 dpl versus the whole reference transcripts

reveals that DNA polymerase activity and nucleotidyltransferase

activity GO terms to be significantly enriched (Table S3). This

indicates the initiation of the cell cycle re-entry which has been

found to be the major event 4 dpl [149].

Fisher’s exact test with multiple testing corrections for GO from

transcripts that are up-regulated in both dorsal and ventral iris

8 dpl compared to 4 dpl versus the whole reference transcripts

revealed many interesting patterns (Table S4): as expected GO

terms in the cellular component category and related to

extracellular matrix are over-represented in the group. Further-

more over-represented terms include extracellular matrix struc-

tural constituents and metalloendopeptidase activity in the

molecular function category (Table S4). Collagen catabolic

process, collagen metabolic process, cell adhesion, extracellular

matrix and structure organization, and peptide secretion are over-

represented in the biological process category (Table S4). In

addition, many of the GO terms in the biological process category

related to differentiation, movement, development and patterning

are over-represented in the group. Finally, many GO terms that

are over-represented in the group are related to macromolecule

transport and synthesis. These results indicate active remodeling,

transcription and metabolism at day 8, which was expected

because the process of dedifferentiation and specification of the

lens vesicle peaks at this time point.

Conclusion
The transcriptome analysis during lens regeneration revealed

much needed and useful information. First, we were able to

identify quantitative patterns of gene expression that create

gradients along the dorsal/ventral iris. This finding is of particular

importance since it establishes a molecular framework that drives

the ability of the dorsal iris for lens regeneration. Second, our

analysis identified genes that might be critical for the induction of

lens regeneration. For the first time, we now know factors that can

be studied in functional assays, such as in trangenesis or

knockdown [150,151], to establish their potency in inducing/

inhibiting regeneration. In addition, this knowledge allows us to

perform comprehensive comparisons to other animal models that

lack the ability for lens regeneration, which might unveil

fundamental differences and similarities between regenerating

and non-regenerating species.
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