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1  | INTRODUC TION

The investigation of adaption in populations and the underlying mo‐
lecular mechanisms are key topics in ecology, evolutionary biology, 
and conservation. Groups within a species which can be used to 

guide management and conservation efforts, termed conservation 
units (Fraser & Bernatchez, 2001), can be identified through charac‐
terization of adaptive divergence. For example, knowledge of adap‐
tive variants in a population could determine which populations can 
serve as source and recipient for augmentation efforts (Sampson & 
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Abstract
Understanding the genetic underpinning of adaptive divergence among popula‐
tions is a key goal of evolutionary biology and conservation. Gunnison sage‐grouse 
(Centrocercus minimus) is a sagebrush obligate species with a constricted range con‐
sisting of seven discrete populations, each with distinctly different habitat and cli‐
matic conditions. Though geographically close, populations have low levels of natural 
gene	flow	resulting	in	relatively	high	levels	of	differentiation.	Here,	we	use	15,033	
SNP loci in genomic outlier analyses, genotype–environment association analyses, 
and gene ontology enrichment tests to examine patterns of putatively adaptive ge‐
netic	differentiation	in	an	avian	species	of	conservation	concern.	We	found	411	loci	
within 5 kbp of 289 putative genes associated with biological functions or pathways 
that were overrepresented in the assemblage of outlier SNPs. The identified gene 
set	 was	 enriched	 for	 cytochrome	 P450	 gene	 family	members	 (CYP4V2,	 CYP2R1,	
CYP2C23B,	CYP4B1)	and	could	impact	metabolism	of	plant	secondary	metabolites,	a	
critical challenge for sagebrush obligates. Additionally, the gene set was also enriched 
with members potentially involved in antiviral response (DEAD box helicase gene 
family and SETX). Our results provide a first look at local adaption for isolated popu‐
lations of a single species and suggest adaptive divergence in multiple metabolic and 
biochemical pathways may be occurring. This information can be useful in manag‐
ing this species of conservation concern, for example, to identify unique populations 
to conserve, avoid translocation or release of individuals that may swamp locally 
adapted genetic diversity, or guide habitat restoration efforts.

K E Y W O R D S

adaptive divergence, local adaptation, sage‐grouse, signature of selection

www.wileyonlinelibrary.com/journal/eva
mailto:
https://orcid.org/0000-0003-3394-6102
https://orcid.org/0000-0003-3926-6941
https://orcid.org/0000-0001-5094-5510
https://orcid.org/0000-0001-9511-2192
https://orcid.org/0000-0003-1599-8769
http://creativecommons.org/licenses/by/4.0/
mailto:shawna.zimmerman@colostate.edu


1662  |     ZIMMERMAN Et Al.

Byrne, 2016). Additionally, adaptive variation could inform whether 
augmentation	 should	 be	 done	 at	 all	 (Benedict,	 Oyler‐McCance,	
Braun,	&	Quinn,	2003),	guide	development	of	captive	breeding	pro‐
grams (Williams & Hoffman, 2009), aid in monitoring and maintain‐
ing locally adapted variation in populations, or be used to identify 
evolutionarily	 significant	 units	 (ESUs;	 Funk,	McKay,	Hohenlohe,	&	
Allendorf, 2012). While diversity at putatively neutral genetic mark‐
ers has long been used to characterize populations, advances in DNA 
sequencing	technology	(Mardis,	2008;	Metzker,	2010;	Shendure	&	
Ji, 2008) and methods to separate neutral and functional genetic 
variation (Allendorf, Hohenlohe, & Luikart, 2010) have facilitated 
a shift in focus to understanding the role genetic diversity plays in 
adaptation to local environments (Nielsen, 2005; Schweizer et al., 
2016;	Wenzel	&	Piertney,	2015;	De	Wit	&	Palumbi,	2013).	Genomic	
methods can be particularly valuable for characterizing adaptive di‐
vergence in species where traditional approaches to evaluate local 
adaptation (i.e., reciprocal transplant experiments) are not feasible, 
such as with federally protected species (Funk et al., 2012).

The Gunnison sage‐grouse (Centrocercus minimus) is a sagebrush 
(Artemisia spp.) obligate avian species persisting as seven isolated 
populations with low gene flow and high genetic differentiation 
(Oyler‐McCance,	St	John,	Taylor,	Apa,	&	Quinn,	2005).	A	single	pop‐
ulation, the Gunnison Basin, supports the majority of the species 
(~85%–90% of ~5,000 individuals) with the remaining birds resid‐
ing in smaller satellite populations (United States Fish & Wildlife 
Service,	2014).	Historically,	Gunnison	sage‐grouse	occurred	across	
~46,521	km2	of	sagebrush	habitat	in	Colorado,	Utah,	New	Mexico,	
and	Arizona	(Schroeder	et	al.,	2004).	Land‐use	change	in	sagebrush	
habitat has reduced the species to just 8% of the historical range with 
birds remaining only in southwestern Colorado and southeastern 
Utah	(Figure	1;	Braun	et	al.,	2014;	Schroeder	et	al.,	2004).	In	2014,	
the species was listed as threatened under the Endangered Species 
Act	 (United	 States	 Fish	&	Wildlife	 Service,	 2014).	 As	 a	 sagebrush	
obligate, Gunnison sage‐grouse requires sagebrush cover for habitat 
during all life stages (Patterson, 1952; Wallestad & Eng, 1975), and 
as a source of forage, with up to 99% of winter diet consisting of 

F I G U R E  1   Historical (gray) and current (yellow) distribution of Gunnison sage‐grouse in the southwestern United States. Populations 
labeled	with	respective	names.	Black	rectangle	designates	the	study	area.	The	historic	range	map	is	as	described	by	Braun	et	al.	(2014);	the	
two northernmost portions of the historic range correspond to an unknown species of sage‐grouse and are not verified by Colorado Parks 
and Wildlife (Gunnison sage‐grouse Rangewide Steering Committee, 2005). Sample locations are indicated on the map as point of variable 
size, scale by number of samples collected at the location
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sagebrush leaves (Braun, Britt, & Wallestad, 1977; Braun, Connelly, 
&	Schroeder,	2005;	Young,	1994).	Differences	in	local	population	en‐
vironmental conditions also exist (Gunnison sage‐grouse Rangewide 
Steering Committee, 2005). Each population is centered in a rela‐
tively isolated area of the species range and has variable topography 
and environmental conditions covering a range of average annual 
precipitation, average annual temperature, and dominant vegeta‐
tion (Gunnison sage‐grouse Rangewide Steering Committee, 2005; 
Table 1 and Figure S1.1). Of particular interest to the species and 
local adaptation are the observed differences in local dominant sage‐
brush species: Cimarron is dominated by diverse sagebrush cover; 
Gunnison Basin is dominated by big sagebrush (Artemisia tridentata 
ssp.); Crawford is dominated by big sagebrush and black sagebrush 
(A. nova); Dove Creek has patchy big sagebrush and black sagebrush 
cover	throughout;	San	Miguel	is	dominated	by	lowbrush	sage	(A. ar‐
buscula) at low elevations and more contiguous low, black, and big 
sagebrush	cover	at	higher	elevations;	and	Piñon	Mesa	is	dominated	
by big and silver sagebrush (A. cana) at lower elevations and patchy 
big and silver sagebrush at high elevations.

