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Abstract: Ambient temperature change is one of the risk factors of human health. Moreover, links
between white blood cell counts (WBC) and diseases have been revealed in the literature. Still, we
do not know of any association between ambient temperature change and WBC counts. The aim of
our study is to investigate the relationship between ambient temperature change and WBC counts.
We conducted this two-year population-based observational study in Kaohsiung city, recruiting
voluntary community participants. Total WBC and differential counts, demographic data and health
hazard habits were collected and matched with the meteorological data of air-quality monitoring
stations with participants’ study dates and addresses. Generalized additive models (GAM) with
penalized smoothing spline functions were performed for the trend of temperature changes and
WBC counts. There were 9278 participants (45.3% male, aged 54.3 ± 5.9 years-old) included in
analysis. Compared with stable weather conditions, the WBC counts were statistically higher when
the one-day lag temperature changed over 2 degrees Celsius, regardless of whether colder or hotter.
We found a V-shaped pattern association between WBC counts and temperature changes in GAM.
The ambient temperature change was associated with WBC counts, and might imply an impact on
systematic inflammation response.

Keywords: ambient temperature; white blood cell count; generalized additive model

1. Introduction

Ambient temperature change is one of the risk factors of human health. Previous
studies have revealed the links between ambient temperature change and diseases, in
both cold and hot weather [1–4]. The exposure to ambient temperature is one of the
important determinants of disease burden [5], mortality and morbidity [6–15]. Moreover,
some studies find the relationship between ambient temperature and morbidity is not
linear, but a U-, V- or J-shaped pattern [16–19]. Therefore, some studies have found optimal
temperatures corresponding to minimum mortality [20–22]. However, less is known
about the mechanism explaining the association between air temperature and mortality
or morbidity.

Peripheral white blood cell (WBC) count is an easy-accessed marker, representing
the severity of systematic response to inflammation or stress. Meanwhile, we note many
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previous studies have reported the associations between peripheral WBC count and in-
cidence of disease, morbidity and mortality, such as atrial fibrillation [23], stroke [24–26],
myocardium infarction [27,28], respiratory disease [29–33], acute kidney disease [34], dia-
betes mellitus [35–38], etc. However, few studies explore the relationship of air temperature
and peripheral WBC count.

Despite the fact that ambient temperature impacts health and peripheral WBC counts
are associated with disease outcomes, studies exploring the relationship between ambient
temperature change and WBC counts, and the mechanism of how ambient temperature
variations influence human health are few [39,40]. Inflammation response and cascading
reactions seem to be one of postulated mechanisms [41].

Therefore, we suppose that there might be a plausible link between environmental air
temperature change and WBC counts. The goal of our study is to explore if any short-term
association between ambient air temperature change and peripheral WBC counts exists.

2. Materials and Methods

This was a population-based observational study, conducted in 2003 and 2004, and
approved by the Institutional Review Board of Kaohsiung Medical University Hospital
(KMUH-IRB-990206). The study purpose and general method had been explained to
each participant, and gotten the consent from each individual one. Kaohsiung Municipal
Hsiaokang Hospital administered the clinical and laboratory examinations for study sub-
jects and funds were sponsored by the Health Bureau of Kaohsiung Municipality. Adult
residents of Kaohsiung City, who were stratifiedly sampled by proportion of population,
were invited to participate in this health survey program by letters and telephone calls.
Participants were volunteers who responded to the invitations. Demographic data in-
cluding habitual behaviors were collected during the visit by questionnaire. Participants
with pregnancy, current malignancy diseases, history of auto-immune diseases, status
of infectious disease (such as common cold) or fever on the exam day, were excluded.
Blood cell counts were analyzed by Sysmex XE-2100 hematology automated analyzer in
the Hsiaokang Municipal Hospital laboratory immediately after blood drawing.

There were 43 meteorological stations set up by the Taiwan Central Weather Bureau
and Government since 1993 (https://www.cwb.gov.tw/V8/C/W/OBS_County.html?ID=
64, accessed on 7 April 2021). Daily meteorological data including air temperature (Tair),
dew point temperature (Tdewpt), sea level pressure, total cloud cover, wind speed and wind
direction were collected for the entire study period.

