
Citation: Wu, Y.-J.; Wu, F.-Z.; Yang,

S.-C.; Tang, E.-K.; Liang, C.-H.

Radiomics in Early Lung Cancer

Diagnosis: From Diagnosis to

Clinical Decision Support and

Education. Diagnostics 2022, 12, 1064.

https://doi.org/10.3390/

diagnostics12051064

Academic Editor: Damiano Caruso

Received: 15 March 2022

Accepted: 22 April 2022

Published: 24 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Radiomics in Early Lung Cancer Diagnosis: From Diagnosis to
Clinical Decision Support and Education
Yun-Ju Wu 1, Fu-Zong Wu 2,3,4,5,* , Shu-Ching Yang 2, En-Kuei Tang 6 and Chia-Hao Liang 7

1 Department of Software Engineering and Management, National Kaohsiung Normal University,
Kaohsiung 80201, Taiwan; ky7854200@gmail.com

2 Institute of Education, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 804241, Taiwan;
shyang@mail.nsysu.edu.tw

3 Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
4 Faculty of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
5 Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
6 Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;

ektang@mail2000.com.tw
7 Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University,

Taipei 11221, Taiwan; leehomliang@gmail.com
* Correspondence: cmvwu1029@gmail.com

Abstract: Lung cancer is the most frequent cause of cancer-related death around the world. With
the recent introduction of low-dose lung computed tomography for lung cancer screening, there has
been an increasing number of smoking- and non-smoking-related lung cancer cases worldwide that
are manifesting with subsolid nodules, especially in Asian populations. However, the pros and cons
of lung cancer screening also follow the implementation of lung cancer screening programs. Here,
we review the literature related to radiomics for early lung cancer diagnosis. There are four main
radiomics applications: the classification of lung nodules as being malignant/benign; determining the
degree of invasiveness of the lung adenocarcinoma; histopathologic subtyping; and prognostication
in lung cancer prediction models. In conclusion, radiomics offers great potential to improve diagnosis
and personalized risk stratification in early lung cancer diagnosis through patient–doctor cooperation
and shared decision making.

Keywords: lung cancer screening; radiomics; overdiagnosis; ground-glass nodules; subsolid nodules

1. Introduction

With the recent introduction of low-dose lung computed tomography for lung cancer
screening worldwide, there has been an increasing number of smoking- and non-smoking-
related lung cancer cases manifesting with subsolid nodules, especially in Asian popu-
lations [1–7]. However, there is a dilemma in terms of the clinical management of these
subsolid nodules [8–10]. In recent years, radiomic analysis has played an emerging role
in lung cancer diagnosis and prognosis [11,12]. In current clinical practice, tissue proof
obtained through image-guided biopsies or surgeries can guide further clinical decision
making and management. However, the potential increased risk of complications after
frequent biopsies or surgeries could harm the process of early lung cancer diagnosis. In
addition, the over-management/over-treatment of these small subsolid nodules (SSNs)
could lead to overdiagnosis [13]. In the future, the development of personalized prediction
models that are integrated with clinical characteristics, texture or volumetric analyses of
radiomic features, and genetic information regarding pulmonary nodule growth prediction
and lung cancer prognostic outcomes are warranted. Therefore, improving the process for
early lung cancer diagnosis is an important clinical challenge. Radiomics is considered to
be a promising quantitative tool for the characterization of lung lesion phenotypes and uses
large amounts of quantitative CT image features [14]. Radiomics has already been applied
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in oncology assessment and diagnosis as well as in survival outcome and tumor response
assessment [15]. In the field of early lung cancer diagnosis research, several studies have
demonstrated that radiomics has great clinical impacts in terms of classifying benign or
malignant pulmonary nodules, histopathologic lung cancer phenotypes, and invasiveness
in lung adenocarcinoma spectrum lesions based on quantitative CT images [16,17]. In this
paper, we aim to describe current radiomics applications for early lung cancer diagnosis
research and their future clinical applications and potential limitations.