Although	 populations	 are	 close	 in	 proximity	 (33.34	 to	
203.72	km	apart)	relative	to	observed	dispersal	capabilities	(up	to	
120–240	 km	 for	 greater	 sage‐grouse	 in	mostly	 contiguous	 hab‐
itat; Cross, Naugle, Carlson, & Schwartz, 2017; Newton et al., 
2017; Tack, Naugle, Carlson, & Fargey, 2011), genetic differenti‐
ation	 between	 populations	 is	 relatively	 high	 (Oyler‐McCance	 et	
al., 2005), suggesting low levels of homogenizing gene flow which 
might otherwise limit local adaptation. Conversely, some gene 
flow can increase the local genetic variation in a population and 
therefore provide more opportunities for natural selection to re‐
sult in local adaptation (Lenormand, 2002; Whiteley, Fitzpatrick, 
Funk, & Tallmon, 2015), which suggests observed low levels of 
gene may promote local adaptation in the different local habitat 
patches. The male‐dominant polygynous mating system of sage‐
grouse	 skews	mating	 success	 among	males	 (Wiley,	1973;	Young,	
Braun,	Oyler‐McCance,	Hupp,	&	Quinn,	2000)	and	imposes	strong	
sexual selection which could lead to rapid morphological and/or 

behavioral changes and further divergence among isolated groups 
(Ellsworth,	Honeycutt,	&	Silvy,	1995;	Oyler‐McCance,	St.	John,	&	
Quinn, 2010; Spaulding, 2007; Uy & Borgia, 2000). The skew in 
mating success decreases effective population size (Stiver, Apa, 
Remington, & Gibson, 2008). This mating skew, along with small 
population size, also indicates genetic drift could overwhelm the 
efficacy of selection for local adaptation.

Previous studies have found evidence for significant genetic 
divergence within some sage‐grouse populations. Isolated popula‐
tions of greater sage‐grouse (C. urophasianus) are genetically distinct 
enough at neutral loci to warrant consideration for special protec‐
tion	(Benedict	et	al.,	2003;	Oh,	Aldridge,	Forbey,	Dadabay,	&	Oyler‐
McCance,	2019).	An	evaluation	of	genetic	variation	at	cytochrome	
P450	genes	and	additional	candidate	genes	related	to	metabolism	of	
plant	secondary	metabolites	(PSMs)	in	greater	sage‐grouse	identified	
evidence for positive selection, potentially pointing to local dietary 
adaptation	 (Oh	et	al.,	2019).	The	cytochrome	P450	superfamily	of	
genes have broad roles in physiological and toxicological processes 
(Kubota	et	al.,	2011).	Importantly,	some	of	the	members	of	this	gene	
family	 are	 involved	 in	 metabolism	 of	 PSMs	 (Miyazawa,	 Shindo,	 &	
Shimada,	2001;	Skopec,	Malenke,	Halpert,	&	Denise	Dearing,	2013),	
like the monoterpenes, sesquiterpene lactones, and phenolics 
found	in	sagebrush	species	(Kelsey,	Stephens,	&	Shafizadeh,	1982).	
However, taken together with the relevant environmental variation 
among Gunnison sage‐grouse populations, we became interested 
in whether there was evidence for adaptive divergence among the 
populations.

In this study, we examined SNP allele frequencies in six popula‐
tions along with environmental covariates to address two main re‐
search questions about adaptive divergence at the genomic level. 
First, is there evidence of adaptive divergence among populations 
of Gunnison sage‐grouse? Second, can we link signals of adaptive 
divergence to putative gene function? Identification of genes or 
groups of related genes potentially under adaptive divergence can 
help elucidate critical factors in the ecology of this threatened spe‐
cies, to be validated and elaborated with further targeted study.

TA B L E  1   Environmental characteristics of Gunnison sage‐grouse populations

Population Pop. Est. Dom. Veg. Elev. (m) PPT (mm) TMP (°C) TMAX (°C) TMIN (°C) Ann. TMIN (°C)

Cimarron 25 Sagebrush, oakbrush, 
agriculture

2,133–2743 478.05 5.3 24.32 −11.68 −1.46

Crawford 191 Sagebrush, piñon 
pine, juniper

1549–2749 512.54 12.4 24.72 −10.52 −0.13

Dove Creek 196 Sagebrush, 
agriculture

2011–2468 398.29 9.3 26.49 −9.36 0.96

Gunnison Basin 4,763 Sagebrush 2,180–3100 376.61 3.2 22.32 −15.81 −4.53

Piñon	Mesa 167 Sagebrush, oakbrush 2,438–2749 486.49 4.9 24.90 −10.22 0.18

San	Miguel 334 Sagebrush, low sage 1920–2164 479.18 8.6 25.49 −10.35 −0.22

Note:	Pop.	Est.	=	population	estimates	from	2005	(United	States	Fish	&	Wildlife	Service,	2014);	Dom.	Veg.	=	dominant	vegetation	cover	type	(sage‐
brush = Artemisia tridentata sp.; oakbrush = Quercus gambelii; piñon pine = Pinus edulis; low sage = Artemisia arbuscula); Elev. = elevation range of 
population	area	(m);	PPT	=	average	annual	precipitation	(mm);	TMP	=	average	annual	temperature	(°C);	and	to	represent	the	extreme	temperatures	
in	each	population,	TMAX	=	July	maximum	temperature	(°C),	TMIN	=	January	minimum	temperature	(°C),	and	Ann.	TMIN	=	annual	average	minimum	
temperature	(°C).
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2  | MATERIAL AND METHODS

2.1 | Study system

Our study area encompassed the entire species range excluding the 
eastern most population, Poncha Pass (Figure 1). The Poncha Pass 
population is thought to have been extirpated in the 1950s and re‐
established with Gunnison Basin individuals beginning in the 1970s, 
persisting only due to ongoing translocation (Nehring & Braun, 
2000). For these reasons, the Poncha Pass population was excluded 
from our analyses.

2.2 | Genetic samples

Blood	 samples	 were	 collected	 from	 254	 birds	 captured	 using	
spotlight trapping methods (Giesen, Schoenberg, & Braun, 1992; 
Wakkinen, Reese, Connelly, & Fischer, 1992) as part of a previous 
study	 (1996–2004;	 Oyler‐McCance	 et	 al.,	 2005),	 and	 DNA	 was	
extracted	 using	 either	 a	 phenol–chloroform	 method	 (Kahn	 et	 al.,	
1999)	 or	 the	 Genomic	 Prep	 Blood	 DNA	 Isolation	 Kit	 (Amersham	
Biosciences)	 (see	Oyler‐McCance	et	al.,	2005,	for	complete	details	
on	collection	and	DNA	extraction).	From	the	254	samples	collected,	
a subset was chosen for reduced representation sequencing based 
on	population	of	origin	and	relatedness.	Marker‐based	estimates	of	
relatedness (Lynch & Ritland, 1999) were used to select unrelated 
individuals within each population (see Appendix S2 for a summary 
of relatedness for selected samples and STRUCTURE analysis). 
Relatedness	estimates	for	all	254	samples	were	based	on	22	micros‐
atellite genotypes from a previous study (Zimmerman, Aldridge, Apa, 
&	Oyler‐McCance,	2019).	The	exception	was	the	Cimarron	popula‐
tion, for which there were four samples in total; consequently, all 
Cimarron samples were included. All other populations had 12 sam‐
ples included in the library preparation.

2.3 | Library preparation

We accomplished SNP identification using an adapted version of 
the	ddRAD	protocol	 as	 first	described	by	Peterson,	Weber,	Kay,	
Fisher, and Hoekstra (2012). The double digestion utilizes two 
restriction enzymes which cut the DNA at different frequen‐
cies.	We	used	Sau3AI	 (5,000	units/ml;	New	England	BioLabs)	 as	
our common four‐cutter and SPEI (10,000 units/ml; New England 
BioLabs) as our rare six‐cutter. The digestion reaction for each 
sample	had	a	total	volume	of	20	µl:	2	µl	T4	10×	DNA	ligase	buffer	
(New England BioLabs), 0.2 µl bovine serum albumin (BSA; New 
England BioLabs), 1 µl of each digestion enzyme, 2.8 µl of dou‐
ble‐deionized	water,	 and	13	µl	 of	whole	 genomic	DNA	adjusted	
to a concentration of 77 ng/µl. The digestion was accomplished 
by	 incubating	 all	 samples	 at	 37°C	 for	 2	 hr,	 then	 increasing	 the	
heat	 to	 65°C	 for	 15	min	 to	 kill	 enzymes,	 and	 finally	 cooling	 the	
reaction	back	to	37°C	and	holding	at	temperature.	While	at	37°C,	
1	µl	of	10	µM	stocks	of	P1	and	P2	(individually	barcoded)	restric‐
tion site‐associated adaptors (Integrated DNA Technologies) was 