Apparent temperature (Tapp) based on air and dew point temperature, calculated
using the following formula [42,43] (Equation (1)):

Tapp = −2.653 + 0.994 (Tair) + 0.0153 (Tdewpt)
2 (1)

We collected the hourly measurements of ambient temperature and dew point tem-
perature from meteorological stations, and calculated the hourly apparent temperature
based on each hourly measurement. Then we calculate the daily mean value based on
hourly apparent temperature measurements. Finally, we tested the changes of apparent
temperature with the previous day (Equation (2)):

∆T = Tapp − Tapp(i−1), (2)

where i is health exam day.

Statistics

Weather data were merged to individual blood exam data by the address reported for
statistical analysis and by the date of blood examination. For each person, we selected the
daily average temperature data from the meteorological station nearest to his/her residence
at the blood examination day as “examination day” (ED, or lag 0). Temperature data of
the seven days before blood examination were identified as lag 1, lag 2, lag 3, lag 4, lag 5,

https://www.cwb.gov.tw/V8/C/W/OBS_County.html?ID=64
https://www.cwb.gov.tw/V8/C/W/OBS_County.html?ID=64
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lag 6, and lag 7 prospectively. Microsoft Office Excel (Microsoft, Redmond, DC, USA) and
SPSS for Windows (IBM Corp., Armonk, NY, USA), and R language (R Core Team, Vienna,
Austria) were used for descriptive analyses; one-way ANOVA, correlation coefficients, and
multiple linear regressions were employed for inference analyses. Type I error was set as
0.05 with two-tailed. We tested the changes of apparent temperature with the previous day
larger than 2 degrees Celsius (∆T > 2 ◦C, ∆T < −2 ◦C).

In addition, assuming a U- or V-shaped pattern association between WBC counts
and temperature changes from the literature review [16–19], generalized additive mod-
els (GAM) with penalized smoothing spline function were performed for the trend of
temperature changes and dependent variables (WBC, neutrophil, monocyte, basophil,
eosinophil, and lymphocyte). Briefly, a GAM with a linear predictor involving a sum of
smooth functions of covariates [44] (Equation (3)):

g(E(Y)) = b0 + f(X1) + f(X2) + ... + f(Xn) (3)

where f is a smoothing function. In our analysis, we fit GAM models (Equation (4)):

g(E(WBC)) = s(dTapp) + β2 × sex + β3 × age + β4 × tobacco + β5 × alcohol (4)

where ‘WBC’ was total white blood cell counts; ‘dTapp’ meant the difference of apparent
temperature with the previous day, and ‘s’ was a spline function. Sex, age, alcohol con-
sumption (yes, ≥3 times per week), and tobacco consumption (yes or no) were not fit spline
function.

For individual white cell counts, i.e., neutrophil, monocyte, basophil, eosinophil, and
lymphocyte, we fit the above model using individual white cell accounts instead of WBC
as the dependent variable to test whether individual white cell count would be sensitive to
temperature changes.

3. Results

Kaohsiung City is located in the southwestern Taiwan Island, and next to the Taiwan
Strait. The climate is tropical monsoon type (Group Am by Köppen–Geiger climate clas-
sification). In 2003, the annual daily average ambient temperature was 24.7 ◦C, annual
daily average humidity was 77.7%. Initially, there were 10,140 volunteers recruited. After
matching with the ambient temperature records measured by meteorological monitoring
stations located at the same districts with volunteers’ addresses. There were 9278 records
included in the final analysis, because 862 records could not be matched with available
temperature data. The steps of data collection are briefed in Figure 1. Among the study par-
ticipants, 45.3% are male, the average age and body mass index were 54.3 ± 5.9 years-old
and 24.7 ± 3.8 kg/m2, respectively. The prevalence of unhealth habits current smoking,
alcohol consumption and betel quid use were 15.7%, 14.9% and 2.9%, respectively. There
were 331 blood examining days. We divided them into four subgroups by the difference in
one-day lag temperatures (∆T, difference of apparent temperature between two consecutive
days), ∆T > 2 ◦C, 2 ◦C ≥ ∆T ≥ 0 ◦C, −2 ◦C ≤ ∆T < 0 ◦C, and ∆T < −2◦C. More information
is detailed in Table 1.

Table 2 show the counts and percentages of total and differential WBCs. They were also
grouped by difference in one-day lag temperature (∆T) as mentioned above. The counts of
total WBC, neutrophil, monocyte, and basophil were different statistically between groups.
The more absolute difference of one-day lag temperature, the higher counts of total WBC,
neutrophile, monocyte and basophil. We also found that no matter whether the weather
was getting hotter or cooler, the change in total WBC counts were significant statistically.
This is revealed in Figure 2.
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Table 1. Demographic characteristics of participants. 