2. Radiomic Feature Analysis and Workflow

Radiomics is based on computerized algorithms that process different imaging modal-
ities (ultrasound, CT, PET, MRI, and conventional radiology) by analyzing the selected
region of interest (ROI) in medical imaging tasks [18]. Radiomic processes consist of four
steps: (1) nodule segmentation; (2) feature extraction; (3) feature selection and reduction;
and (4) model development and validation for discrimination, as shown in Figure 1 [19].
The radiomics quality score (RQS) is a score system that assesses the characteristics and
quality of radiomics-based studies and reports 16 items determined according to the ra-
diomics workflow (Figure 2) [20]. In general, medically acquired images are retrospectively
evaluated using data acquired from different institutions, and evaluations are based on
different vendors, protocols, and slice reconstruction techniques. For ROI delineation and
segmentation, the manual delineation method is the most commonly used method. How-
ever, it has problems such as being time-consuming and prone to observer inconsistency.
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Figure 1. The workflow of radiomics analysis in early lung cancer diagnosis. Because lung nodules in
early-stage lung cancer usually manifest with ground-glass or part-solid nodules, automatic nodular
contour segmentation is usually not accurate. The manual approach to ROI analysis for early lung
cancer diagnosis is highly demanding in terms of time and radiomics expertise.
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Figure 2. Flowchart describing the workflow process of radiomic texture analysis and modeling
development for early lung cancer diagnosis with the application of the radiomics quality score
(RQS), which was used to assesses the characteristics and the quality of the radiomics studies and
report guidelines. Detailed RQS scores with 16 domains were recorded (domain 1: image protocol
quality +1~2; domain 2: multiple segmentation +1; domain 3: phantom study +1; domain 4: imaging
at multiple time points +1; domain 5: feature reduction or adjustment for multiple testing −3~+3;
domain 6: multivariable analysis +1; domain 7: biological correlates +1; domain 8: cut-off analysis
+1; domain 9: discrimination statistics +1~2; domain 10: calibration statistics +1~2; domain 11:
prospective study +7; domain 12: validation −5~+5; domain 13: comparison to ‘gold standard’ +2;
domain 14: potential clinical applications +2; domain 15: cost-effectiveness analysis +1; domain 16:
open science and data +1~4.).

A number of commercial or open-source software programs have recently adopted
semi-automated approaches to speed up the radiomic research process. There is also a
growing trend of applying deep learning techniques to develop automatic lesion delin-
eation capabilities to optimize radiomics pipeline development. After image segmentation,
radiomic feature extraction refers to the calculation of features that are used to quantify the
characteristics of the grey levels within the ROI/VOI. There are many different methods and
formulas to calculate different types of features, such as (1) first-order histogram features;
(2) second-order texture features, which can be determined according to the gray level
co-occurrence matrix (GLCM); and (3) higher-order texture features. The feature selection
process can be analyzed by univariate or multivariate statistical models. In addition, the
Fisher score, chi-square test, and Wilcoxon test are frequently used for feature selection.
During the feature selection process, feature selection with dimensionality reductions could
create lower dimension features. This is an important step in developing more accurate
predictive models and to avoid problems related to overfitting by reducing the number
of features (dimensionality) in the training dataset. The final step is model development.
Building a radiomics model involves three main aspects: the selection of radiomic features;
the selection of the training cohort and machine-learning models; and final validation
of the test cohort. Model performance is usually measured in terms of calibration and
discrimination, and it is evaluated using the c-index or the area under the curve (AUC) of
the receiver operating characteristic (ROC).
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3. Application for the Differentiation of Benign and Malignant Pulmonary Nodules