added	to	each	sample	and	left	to	equilibrate	for	3	min	in	order	to	
allow adapter dimers to separate. Additionally, the P1/P2 adapter 
included a degenerate base region to allow identification of PCR 
duplicates in the bioinformatics stage (Schweyen, Rozenberg, & 
Leese,	2014).	Once	the	reaction	was	in	equilibrium,	1	µl	of	T4	li‐
gase	(400,000	units/ml;	New	England	BioLabs)	was	added	to	each	
sample. In order for the adapters to ligate to the digested DNA, 
the	temperature	was	then	reduced	to	16°C	and	held	for	30	min.	
The ligase was inactivated through holding the temperature at 
65°C	for	20	min.	The	ligation	reaction	was	then	diluted	with	80	µl	
of ddH2O and then cleaned using 65 µl of SPRI beads (Applied 
Biological	Materials	Inc.)	to	remove	adapter	dimers	present	in	the	
reaction. To amplify DNA fragments, we performed a 10 µl PCR 
using	 2	 µl	 of	 cleaned	 ligation	 for	 each	 sample,	 1	 µl	 10×	 Buffer	
(Fisher Scientific), 1 µl dNTPs, 0.2 µl each of the forward and re‐
verse	primers,	0.2	µl	AmpliTaq	Gold	(Fisher	Scientific),	and	5.4	µl	
ddH2O. The thermocycler protocol for the PCR consisted of 22 
cycles	of	the	following:	95°C	for	30	s,	55°C	for	30	s,	and	72°C	for	
30	 s.	 Each	 sample	was	 amplified	with	 9	 independent	 replicates,	
with all PCR replicates for a sample being pooled into a single sam‐
ple in an effort to identify and reduce the effects of PCR error. A 
16‐µl aliquot of the pooled PCR replicates for each sample was 
then pooled into a single Eppendorf tube creating a multisample 
pool, which was then cleaned with SPRI beads in a 1:1 ratio to re‐
move PCR dimers and small‐size amplicons. We performed a final 
size‐selection step using the Pippen Prep (Sage Science) selecting 
for	fragments	between	300	and	500	base	pairs.	The	final	size‐se‐
lected library was sent to the Genomics and Cell Characterization 
Core Facility at the University of Oregon in Eugene, Oregon, and 
was	sequenced	on	the	Illumina	HiSeq	4,000	platform	(Illumina).

2.4 | Sequence data processing and genotyping

Raw sequencing reads were trimmed at a maximum error probability 
of 0.05 using CLC Genomics v. 9.5 (Qiagen), allowing at most two 
ambiguous bases. Reads were mapped to the Cmin_1.0 Gunnison 
sage‐grouse draft genome assembly (Oh et al., 2019; GenBank ac‐
cession: SPOS00000000) with Bowtie2 (Langmead & Salzberg, 
2012) using the “very‐sensitive” and “end‐to‐end” parameter sets 
and filtered on a mapping quality of 20 (Phred‐scaled) with the sam‐
tools/bcftools	package,	v.	1.3	(Li	et	al.,	2009).	Potential	PCR	dupli‐
cates were removed by processing unique molecular identifiers with 
the	UMI‐tools	package	 (Smith,	Heger,	&	Sudbery,	2017),	using	 the	
“unique” identifier detection algorithm.

The samtools/bcftools package was used to merge alignments 
and identify variant sites in the reference genome. Base composition 
at sites was computed with the mpileup function using the recom‐
mended map‐quality adjustment (“‐C” set to 50) and base‐align‐
ment qualities recalculated from the combined data. Indels were 
called	 for	 the	purposes	of	 filtering	nearby	SNP	 sites	 (within	3	bp)	
that could be affected by local misalignment, but were not other‐
wise used. Genotype likelihoods were estimated with the bcftools 
call function using the multiallelic model, although only biallelic loci 
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were retained. SNP loci were further filtered by requiring a minimum 
coverage	of	960×	across	all	individuals	(based	on	an	average	of	15X	
per sequenced individual) and called genotypes for at least 50 of the 
total	 64	 individuals.	 Loci	 potentially	 located	 on	 sex	 chromosomes	
were removed using both coverage and homology information: SNPs 
on scaffolds putatively homologous with the sex chromosomes of 
Gallus gallus (Oh et al., 2019) were excluded, as were SNPs with un‐
equal coverage in males and females (i.e., if the ratio of male to fe‐
male mean coverage was outside the range 0.9–1.2). We excluded 
potentially sex‐linked loci because the proportion of each sex sam‐
pled in each population was variable and we wanted to reduce the 
likelihood of false positives for adaptive divergence due to sampling 
bias at sex‐linked loci. Sites with low‐frequency minor alleles (below 
5%) were also excluded. In addition to filtering variant sites based on 
these locus‐based criteria, individual genotype calls were removed if 
coverage was less than 10X for an individual at a given location, re‐
gardless of whether a genotype was called by bcftools. After exclud‐
ing	four	of	the	64	sequenced	individuals	due	to	low	coverage	overall,	
the	final	data	set	 included	15,033	 loci	across	35	“pseudo‐chromo‐
somes” (chromosome scaffolds inferred from synteny with chicken) 
for 60 individuals (four Cimarron, 12 Crawford, 12 Dove Creek, 12 
Gunnison	Basin,	10	Pinon	Mesa,	and	10	San	Miguel).	Because	sam‐
ple size in Cimarron was low, the power to detect unique outliers 
in this population was also low. However, inclusion of the Cimarron 
samples would still help estimate population structure and identify 
global outliers.

2.5 | Genetic data analyses

2.5.1 | Outlier locus analyses

We identified outlier SNPs using the BayPass core model (Gautier, 
2015) and pcadapt (Luu, Bazin, & Blum, 2017) to balance the trade‐
off between power and false‐positive rates observed when using 
parametric (as in BayPass) versus nonparametric (as in pcadapt) 
outlier analysis approaches. Both approaches perform well under 
high population structure demographic scenarios, similar to that of 
Gunnison sage‐grouse (Gautier, 2015; Luu et al., 2017). The core 
BayPass	model	expands	on	the	approach	implemented	in	BAYENV	
(Coop, Witonsky, Di Rienzo, & Pritchard, 2010; Gunther & Coop, 
2013)	 by	 providing	 greater	 computational	 efficiency,	 flexibility,	
and a formal procedure for calculating outlier thresholds. As with 
BAYENV,	 this	method	 incorporates	 a	 scaled	 covariance	matrix	 ac‐
counting for background population structure which can confound 
analyses	 for	 adaptive	 variation	 (Meirmans,	 2012).	 The	 population	
covariance matrix was directly estimated with the core model, the 
Inverse‐Wishart prior set to 1, and both hyperpriors for beta (a.pi, 
b.pi)	set	to	1.	Five	thousand	MCMC	iterations	were	performed	after	
discarding a 5,000‐iteration burn‐in and thinning by a factor of 25. 
Twenty	 pilot	 runs	 of	 1,000	 MCMC	 iterations	 were	 performed	 in	
order to adjust the parameters in the proposal distribution of the 
Metropolis–Hastings	algorithm	so	that	an	acceptance	rate	between	
0.25	and	0.40	was	achieved.	The	adjustment	parameter	(set	to	1.25)	

was used in the pilot runs to adjust the range of possible values from 
the proposal distributions if the acceptance rate fell outside the de‐
sired window. Inference on the core model was through estimates 
of the XtX statistic. Allele counts were simulated with the simulate.
baypass R function and the population covariance matrix to generate 
a pseudo‐observed data set from the core model. Outliers were loci 
with XtX values exceeding the 99th quantile of the XtX distribution 
that resulted from the simulated pseudo‐observed data set (false 
discovery rate (FDR) of 0.01). We verified that the scaled covariance 
matrix of population allele frequencies estimated from the simulated 
data	 was	 close	 to	 the	 matrix	 estimated	 from	 our	 data	 (FMD	 dis‐
tance = 0.19, see Gautier, 2015). For pcadapt, we used the pcadapt 
R	package	(Luu	et	al.,	2017)	with	K	=	5	based	on	visual	inspection	of	
a	scree	plot	(Figure	S3.1).	The	first	5	principal	components	generally	
separate	individuals	into	loose	populations	(Figure	S3.2).	We	consid‐
ered loci with a q‐value < 0.01 as outliers.