Variables Total ΔT 1 > 2 °C  0°C ≤ ΔT ≤ 2 °C −2 °C ≤ ΔT < 0 °C ΔT < −2 °C 
days 331 32 134 147 18 

N 9278 891 3908 4168 311 
Age, years (mean ± SD) 54.3 ± 5.9 53.8 ± 5.7 54.2 ± 5.7 54.4 ± 5.9 55.0 ± 6.1 

Gender, male 4200 (45.3%) 340 (38.2%) 1661 (42.5%) 1836 (44.1%) 142 (45.7%) 
BMI, kg/m2 (mean ± SD) 24.7 ± 3.8 25.0 ± 3.8 24.6 ± 3.4 24.8 ± 4.1 25.2 ± 3.6 

Education 

College/Graduate 1259 (13.0%) 108 (12.2%) 506 (13.0%) 528 (12.8%) 30 (9.8%) 
High school 3874 (40.0%) 371 (42.0%) 1587 (40.8%) 1626 (39.4%) 108 (35.2%) 

Elementary school 3328 (34.3%) 293 (33.1%) 1326 (34.1%) 1433 (34.7%) 119 (38.8%) 
Illiterate 1228 (12.7%) 112 (12.7%) 468 (12.0%) 540 (13.1%) 50 (16.3%) 

Cigarette smoking 
current 1457 (15.7%) 113 (13.0%) 558 (14.5%) 652 (15.9%) 60 (19.5%) 
former 501 (5.2%) 46 (5.3%) 189 (4.9%) 222 (5.4%) 17 (5.5%) 
never 7628 (79.6%) 708 (81.7%) 3106 (80.6%) 3324 (78.7%) 231 (75%) 

Alcohol consumption 1383 (14.3%) 89 (10.1%) 591 (15.3%) 603 (14.6%) 44 (14.3%) 
Betel quid use 273 (2.8%) 24 (2.7%) 102 (2.6%) 126 (3.1%) 8 (2.6%) 

1 ΔT, difference of one-day lag apparent temperature. 
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N 9278 891 3908 4168 311  

Counts of       
Total WBC 5910.7 ± 1477.3 6110.1 ± 1460.3 5876.4 ± 1459.8 5889.9 ± 1478.2 6064.8 ± 1593.1 <0.0001 
Neutrocyte 3232.2 ± 1129.3 3389.6 ± 1143.8 3201.8 ± 1107.6 3221.3 ± 1137.0 3314.4 ± 1221.9 <0.001 

Figure 1. Brief of including records of participants. * exclusion criteria: pregnancy, current malignancy
diseases, history of auto-immune diseases, status of infectious disease or fever.

Table 1. Demographic characteristics of participants.

Variables Total ∆T 1 > 2 ◦C 0◦C ≤ ∆T ≤ 2 ◦C −2 ◦C ≤ ∆T < 0 ◦C ∆T < −2 ◦C

Days 331 32 134 147 18
N 9278 891 3908 4168 311

Age, years (mean ± SD) 54.3 ± 5.9 53.8 ± 5.7 54.2 ± 5.7 54.4 ± 5.9 55.0 ± 6.1
Gender, male 4200 (45.3%) 340 (38.2%) 1661 (42.5%) 1836 (44.1%) 142 (45.7%)

BMI, kg/m2 (mean ± SD) 24.7 ± 3.8 25.0 ± 3.8 24.6 ± 3.4 24.8 ± 4.1 25.2 ± 3.6

Education

College/Graduate 1259 (13.0%) 108 (12.2%) 506 (13.0%) 528 (12.8%) 30 (9.8%)
High school 3874 (40.0%) 371 (42.0%) 1587 (40.8%) 1626 (39.4%) 108 (35.2%)

Elementary school 3328 (34.3%) 293 (33.1%) 1326 (34.1%) 1433 (34.7%) 119 (38.8%)
Illiterate 1228 (12.7%) 112 (12.7%) 468 (12.0%) 540 (13.1%) 50 (16.3%)

Cigarette smoking
current 1457 (15.7%) 113 (13.0%) 558 (14.5%) 652 (15.9%) 60 (19.5%)
former 501 (5.2%) 46 (5.3%) 189 (4.9%) 222 (5.4%) 17 (5.5%)
never 7628 (79.6%) 708 (81.7%) 3106 (80.6%) 3324 (78.7%) 231 (75%)

Alcohol consumption 1383 (14.3%) 89 (10.1%) 591 (15.3%) 603 (14.6%) 44 (14.3%)

Betel quid use 273 (2.8%) 24 (2.7%) 102 (2.6%) 126 (3.1%) 8 (2.6%)
1 ∆T, difference of one-day lag apparent temperature.