Lung nodules are caused by a variety of clinical conditions, which range from benign
granulomas and transient inflammatory nodules to primary lung cancers. Therefore, it is
important that one is able to differentiate malignant from benign nodules in the clinical
scenario of early lung cancer diagnosis. According to previous studies, more than 20~30%
of participants in low-dose CT screening programs were found to have at least one lung
nodule that required further investigation and follow-up during their baseline CT scan.
Therefore, it is very important to accurately evaluate whether a pulmonary nodule is
malignant or benign pre-operatively. Multiple studies have demonstrated the effectiveness
of CT radiomics in the accurate diagnosis of malignant pulmonary nodules in lung cancer
screening programs. Several studies have also demonstrated that radiomic signatures
can differentiate malignant and benign nodules with a sensitivity ranging from 76.2 to
92.85% and a specificity ranging from 72.73 to 96.1%, as shown in Table 1 [21–40]. With
supervised machine-learning models, radiomics can also be combined to develop more
promising models using a random forest classifier (RFC) through the SVM algorithm.
Wang et al. developed radiomic signatures that included 15 radiomics features that were
able to distinguish benign from malignant nodules with an accuracy of 86% [39]. Lee et al.
assessed textural features in combination with clinical and CT features and were able to
improve the diagnostic performance of transient discriminators from persistent part-solid
nodules, with the AUC rising from 79% to 92.9% [40]. Due to the development of related
radiomic technologies or combined clinical–radiologic–radiomic and machine-learning
models, the accurate pre-operative differentiation of benign and malignant pulmonary
nodules will improve the quality of lung cancer screening programs and reduce the rate of
over-management/treatment. The results of relevant studies show that combined models
have better diagnostic performance than models that are based on radiomics alone. Internal
validation is defined as a prediction method that was originally drawn from a similar
population as the original training cohort. External validation is the action of testing the
developed prediction model in a set of the population that is independent of the original
training cohort. However, external validation studies are still needed to confirm these
findings further. Overfitting is characterized by a model classifier having high diagnostic
performance when it is evaluated on the training set but low accuracy when it is evaluated
on a separate validation cohort. Therefore, external validation is crucial to ensure real-world
applicability in different, separate populations [41].

Table 1. Description of studies using different radiomics features to determine the malignancy/benig-
nancy of lung nodules.

Year References Number
of Cases *

Imaging
Modality Group a Validation ** Combined

Model b Diagnostic Performance

2019 Liting Mao [33] (294) CT SPN Yes (internal) No AUC = 0.97 (Sensitivity = 81%,
Specificity = 92.2%, Accuracy = 89.8%)

2019 Johanna Uthoff
[29] 363 CT SPN Yes (internal) No AUC = 0.965 (Sensitivity = 100%,

Specificity = 96%)

2019 Diego Ardila
[27] 10306 CT SPN Yes (internal) No AUC = 0.95

2018 Tobias Peikert
[24] (726) CT SPN Yes (internal) No AUC = 0.939

2021 Mehdi
Astaraki [37] (1297) CT SPN Yes (internal) No AUC = 0.938

2021 Mehdi
Astaraki [38] (1927) CT SPN Yes (internal) No AUC = 0.936

2018 Wookjin Choi
[25] (72) CT SPN Yes (internal) No AUC = 0.89 (Sensitivity = 87.2%,

Specificity = 81.2%, Accuracy = 84.6%)

2016 Ying Liu [21] 172 CT SPN Yes (internal) No AUC = 0.88 (Sensitivity = 76.2%,
Specificity = 91.7%, Accuracy = 81.1%)
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Table 1. Cont.

Year References Number
of Cases *

Imaging
Modality Group a Validation ** Combined

Model b Diagnostic Performance

2020 Qin Liu [35] 197 (210) CT SPN Yes (internal) No AUC = 0.877 (Sensitivity = 81.8%,
Specificity = 77.4%, Accuracy = 80%)

2019 Yan Xu [31] (373) CT SPN No No AUC = 0.84 (Sensitivity = 89%,
Specificity = 74%, Accuracy = 77%)

2016 Samuel
Hawkins [22] (185) CT SPN Yes (internal) No AUC = 0.83 (Accuracy = 80.12%)

2019 Niha Beig [32] 290 CT SPN Yes (internal) No AUC = 0.80

2019 Darcie A P
Delzell [28] 200 CT SPN No No AUC = 0.72

2016 Lan He [23] (240) CT SPN Yes (internal) No AUC = 0.682

2019
Subba R

Digumarthy
[30]

36 (108) CT SSN No No AUC = 0.624

2016 Jun Wang [39] 593 CT SPN Yes (internal) No (Sensitivity = 82.5%, Specificity = 89.5%,
Accuracy = 86%)

2018 Chia-Hung
Chen [26] 72 (75) CT SPN No No (Sensitivity = 92.85%,

Specificity = 72.73%, Accuracy = 84%)