As an independent evaluation of the SNP data and the ability of 
BayPass to control for population structure, we compared pairwise 
FST	(as	in	Weir	&	Cockerham,	1984)	as	calculated	with	the	R	package	
diveRsity	 (Keenan,	McGinnity,	Cross,	Crozier,	&	Prodohl,	2013)	for	
the neutral SNPs (the SNP data with all outliers removed) to values 
previously obtained using a microsatellite genotype data set created 
from the whole available sample set. If SNPs showed the same pat‐
tern of differentiation as microsatellite loci, we were confident in the 
ability of the SNP data and BayPass to estimate population structure 
(Figure	S4).

2.5.2 | Genotype–environment association analyses

Environmental covariates tested for association with SNPs were 
selected based on previously documented effects on sage‐grouse 
reported in the literature as well as environmental covariates which 
varied across the species range. Covariates used in model fits in‐
cluded sagebrush cover (Aldridge et al., 2008; Aldridge, Saher, 
Childers,	Stahlnecker,	&	Bowen,	2012;	Baruch‐Mordo	et	al.,	2013;	
Doherty,	Naugle,	&	Walker,	 2010;	Harju,	Olson,	Dzialak,	Mudd,	&	
Winstead,	2013;	Knick,	Hanser,	&	Preston,	2013;	Oyler‐McCance,	
Burnham, & Braun, 2001), conifer cover and configuration (Baruch‐
Mordo	 et	 al.,	 2013;	 Doherty	 et	 al.,	 2018),	 dominant	 shrub	 type	
(Aldridge	et	al.,	2008,	2012;	Baruch‐Mordo	et	al.,	2013;	Doherty	et	
al.,	2010;	Harju	et	al.,	2013;	Knick	et	al.,	2013;	Oyler‐McCance	et	al.,	
2001), a dryness index (Aldridge & Boyce, 2008), growing degree 
days (Aldridge & Boyce, 2008), seasonal and annual precipitation 
(Blomberg, Sedinger, Atamian, & Nonne, 2012), seasonal and annual 
temperature (Blomberg et al., 2012), seasonal and annual humidity, 
and	phenology	metrics	 derived	 from	NDVI	 (Aldridge	 et	 al.,	 2012).	
A total of 72 covariates were initially considered (Table S1.1). We 
reduced this set to eight variables with a Pearson correlation coef‐
ficient <|0.70| for our analyses. This reduced list included spring and 
fall precipitation, spring maximum temperature, winter vapor pres‐
sure deficit (i.e., evapotranspiration), compound topographic index 
(CTI; a wetness index), green‐up rate, big sagebrush cover, and a 
dryness index. We also used the loadings of the first three principal 
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components	(PCs;	PC1	=	37.59%,	PC2	=	29.53%,	PC3	=	18.85%	of	
the variance) of the eight minimally correlated variables as a covari‐
ate in attempt to incorporate multiple covariates in a single model. 
The principal components analysis was performed with the prcomp 
function in R (see Appendix S1 in Supporting Information for full de‐
tails on covariates).

Correlation of environmental covariates with SNP genotypes 
was evaluated using the standard covariate model in BayPass. The 
model was implemented as in the core model, though including 
the population covariance matrix estimated with the core model 
and the addition of regression coefficients which had a uniform 
prior	bounded	between	−0.3	and	0.3.	Covariates	with	an	empir‐
ical Bayesian p‐value	 (eBPmc)	 greater	 than	 4	 were	 considered	
significantly associated. Gautier (2015) recommends an eBPmc of 
3	as	a	 threshold	 for	candidacy;	however,	we	used	4	as	a	 thresh‐
old to further control for false discovery. We also used a partial 
redundancy analysis (RDA), an approach based on a combination 
of multivariate linear regression and principal components anal‐
ysis (PCA) that can identify SNPs weakly associated with envi‐
ronmental covariates (Forester, Lasky, Wagner, & Urban, 2018; 
Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015). RDA is 
a nonparametric approach to identifying candidate adaptive loci 
which has high power and low false‐positive rates, yet has not 
been evaluated under a high population structure demographic 
scenario as observed in Gunnison sage‐grouse. Further, evalua‐
tion of a partial RDA (accounting for demographic structure) on 
a low‐structure system resulted in reduced power and increased 
false‐positive rates (Forester et al., 2018). However, results of a re‐
cent application of a partial RDA to a high‐structure system (global 
FST	 =	 0.48;	Brauer,	Hammer,	&	Beheregaray,	 2016)	were	 consis‐
tent with an independent transcriptomics study (Brauer, Unmack, 
& Beheregaray, 2017), suggesting the partial RDA performs well 
in high‐structure systems. We therefore report the results of a 
partial RDA as a complement to the BayPass standard covariate 
model. For the partial RDA, the genetic data were recoded to a 
0,1,2 format, where individuals heterozygous at a locus were des‐
ignated as 1, and homozygotes were designated as 0 and 2 for the 
reference and alternate alleles, respectively. We accomplished the 
partial RDA by calculating a genetic distance matrix (vegdist func‐
tion using the “bray” method in the vegan R package; Oksanen et 
al., 2017) and identifying the significant genetic axes of a principal 
coordinates analysis on the genetic distance matrix (pcoa func‐
tion in the ape R package; Paradis & Schlier, 2018); significance 
of genetic axes was based on the broken‐stick criterion (Legendre 
& Legendre, 2012). We then created spatial predictors by calcu‐
lating	Moran	eigenvector	maps	 (MEM;	based	on	a	Gabriel	 graph	
neighborhood and inverse distance weights) in the R packages 
spdep (Bivand & Piras, 2015) and adespatial (Dray et al., 2019). 
We	used	 the	 first	 4	 genetic	 axes	 (as	 determined	by	 the	broken‐
stick criterion), as the response variable in a forward selection 
algorithm	 including	 all	 MEMs	 (rda and ordistep functions in the 
vegan R package; Oksanen et al., 2017), which stops adding vari‐
ables when the adjusted R2 of the full model is exceeded, and a 

significance threshold for inclusion of PIN	=	0.01.	Significant	MEMs	
that were not correlated with environmental covariates at r>|0.70| 
were retained. Environmental covariates were evaluated for cor‐
relation and checked for multicollinearity, retaining only a single 
variable correlated at Pearson's r > |0.70| and removing variables 
with	VIF	>	10	(Kutner,	Nachsheim,	&	Netter,	2004).	Our	final	par‐
tial RDA included only the spring precipitation, fall precipitation, 
CTI, and proportion of big sagebrush variables after accounting 
for correlation and multicollinearity. Formal significance of the 
full model and marginal significance for which constrained axes to 
be evaluated for candidate loci was performed with the anova.cca 
function and 999 permutations in the vegan package. Significant 
(p‐value < 0.05) marginal constrained axes were retained for eval‐
uation of candidate SNPs (see Figure S5 for corresponding scree 
plot). Loci in the tails of the distribution of the SNP loadings on 
each axis were considered outliers. In attempt to keep false posi‐
tives low, we used a two‐tailed p‐value	of	0.0027	(based	on	3	stan‐
dard deviations) as a cut off for candidacy.