Table 2. Counts and percentage of WBCs by different value of ∆T.

Variables Total ∆T 1 > 2 ◦C 0 ◦C ≤ ∆T ≤ 2 ◦C −2 ◦C ≤ ∆T < 0 ◦C ∆T < −2 ◦C p 2

Days 331 32 134 147 18
N 9278 891 3908 4168 311

Counts of
Total WBC 5910.7 ± 1477.3 6110.1 ± 1460.3 5876.4 ± 1459.8 5889.9 ± 1478.2 6064.8 ± 1593.1 <0.0001
Neutrocyte 3232.2 ± 1129.3 3389.6 ± 1143.8 3201.8 ± 1107.6 3221.3 ± 1137.0 3314.4 ± 1221.9 <0.001
Monocyte 360.4 ± 128.4 371.8 ± 128.6 357.3 ± 126.3 358.0 ± 124.0 389.9 ± 172.9 <0.001
Eosinophil 142.1 ± 130.7 157.4 ± 166.4 153.5 ± 166.4 149.4 ± 129.1 163.3 ± 119.5 0.116
Basophil 30.9 ± 20.2 30.8 ± 20.8 31.8 ± 21.1 30.7 ± 21.0 33.75 ± 29.2 0.05

Lymphocyte 2130.0 ± 617.4 2161.8 ± 583.1 2130.0 ± 618.3 2120.6 ± 623.5 2163.9 ± 619.3 0.234

Percentage of
neutrocyte (%) 53.99 ± 9.02 54.78 ± 8.76 53.81 ± 8.96 54.00 ± 9.25 53.87 ± 8.45 0.041
monocyte (%) 6.15 ± 1.77 6.13 ± 1.69 6.15 ± 1.87 6.14 ± 1.64 6.45 ± 2.37 0.029
eosinophil (%) 2.57 ± 1.92 2.55 ± 2.18 2.62 ± 1.92 2.53 ± 1.89 2.72 ± 1.83 0.118
basophil (%) 0.54 ± 0.35 0.51 ± 0.33 0.55 ± 0.35 0.53 ± 0.35 0.56 ± 0.37 0.005

lymphocyte (%) 36.66 ± 8.38 36.05 ± 8.06 36.84 ± 8.32 36.63 ± 8.58 36.40 ± 7.89 0.074
1 ∆T, difference of one-day lag apparent temperature. 2 ANOVA test (analysis of variance) comparing the groups of different ∆T.
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Figure 2. Box and Whisker plots of WBC counts by the difference values of one-day lag temperature
change; * p < 0.05 by Scheffe test.

Figure 3a shows the scatter plot of total WBC counts by one-day lag temperature
change. A trend line is also attached. From the trend line, we can vaguely see that the
greater the one-day lag temperature change, whether hotter or cooler, the greater the total
WBC counts. With the GAM procedure, the enhanced scatter plot statistically reveals a
V-shaped pattern. This is shown in Figure 3b.

Figure 4 shows the scatter plot graphs of counts of WBC differential types. Trend lines
of the GAM procedure are also present. In all types except for lymphocyte, the p-values of
the GAM analysis reach statistically significance, i.e., in neutrophil, monocyte, eosinophil
and basophil.
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Figure 3. (a) Scatter plot of total WBC counts by one-day lag temperature with trend line of generalized additive model
(GAM) procedure. The p-value of the GAM analysis is 0.000154; (b) zoom in the trend line at the central area.
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Figure 4. The scatter plot graphs of counts of WBC differential types and trend lines of GAM: (a) neutrophil, the p-value of
GAM analysis is 0.000219; (b) monocyte, the p value of GAM analysis is 0.00000157; (c) eosinophil, the p value of GAM
analysis is 0.000214; (d) basophile, the p value of GAM analysis is 0.0167; (e) lymphocyte, the p value of GAM analysis
is 0.305.
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4. Discussion

This was a population-based observational study attempting to find the exposure–
response association between ambient temperature change and peripheral WBC counts,
after adjusting for sex, age, and habits of smoking and alcohol consumption. The results
of our research revealed that there is a V-shaped pattern association between ambient
temperature change and WBC counts. The higher the apparent temperature difference
between two consecutive days (no matter hotter or cooler) was associated with an increase
in the WBC counts.