2021 Rui Jing [36] 116 CT SPN Yes (internal) Yes AUC = 0.9406

2014 Sang Hwan
Lee [40] (86) CT PSN No Yes AUC = 0.929

2020 Ailing Liu [34] 875 CT SPN Yes (internal) Yes AUC = 0.836

SPN: solitary pulmonary nodule; SSN: subsolid nodule; PSN: part-solid nodule; AUC: area under the curve.
a Group: refers to the type of lung nodules analyzed in this study. b Combined model: refers to whether
there has been clinical or semantic information added to the model. * Number of people (number of nodules).
** Internal stands for internal validation; external stands for external validation. Internal validation was defined
as a prediction method drawn from a similar population as the original training cohort; external validation
is the action of testing the developed prediction model in a set of the population independent of the original
training cohort.

4. Application in Identifying the Degree of Invasiveness in Lung Adenocarcinoma
Spectrum Lesions

In recent years, the proportion of lung adenocarcinoma cases has increased year by
year, especially in Asian non-smoking women. In 2011, the International Association for the
Study of Lung Cancer (IASLC) introduced a new histopathologic classification system for
lung adenocarcinoma spectrum subtypes, dividing them into pre-invasive lesions, which
include atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS) lesions;
minimally invasive (MIA) lesions; and invasive pulmonary adenocarcinoma (IPA). Lung
adenocarcinoma spectrum lesions encompass a spectrum that ranges from pre-invasive
lesions to invasive lesions, and classification is dependent on the degree of invasiveness
of these lesions. Lung adenocarcinoma spectrum lesions usually manifest as part-solid or
pure ground-glass nodules. In general, the invasiveness of lung adenocarcinoma lesions
increases as the solid portion of the lung nodules increase. Lobectomy is the standard
surgical treatment for early-stage non-small cell lung cancer manifesting with solid nod-
ules. However, limited resections such as wedge resection or sub-segmentectomy have
been recommended for lung adenocarcinomas with an AIS or MIA histology with a good
prognosis and a better chance of post-operative recovery. Therefore, it is very important
to differentiate between these invasive lesions from pre-invasive lesions in lung adeno-
carcinoma spectrum lesions pre-operatively in order to guide clinical decision making
with optimal surgical planning. Previous studies have utilized different approaches to
radiomic models, such as combined clinical–semantic–radiomic datasets or single radiomic
parameter datasets, to distinguish invasive pulmonary adenocarcinomas from pre-invasive
lesions (AAH, AIS, and MIA) manifesting as subsolid nodules that are less than 3 cm
in size, pure GGN lesions, or part-solid nodules, as shown in Table 2 [42–61]. Based on
GGN research, these studies have demonstrated fair to good diagnostic performance for
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IPA prediction [47,51,54,57]. However, high variability in the diagnostic performance was
observed between these studies. Based on PSN research, these studies have demonstrated
good to excellent diagnostic performance for IPA prediction [52,53]. Based on SSN re-
search, Wu et al. addressed how a simplified radiomic model with a nomogram based
on GLCM-based features (GLCM_Entropy_log10) could help to differentiate IPA lesions
from pre-invasive groups of lesions with a sensitivity and specificity of 84.8% and 79.2%,
respectively. In addition, Wu et al. initiated a well-design multi-center study to predict
invasiveness by differentiating invasive adenocarcinomas categorized as AIS or MIA cate-
gories in part-solid lung adenocarcinomas, with the highest AUC of 0.98 being achieved in
the test cohort [53]. In summary, radiomics models have achieved promising results when
using multi-center cohort datasets. The use of the radiomic features in distinguishing IPA
lesions from pre-invasive lesions have been validated with the high-performance models.
The results of relevant studies show that the combined models have better diagnostic per-
formance for IPA prediction than models based on radiomics alone. In the future, it is very
important to put these validated models into real-world clinical practice and implantation
to provide guidance for optimal surgical planning decisions.