2.5.3 | Linkage disequilibrium and gene ontology 
enrichment analyses

We phased our SNPs and estimated linkage disequilibrium (LD) 
decay to determine at what distance candidate loci could be con‐
sidered physically linked to a putative gene region on the reference 
genome based on the position of SNPs on pseudo‐chromosomes. To 
phase our SNPs we used BEAGLE 5.0, setting NE to 1,000 as recom‐
mended to indicate our data are from a small and inbred population 
(Browning & Browning, 2007). With the phased SNPs, we calculated 
LD in vcftools (‐hap‐r2 command) at multiple distances, from SNPs 
10	bp	to	1Mbp	apart.	We	considered	SNPs	at	the	distance	where	LD	
as measured by r2~0.10 to be physically linked.

We then further investigated the relationships between putative 
gene products using a gene ontology (GO) enrichment analysis. We 
used	Gowinda	v1.12	(Kofler	&	Schlötterer,	2012)	to	evaluate	over‐
representation of GO terms in individual candidate SNP lists, or lists 
of loci identified by core or standard covariate models in BayPass, 
pcadapt, and the partial RDA. Gowinda input includes a list of all 
the SNPs considered in the outlier analysis, a list of identified candi‐
date	loci,	a	GO	association	file	(FuncAssociate;	Berriz,	King,	Bryant,	
Sander,	&	Roth,	2003),	and	a	draft	genome	annotation	file	(chicken	
homology based gene predictions and annotations aligned to the 
Gunnison sage‐grouse draft genome; Oh et al., 2019). The p‐value 
(before FDR adjusted) is calculated as the proportion of simulations 
with more genes for a category with at least one candidate locus 
than the whole observed data set. We used the SNP mode (a gene 
region containing multiple SNPs was counted once for each SNP 
and assumed complete linkage equilibrium) to test against the GO 
categories, with 100,000 simulations to generate the null distribu‐
tion. We also used gene lists derived from Gowinda for all analyses 
(BayPass, pcadapt, RDA) to evaluate significantly overrepresented 
functional	 annotation	 terms	 in	 DAVID	 (Database	 for	 Annotation,	
Visualization	 and	 Integrated	 Discovery;	 Huang	 et	 al.,	 2007)	 using	
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default parameters. Lastly, we evaluated the potential effect of the 
candidate SNP variants identified by all tests with SnpEff (Cingolani 
et al., 2012).

To visualize clustering of individuals into potentially adaptively 
divergent groups, we performed PCA on the candidate SNP loci and 
SNP loci in identified gene families with the princomp function in 
R and plotted the first three principal components using ggplot2 R 
package (Wickham, 2009). For comparison, we also included plots 
of the first three principal components for analyses on all SNPs and 
putatively neutral SNPs.

3  | RESULTS

3.1 | Population genetic structure check

Pairwise multilocus FST values as calculated from only putatively 
neutral SNPs corresponded well by rank with previous microsatel‐
lite estimates, although the latter appear to have consistently lower 
means	(Figure	S4).	The	population	covariance	matrix	 inferred	from	
neutral SNPs also confirms our previous understanding of popula‐
tion structure. We have included a heat‐plot of the correlation matrix 
derived from the allele frequency covariance matrix estimated in the 
BayPass program to illustrate how populations are related (Figure 2).

3.2 | Genome scans for adaptive divergence and 
association with environmental variables

The	BayPass	core	model	identified	76	outlier	loci	located	on	13	of	the	
35	pseudo‐chromosomes	that	had	SNPs,	and	pcadapt	identified	157	
outlier	loci	located	on	17	pseudo‐chromosomes	(Table	2,	Figure	3a,b).	
The standard covariate model identified significant associations for 

all	 covariates	 evaluated:	 32	 SNPs	 on	 8	 pseudo‐chromosomes	with	
spring precipitation, 26 SNPs on 8 pseudo‐chromosomes with fall 
precipitation, 15 SNPs on 7 pseudo‐chromosomes with spring maxi‐
mum	temperature,	37	SNPs	on	12	pseudo‐chromosomes	with	CTI,	
30	 SNPs	 on	 7	 pseudo‐chromosomes	with	 green‐up	 rate,	 36	 SNPs	
on	8	pseudo‐chromosomes	with	big	sagebrush	cover,	and	45	SNPs	
on	15	pseudo‐chromosomes	with	dryness	index	(Table	2,	Figure	3c).	
Similarly, significant relationships were found with the principal com‐
ponents	included	as	covariates:	40	for	PC1	(highest	 loadings:	maxi‐
mum	temperature	 [0.53],	big	sagebrush	cover	 [0.54],	green‐up	rate	
[−0.53]),	12	for	PC2	(highest	loadings:	spring	precipitation	[0.53],	win‐
ter	vapor	pressure	deficit	[0.54]	and	dryness	index	[−0.5]),	and	43	for	
PC3	(highest	loading:	CTI	[0.76]).	See	Table	S1.3	for	all	covariate	load‐
ings onto PCs. The partial RDA was globally significant (p = 0.001) and 
accounted	for	31.2%	of	the	total	variation.	A	total	of	602	SNPs	were	
identified	as	outliers	in	the	tails	of	the	first	4	axes	(all	with	p	<	0.03).	
The significant axes accounted for descending amounts of variation 
(RDA1	=	9.9%,	RDA2	=	7.2%,	RDA3	=	4.3%,	RDA4	=	1.2%)	and	differ‐
ent	numbers	of	candidate	loci	(RDA1	=	91,	RDA2	=	178,	RDA3	=	175,	
RDA4	=	163).	Predictor	covariates	(highest	loading)	corresponded	to	
proportion of big sagebrush cover (10 SNPs), spring precipitation (180 
SNPs), fall precipitation (212 SNPs), and CTI (200 SNPs). Each of the 
axes generally displayed an environmental gradient of predictor vari‐
ables: RDA1 corresponded to an environmental gradient of fall pre‐
cipitation,	RDA2	to	a	spring	precipitation	gradient,	RDA3	to	a	CTI	and	
fall	precipitation	gradient,	and	RDA4	to	a	spring	and	fall	precipitation	
gradient.	Plots	of	the	first	4	RDA	axes	are	included	in	the	Appendix	
(Figure S6). Overlap of loci identified with each analysis varied; no 
two analyses identified identical lists (Table S7).

3.3 | Gene ontology enrichment analyses

Eight unique genes from gene sets associated with 51 GO terms (FDR 
0.05) were identified in a gene ontology enrichment analysis of outli‐
ers identified by the BayPass core model and 15 unique genes from 
gene sets associated with 161 GO terms (FDR 0.05) were identified 
with outliers from pcadapt (Table 2). Outlier lists for covariates iden‐
tified variable numbers of enriched GO terms and associated gene 
sets,	ranging	from	zero	GO	terms	at	FDR	0.05	for	PC2,	PC3,	spring	
precipitation, spring maximum temperature, CTI, and green‐up rate, 
to	55	GO	terms	and	three	unique	gene	set	genes	at	FDR	0.05	(45	and	
two respectively at FDR 0.01) for the dryness index (see Table 2 for 
summarization of all tests).