From a literature review, we found that some previous studies have reported a non-
linear relationship, such as U-, V- or J- patterns [45–47], between air temperature and
mortality. Our research finding, i.e., a V-shaped pattern association between apparent
temperature variance and WBC count, is consistent with air temperature–mortality rela-
tionships of previous studies. This may imply that the factor of peripheral WBC count has
a role in the temperature effect on disease. Studies have also found optimal temperatures,
at which the mortality is minimum. However, the optimal temperature is varied across
studies by different locations [45,48]. This might be owing to the adaption of local residents
to their local climates. Therefore, the method of our research seems to be more reasonable
by using relative change of ambient temperature as an exposure measurement.

The relationship between WBC count and disease has also been reported across
research. Reports of associations between WBC count and the risk and outcomes of
diseases such as stroke, cardiovascular disease, respiratory disease, diabetic mellitus and
metabolic syndrome, are numerous.

In our research, the slopes of the bilateral arms of the V-shaped curve are different.
The hot-side (right) arm is steeper than the cold-side (left) arm. This is also consistent
with previous studies [9]. Bunker et al., investigated the cause-specific mortality and
morbidity in the elderly, and found that for climate-sensitive non-infectious diseases, such
as cardiovascular, respiratory and cerebrovascular disease, the air temperature hazard
impact of the mortalities was more obvious on the hot-side. The mortality increase for
every 1 ◦C temperature change (rise vs. reduction) was 3.44% (95% CI 3.10–3.78) vs.
1.66% (95% CI 1.19–2.14) for cardiovascular, 3.60% (95% CI 3.18–4.02) vs. 2.90% (95% CI
1.84–3.97) for respiratory, and 1.40% (95% CI 0.06–2.75) vs. 1.21% (95% CI 0.66–1.77) for
cerebrovascular disease.

There are still some limitations of this study. First, the ambient temperatures we mea-
sured were derived from the data of fixed outdoor monitoring stations, not from personal
mobile devices. This would result in systematic measurement errors. However, these errors
should not alter the finding of the existence of the WBC–temperature association. Second,
WBC count can be influenced by short-term stress or inflammation resulting from personal
habits and behaviors. The characters and quantities of stress and inflammation could
not be well designed, checked and calculated. However, we still tried adjusting for age,
health-risk behaviors (smoking, alcohol consumption), and so stress related errors might
be partially corrected. Third, this research was conducted in small local area (four districts,
total area 92 square kilometers) and the study population was relative homogeneous. This
will cast a restriction on external validity. However, the local area means the variation of
exposure of air temperature of study population is not wide. Fifth, all the participants
were voluntary, and they could have a health check-up. The healthy worker effect might be
possible, for these participants would more care about their physical condition and have
a relative lower prevalence of hazardous health habits. For example, in 2002, the general
adult smoking rate was 27% [49] but the rate was only 15.7% among our study participants.
Sixth, in addition to apparent temperature, there are several thermal indexes to quantify
the thermal stress on the human body, such as the wet-bulb globe temperature (WBGT)
and the physiological equivalent temperature (PET) which might be superior to apparent
temperature for the representative of thermal physical stress [50,51]. Further research with
these thermal indexes should be considered.
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From this study, we found an association between WBC counts and one-day lag
temperature difference. The WBC counts would be raised if the difference of apparent
temperature between two consecutive days was over 2 ◦C. This might imply greater
inflammation/stress response and diseases would be provoked by weather temperature
changes. The government might consider making early warnings to people if dramatic
apparent temperature changes are predicted for the next day, and making healthcare
systems prepared.

5. Conclusions

We found a V-shaped pattern association between WBC counts and temperature
changes in GAM. The ambient temperature change, no matter higher or lower, was associ-
ated with increased WBC counts. Only lymphocyte was not significant. this might imply
an impact on systematic inflammation response.
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