Global LD was estimated to be 0.02, and dropped to r2	<	0.1	at	~	350	
kbp (Figure S8), a distance much greater than the default distance we 
used to align candidate SNPS to gene regions (5 kbp). There are likely 
many	genes	within	the	350	kbp	LD	blocks,	any	of	which	could	be	the	
true target of selection. Restricting the distance between candidate 
SNPs and gene regions increased our confidence that the association 
between candidate SNP and gene was nonrandom although it ensures 
that many potential targets of selection would not be included. Of the 
950	 total	 candidate	SNPs,	411	were	 located	within	5	kbp	of	one	of	
289 putative gene regions, and considered in linkage. The majority of 

F I G U R E  2   Heat map for the correlation between populations 
of Gunnison sage‐grouse (low correlation = blue; high 
correlation = red) derived from the allele frequency covariance 
matrix used in the BayPass program to account for demographic 
structure.	Population	name	abbreviations:	CM	=	Cimarron,	
CR = Crawford, DC = Dove Creek, GB = Gunnison Basin, 
PM	=	Piñon	Mesa,	SM	=	San	Miguel
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candidate SNPs within 5 kbp of a putative gene region were identified 
as	potential	modifiers	 (453)	or	 low	 impact	variants	 (4)	and	predicted	
to result in a synonymous amino acid substitution (2), or were located 
in introns (260; gene regions excised before translation into proteins), 

upstream of a coding region (56), or downstream of a coding region (59) 
by	SnpEff	(Table	3	and	Table	S10).	Additionally,	three	SNPs	in	three	pu‐
tative genes were indicated as nonsynonymous variants and moderate 
or high impacts to putative gene function (Table S10): protein kinase, 

TA B L E  2   Summary of the number of SNPs (No. Cand. SNPs) showing signatures of adaptive divergence for Gunnison sage‐grouse in 
different	models	(Method),	the	number	of	chromosomes	with	candidate	SNPs	(No.	Chrome.	W/Cand.	SNPs)	at	FDR	0.01.	The	number	of	GO	
terms associated with each candidate SNP list (No. Sig. GO Terms) and number of unique genes associate with GO terms (No. Genes Assoc. 
W/GO Terms) at FDR 0.05 and FDR 0.01 are included in the last four columns

Method

No. Cand. SNPs
No. Chrome. W/
Cand. SNPs

No. Sig. GO Terms
No. Genes Assoc. W/GO 
Terms

Variable FDR 0.05 FDR 0.01 FDR 0.05 FDR 0.01

pcadapt 156 17 161 0 15 0

BayPass

‐‐ 76 13 51 33 8 2

PC1 40 14 41 11 4 3

PC2 12 4 0 0 0 0

PC3 43 15 0 0 0 0

Spring Precip. 32 8 0 0 0 0

Fall Precip. 26 8 2 2 1 1

Spring	Max.	Temp. 15 7 0 0 0 0

Winter.	Max.	Vapor. 27 8 2 2 1 1

CTI 37 12 0 0 0 0

Green‐up Rate 30 7 0 0 0 0

Big Sagebrush 36 8 24 20 1 1

Dryness Index 45 15 55 45 3 2

Partial RDA 602 25 53 22 22 12

F I G U R E  3   (a) XtX from the core 
BayPass model, (b) –log10(p‐value) from 
pcadapt, and (c) empirical Bayesian 
p‐value (eBPmc) for each locus or each 
locus–covariate pair. X‐axis corresponds 
to the SNP position along pseudo‐
chromosomes, alternating gray and black 
indicate SNPs observed on different 
pseudo‐chromosomes for Gunnison 
sage‐grouse. SNPs with XtX or –log10(p‐
value)>	FDR	0.01	or	eBPmc	>	4	are	red.	
Squares along the top of plot (a) indicate 
the locations of enriched genes of interest
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DNA‐activated,	catalytic	polypeptide	(PRKDC),	mortality	factor	4‐like	
1	(MORF4L1),	and	zinc	finger	and	BTB	domain	containing	2	(ZBTB2).

Enrichment	 analysis	 using	DAVID	 identified	 several	 significant	
GO terms in each database category though none were significant 
after adjustment for multiple testing, suggesting interesting though 
potentially spurious relationships. There were four functional en‐
richment annotation clusters with a top GO term category with 
p	<	0.05,	which	included	MAM	domain	(cluster	1	enrichment	score:	
1.42),	ANK	sequence	repeat	(cluster	2	enrichment	score:	1.14),	cy‐
tochrome	P450,	E‐class,	group	1	(cluster	3	enrichment	score:	1.08),	
and	short	sequence	motif:	DEAD	box	 (cluster	4	enrichment	score:	
0.90)	(Table	4;	see	Table	S11	for	a	complete	list).

Individuals generally clustered by population when candidate 
loci	were	used	in	a	PCA	(Figure	4c)	which	was	somewhat	similar	to	
the clustering of individuals with all and putatively neutral SNP loci 
(Figure	4a,b),	although	Crawford	and	Cimarron	cluster	more	tightly	
together	while	Gunnison	Basin,	Dove	Creek,	Piñon	Mesa,	and	San	
Miguel	populations	appear	to	separate	from	the	other	three	popula‐
tions and each other with candidate loci. PCA plots with SNPs from 
individual analyses generally showed similar clustering patterns to 
that of the overall outlier clustering (see Figure S12). A PCA plot of 
the	SNPs	within	5	kbp	of	cytochrome	P450	genes	showed	that	most	
individuals	loosely	clustered	while	some	San	Miguel	individuals	and	
nearly	all	Piñon	Mesa	individuals	clustered	away	from	the	remaining	
individuals	 (Figure	4d).	Similarly,	a	PCA	plot	for	the	 loci	associated	
with the DEAD box helicase genes showed very loose clustering, 
with	Dove	Creek	appearing	 separate,	Piñon	Mesa	and	San	Miguel	
largely clustering together, and Cimarron, Crawford, and Gunnison 
Basin	clustering	(Figure	4e).

4  | DISCUSSION

We found allelic differentiation consistent with adaptive divergence 
at SNPs associated with potentially important gene families for local 
ecological adaptation between isolated populations of a single avian 
species. Additionally, the gene set identified by candidate SNPs was 
enriched for an ecologically significant gene family for sage‐grouse, 
the	cytochrome	P450	gene	family.	Previously	detected	genome‐wide	
resequencing analyses support the signals of divergence associated 
in this gene family across population in both species of sage‐grouse 
(Oh et al., 2019). Future work could confirm FST of outliers in a larger 
sample of individuals and/or with whole‐genome resequencing 
within the Gunnison sage‐grouse populations, sequence haplotype 
blocks in the vicinity of outliers, measure expression of putatively 
adaptive genes as a function of SNP genotype, and/or evaluate the 
role	 of	 cytochrome	P450	 genes	 in	 chicken	models	 of	 response	 to	
plant secondary compounds. Our findings provide an initial look for 
genome‐wide signals of adaptive divergence among populations for 
the Gunnison sage‐grouse.

Identification of signals of adaptive divergence in Gunnison sage‐
grouse populations also provides more evidence of natural selec‐
tion occurring in unexpected situations. First, effective population TA
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size can influence the balance between selection and genetic drift. 
Large effective population sizes are less influenced by genetic drift 
and therefore natural selection is expected to be more efficient 
(Frankham,	1996;	Gossmann,	Keightley,	&	Eyre‐Walker,	2012).	The	
mating system of Gunnison sage‐grouse indicates the species gener‐
ally has a small effective population size, and so this work adds to the 
few documented examples where locally adapted variation persists 
despite	small	effective	population	size	(McKay	et	al.,	2001;	Phifer‐
Rixey et al., 2012). Second, geographic scale also plays a role in the 
likelihood of divergence. At large geographic scales gene flow is ex‐
pected to be low among populations allowing divergence to occur 
even in the absence of strong selection (Rousset, 1997; Slatkin, 
1993).	 At	 the	 microgeographic	 scale	 (when	 geographic	 distances	
between populations are within the known physical dispersal range 
of an organism), high gene flow is expected to impede local adapta‐
tion (Slatkin, 1987), although some argue microgeographic local ad‐
aptation is more common than previously appreciated (Richardson, 
Brady, Wang, & Spear, 2016). Though not a perfect system to eval‐
uate microgeographic local adaptation, the populations of Gunnison 
sage‐grouse are located within their known physical dispersal range. 
Few examples of microgeographic adaptation have been identified in 
birds, presumably because birds are considered vagile (Charmantier, 
Doutrelant,	 Dubuc‐Messier,	 Fargevieille,	 &	 Szulkin,	 2016;	 Langin,	
Sillett,	 Morrison,	 &	 Ghalambor,	 2017;	 Manthey	 &	 Moyle,	 2015;	
Termignoni‐García et al., 2017). Identification of signals of adap‐
tive divergence in Gunnison sage‐grouse populations indicates 
distinct	selective	environments	 (Karlin	&	McGregor,	1972;	Levene,	
1953;	 Urban	 et	 al.,	 2017),	 a	 physical	 limit	 to	 dispersal	 (Fischer	 &	
Lindenmayer, 2007; Slatkin, 1987), mating signal divergence (e.g., 

Langin et al., 2015; Langin et al., 2017), or that any type of assorta‐
tive mating may be facilitating natural selection.

4.1 | Population‐level divergence

Across all candidate loci three Gunnison sage‐grouse popula‐
tions generally clustered together (Gunnison Basin, Crawford, and 
Cimarron) and three of the populations stand out as holding signa‐
tures	of	potential	divergent	selection	(San	Miguel,	Piñon	Mesa,	and	
Dove	Creek;	Figure	4c).	 It	 is	 interesting	that	the	three	populations	
with the most similar habitat conditions and in closest proximity are 
those that cluster at putatively divergent loci. In general, the shrub 
composition at Gunnison Basin, Cimarron, and Crawford is domi‐
nated by big sagebrush cover with patches of oakbrush and juniper 
(Gunnison sage‐grouse Rangewide Steering Committee, 2005). San 
Miguel	and	Dove	Creek	are	both	characterized	by	patchy	big	sage‐
brush habitat, fragmented by agriculture in Dove Creek, whereas San 
Miguel	lowlands	are	dominated	by	low	sagebrush	cover.	The	shrub	
composition	at	Piñon	Mesa	varies	along	an	elevation	gradient;	from	
low elevations dominated by sagebrush cover, saltbush, and grease‐
wood; to piñon–juniper woodlands at mid elevations, and oakbrush 
with patchy sagebrush cover and snowberry at higher elevations. 
The majority of candidate loci were identified in environmental 
association analyses so the apparent clustering by differences in 
environment is not surprising, though it does suggest support for 
adaptation to local environmental conditions. In particular, the signal 
of	diversifying	selection	is	strongest	in	the	Dove	Creek,	San	Miguel,	
and	 Piñon	Mesa	 populations	 (Figure	 4c).	 Previous	 population	 ge‐
netic studies show Crawford, Cimarron, and Gunnison Basin are the 

TA B L E  4  Summary	of	the	top	3	enriched	GO	terms	(“Term”)	in	the	top	functional	annotation	clusters	for	Gunnison	sage‐grouse	from	
DAVID	that	had	a	term	significant	at	p < 0.05. p = p‐value; B = Benjamini–Hochberg correction; ES = enrichment score. Category (C): 
OG	=	orthologous	groups;	P	=	proteins;	BP	=	biological	processes;	SEQ	=	sequence	feature;	MF	=	molecular	function.	See	Table	S11	for	
complete list of functional annotation clusters and corresponding terms. See Table S9 for gene names corresponding to gene codes included 
in table below

Cluster (ES) Category Term No. p B Genes

1	(1.42) P IPR000998:MAM	domain 3 0.03 1.00 C10ORF112,	PTPRT,	MEP1A

P SM00137:MAM 3 0.03 0.99 C10ORF112,	PTPRT,	MEP1A

P IPR013320:Concanavalin	A‐like	
lectin/glucanase, subgroup

7 0.05 1.00 C10ORF112,	PTPRT,	SPRYD7,	DDX1,	
LGALSL,	MEP1A,	LAMA5

2	(1.14) SEQ repeat:ANK	5 3 0.02 0.70 PPP1R12A,	ANKRD10,	ANKRD44

SEQ repeat:ANK	4 3 0.02 0.66 PPP1R12A,	ANKRD10,	ANKRD44

SEQ repeat:ANK	2 3 0.04 0.74 PPP1R12A,	ANKRD10,	ANKRD44

3	(1.08) P IPR002401:Cytochrome	P450,	
E‐class, group I

4 0.02 1.00 CYP4B1,	CYP2C23b,	CYP4V2,	CYP2R1

MT GO:0005506 ~ iron ion binding 7 0.02 0.97 CYP4B1,	CYP2C23b,	CYP4V2,	FTL,	
ALOX5,	TH,	CYP2R1

P IPR001128:Cytochrome	P450 4 0.03 1.00 CYP4B1,	CYP2C23b,	CYP4V2,	CYP2R1

4	(0.90) SEQ short sequence motif:DEAD box 3 0.01 0.58 DDX10,	DDX1,	DDX42

BP GO:0010501 ~ RNA secondary 
structure unwinding

4 0.03 0.97 AGO2,	DDX10,	DDX1,	DDX42

SEQ domain:Helicase C‐terminal 3 0.03 0.75 DDX10,	DDX1,	DDX42



     |  1671ZIMMERMAN Et Al.

most	 genetically	 similar	 of	 the	 six	 populations	 (Oyler‐McCance	 et	
al.,	2005).	When	we	look	at	putatively	neutral	loci	(Figure	4b),	these	
three populations remain distinct from each other. The pattern il‐
lustrated with all candidate loci we present in this manuscript where 
these populations cluster together, may be reflective of adaptive 
similarity	(Figure	4c).

4.2 | Ecological importance of identified 
signals of selection

One of the top enrichment clusters included terms indicating detoxifi‐
cation (oxidoreductase activity) as a biological process potentially un‐
derlying adaptive divergence and identified the same four cytochrome 
P450	 family	genes	 in	many	of	 the	gene	 sets	 (Table	4).	Our	 findings	
are consistent with the previously identified signals of divergence in 
this gene family in sage‐grouse populations (Oh et al., 2019). Different 

species of sagebrush have different compositions and quantities of 
PSM	(Frye,	Connelly,	Musil,	&	Forbey,	2013;	Kelsey	et	al.,	1982)	and	
divergence	at	genes	involved	in	PSM	metabolism	may	reflect	local	ad‐
aptation to consuming different species or subspecies of sagebrush. 
Sage‐grouse are dietary specialists on sagebrush (Patterson, 1952). 
Because sage‐grouse have mechanisms to mitigate inhibitory action of 
PSM	on	digestive	enzymes	(Kohl,	Connelly,	Dearing,	&	Forbey,	2016),	
these genes could potentially be responsible for proteins or enzymes 
that aid in sagebrush digestion. The candidate SNPs associated with 
all	cytochrome	P450	gene	regions	were	identified	with	one	or	more	of	
the	environmental	association	analyses:	CYP4V2	with	green‐up	rate,	
CYP2R1	with	the	dryness	 index	and	fall	precipitation,	CYP4B1	with	
fall	precipitation,	and	CYP2C23B	with	CTI,	respectively	(Table	3).

The	 fourth	 enrichment	 cluster	 indentified	 by	DAVID	 (Table	 4)	
contained gene sets dominated by members of the DEAD box he‐
licase gene family, generally known to function within multiprotein 

F I G U R E  4  Clustering	of	individual	Gunnison	sage‐grouse	using	3‐D	PCA	plots	with	(a)	all	SNPs	(15,033	loci;	first	3	PCs	account	for	29.9%	
of	the	variation	in	the	genotypes),	(b)	putatively	neutral	SNPs	(14,091	loci;	first	3	PCs	account	for	30.4%	of	the	variation	in	the	genotypes),	
(c)	all	candidate	SNPs	(942	loci;	first	3	PCs	account	for	41.3%	of	the	variation	in	the	genotypes),	(d)	all	cytochrome	P450	candidate	SNPs	(9	
loci;	first	3	PCs	account	for	88.1%	of	the	variation	in	the	genotypes),	(e)	all	DEAD	box	helicase	candidate	SNPs	(4	loci;	first	3	PCs	account	
for 100% of the variation in the genotypes—note the different order of the axes). Each point represents an individual color coded by the 
population	where	the	sample	was	collected:	CM	=	Cimarron;	CR	=	Crawford;	DC	=	Dove	Creek;	GB	=	Gunnison	Basin;	PM	=	Piñon	Mesa;	and	
SM	=	San	Miguel
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cellular complexes to perform various processes involving RNA me‐
tabolism (Linder & Jankowsky, 2011). Of particular interest to our 
findings are the members of this gene family known to play a role 
in detecting viral RNA in the cytoplasm of chicken (Schoggins et 
al., 2011; Zhang et al., 2016). SETX (Table S10), a gene associated 
with candidate adaptive loci, has been implicated in response to 
viral	pathogens	as	well,	including	West	Nile	virus	in	chicken	(WNV;	
Miller	et	al.,	2015).	Signals	of	diversifying	selection	associated	with	
putative genes involved in antiviral activity could indicate the popu‐
lations may have had different exposure histories which may result 
in differing abilities to respond to viral pathogens. Though it has yet 
to	affect	Gunnison	sage‐grouse	specifically,	WNV	has	impacted	sus‐
ceptible	greater	sage‐grouse	populations	 (Naugle	et	al.,	2004)	and	
the virus has been reported in other species within the Gunnison 
sage‐grouse	range	at	varying	 levels	 (see	Table	S13	for	 information	
on	reported	WNV	incidence	in	populations),	suggesting	a	potential	
for exposure.

The reduced representation approach used here allowed us to 
break the entire genome down into smaller pieces and obtain higher 
confidence genotypes for more individuals than we would have 
been able to obtain with whole‐genome resequencing. However, 
this	resulted	in	a	low	density	of	SNPs	(~16	SNPs/Mb),	and	many	re‐
gions	of	the	genome	were	not	sampled	(Tiffin	&	Ross‐Ibarra,	2014).	
Additionally, our use of a threshold for linkage between SNPs and 
gene	 regions	 (5	 kbp)	 was	 much	 lower	 than	 LD	 blocks	 (~350	 kbp)	
that contain multiple gene regions. Consequently, candidate SNPs 
are likely linked to more than one gene region, any of which could 
be the target of selection. Therefore, it is likely there are more re‐
gions of the genome under adaptive divergence and more processes 
involved.

4.3 | Conservation implications

We have identified signals of adaptive divergence associated with 
potentially ecologically important genes and groups of genes which 
may underlie adaptive divergence among populations of Gunnison 
sage‐grouse. Populations with different functional genetic vari‐
ants could potentially impact management and conservation deci‐
sions	(Savolainen,	Lascoux,	&	Merilä,	2013).	Theoretically,	gene	flow	
can have either a positive or negative impact on local adaptation 
of	populations	 (Slatkin,	1987;	Wright,	1931).	 If	 populations	 are	 lo‐
cally adapted, increasing gene flow could risk outbreeding depres‐
sion (Edmands, 2007), especially if populations are small. This has 
been exemplified in populations of streamside salamanders with and 
without predators where gene flow constrained the evolution of ef‐
fective antipredator behaviors (Storfer & Sih, 1998). On the other 
hand, there have been many documented examples of gene flow 
promoting natural selection by increasing local genetic variation 
(Frankham,	2015;	Miller,	Poissant,	Hogg,	&	Coltman,	2012),	the	new	
genetic variants may allow the population to respond to the local 
environmental conditions and potentially occupy new niche space 
(Aitken	&	Whitlock,	2013;	Lenormand,	2002).	However,	there	is	still	
much to understand about the relative contributions of gene flow 

and	natural	selection	to	 local	adaptation	 (Kawecki	&	Ebert,	2004).	
The potential adaptive divergence associated with local adapta‐
tion	to	different	sagebrush	species	(cytochrome	P450	gene	family)	
and response to viral pathogens (some DEAD box helicase family 
members and SETX) observed in Gunnison sage‐grouse suggest that 
individuals from one population may be less fit in the environment 
of a differently adapted population. Alternatively, movement of dif‐
ferent genetic variants underlying these potentially important traits 
could	facilitate	local	adaptation	to	viral	pathogen	response	or	PSM	
digestion in the distinct populations. Given that translocation has 
been one of the conservation strategies employed for the species 
(United	States	Fish	&	Wildlife	Service,	2014),	 these	 findings	could	
guide selection of appropriate source and recipient populations if 
future translocation efforts were to occur. While the samples used 
for this study were all collected prior to any translocation efforts, 
additional investigations (with more recently collected samples) are 
needed to evaluate whether putative adaptive allelic variants have 
been inadvertently diluted.

Similarly, if different populations are adapted to different spe‐
cies of sagebrush, habitat restoration efforts may require location 
specific sagebrush species as a seed source. Guidelines on seed and 
plant transfer zones for sagebrush species and subspecies have been 
based	on	moisture	and	elevation	gradients	in	the	past	(Mahalovich	&	
McArthur,	2004),	which	may	result	in	planting	a	species	or	subspe‐
cies to which the local population is maladapted. Although matching 
the local sagebrush type during restoration could be important, ef‐
forts to do so could be complicated because seed sources for dif‐
ferent sagebrush species or subspecies are not always available and 
factors involved in establishment of seedlings are just starting to be 
understood (Brabec, Germino, & Richardson, 2016).

Captive‐rearing of sage‐grouse has been attempted in recent 
years	(Apa	&	Wiechman,	2015).	Knowledge	of	adaptive	differences	
could guide selection of targeted populations for release of captive‐
reared birds. In the case of sagebrush digestion or disease response, 
releasing individuals with maladapted genotypes could not only re‐
sult in wasted effort and resources, but may even lead to further 
reduction of average population fitness.

In conserving species with fragmented ranges and declining 
populations, restoration of gene flow between isolated groups is 
a common objective. Our findings suggest increasing gene flow 
between Gunnison sage‐grouse may require careful consideration 
of local adaptation. On the other hand, locally adapted variation 
might persist in the face of gene flow (Fitzpatrick, Gerberich, 
Kronenberger,	Angeloni,	&	Funk,	2015)	and	the	existence	of	adap‐
tive environmental clines suggests gene flow via assisted migration 
can	facilitate	adaptive	responses	to	climate	change	(Kelly	&	Phillips,	
2016). We would be remiss to not acknowledge the potential for 
false positives in our analyses, however. Our outlier analysis meth‐
ods generally control for demographic structure (i.e., incorporation 
of a kinship matrix or nonparametric approaches), though observed 
differentiation could still be a result of background selection, or 
linkage of neutrally evolving sites to sites under purifying selection 
(Shafer et al., 2015).
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5  | CONCLUSION

Our results are consistent with the hypothesis of adaptive diver‐
gence among populations of Gunnison sage‐grouse for potentially 
ecologically important metabolic phenotypes. This study takes 
the first step in understanding and characterizing local adapta‐
tion within populations of Gunnison sage‐grouse. The correlative 
approach we used assumes high‐frequency alleles in a population 
correspond to a higher fitness phenotype locally. This relationship 
could be confirmed or further probed through genomic methods 
that more directly evaluate fitness effects and function (Carneiro et 
al.,	2014;	Prasad	et	al.,	2013).	We	used	historical	samples	and	pub‐
licly	available	geospatial	data	sets.	More	insight	from	our	historical	
samples could be obtained by using the gene families as the sub‐
ject of resequencing, or target enrichment, to identify functional 
variants supporting a putative role in adaptation and confirming 
signals of selection on a larger sample size (Jones & Good, 2016). 
Many	approaches	used	to	draw	more	direct	lines	between	the	un‐
derlying genetic controls and phenotype, such as quantitative trait 
analysis	 (Kearsey,	 1998),	 and	 gene	 expression	 and/or	 reciprocal	
transplant	studies	(Kawecki	&	Ebert,	2004),	may	be	attractive	op‐
tions to provide a phenotype link, especially given that many loci of 
varying effect size underlie adaptive divergence (Rockman, 2012). 
However, these strategies are unlikely feasible due to difficulty 
in generating large segregating populations in captivity and given 
federal protection of the species under the Endangered Species 
Act. Genome‐wide association studies (GWAS), on the other hand, 
can also identify genetic regions underlying phenotypes and can 
be accomplished without the use of captive populations making it 
a much more likely approach for future studies investigating local 
adaptation in Gunnison sage‐grouse. Nevertheless, our results 
have provided many avenues for future investigations of adapta‐
tion for this avian species of conservation concern.
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