Table 2. Description of studies using different radiomics features to determine the invasiveness of
lung adenocarcinoma spectrum lesions.

Year References Number
of Cases

Imaging
Modality Group a Validation * Combined

Model b Diagnostic Performance

2014 Hee-Dong
Chae [42] 86 CT PSN No No AUC = 0.981

2017 Takuya Yagi
[59] 101 CT SSN No No

AUC = 0.85–0.90
(Sensitivity = 75–83.3%,
Specificity = 83.6–85.1%)

2021 Yining Jiang
[46] 100 CT pGGN Yes (internal) No AUC = 0.892 (Sensitivity = 81.1%,

Specificity = 71.9%)

2019 Hwan-ho
Cho [43] 236 CT GGN Yes (internal) No AUC = 0.8419

2019 Bin Yang [60] 192 CT SSN Yes (internal) No AUC = 0.83 (Sensitivity = 84%,
Specificity = 78%, Accuracy = 82%)

2018 Wei Li [47] 109 CT GGN No No AUC = 0.665–0.775

2018 Xing Xue [58] 599 CT GGN Yes (internal) No AUC = 0.76

2020 Guangyao
Wu [53] 291 CT PSN Yes (external) Yes AUC = 0.98 (Sensitivity = 98%,

Specificity = 78%, Accuracy = 93%)

2018 Yunlang She
[49] 402 CT SSN Yes (internal) Yes AUC = 0.95

2019 B Feng [45] 100 CT SSN Yes (internal) Yes AUC = 0.943 (Sensitivity = 84%,
Specificity = 88%)

2022 Yong Li [48] 147 CT pGGN Yes (internal) Yes AUC = 0.879–0.941

2020 Lan Song [50] 187 CT GGN Yes (internal) Yes
AUC = 0.934 (Sensitivity = 80.5%,

Specificity = 87.5%,
Accuracy = 83.8%)

2018 Li Fan [44] 208 CT GGN Yes (internal) Yes AUC = 0.917 (Sensitivity = 83.1%,
Specificity = 89.6%)

2020 Linyu Wu
[54] 120 CT GGN Yes (internal) Yes AUC = 0.896

2019 Q Weng [52] 119 CT PSN Yes (internal) Yes AUC = 0.888 (Sensitivity = 73.5%,
Specificity = 94.1%)

2021 Ziqi Xiong
[56] 198 CT pGGN Yes (internal) Yes AUC = 0.879 (Sensitivity = 75%,

Specificity = 89.3%)
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Table 2. Cont.

Year References Number
of Cases

Imaging
Modality Group a Validation * Combined

Model b Diagnostic Performance

2021 Yun-Ju Wu
[55] 236 CT SSN Yes (internal) Yes AUC = 0.878 (Sensitivity = 84.8%,

Specificity = 79.2%)

2020 Fangyi Xu
[57] 275 CT pGGN Yes (internal) Yes AUC = 0.824

2020 Yingli Sun
[51] 395 CT GGN Yes (internal) Yes AUC = 0.77

2019 WeiZhao [61] 542 CT GGN Yes (internal) Yes AUC = 0.716

pGGN: pure ground-glass nodules; PSN: part-solid nodule; SSN: subsolid nodule; AUC: area under the curve.
a Group: Refers to the type of lung nodules analyzed in this study. b Combined model: Refers to whether the
model has had clinical or semantic information added it. * Internal stands for internal validation; external stands
for external validation. Internal validation was defined as a prediction method drawn from a similar population
as the original training cohort; external validation is the action of testing the developed prediction model in a set
of the population independent of the original training cohort.

5. Applications for Identifying High-Risk Lesions in Lung Cancer Screening Settings

Schabath et al. developed an individualized lung cancer prognosis prediction model
using peritumoral and intratumoral radiomic features [62]. This model could identify
a vulnerable high-risk group of early-stage lung cancer patients with poor prognosis.
This allowed physicians to make medical decisions and to assess how to best personalize
clinical management in these high-risk patients at the early stages of lung cancer through
the lung cancer screening program. In addition, Horeweg et al. reported that radiomic
volume doubling time assessments for intermediate-sized nodules could guide lung cancer
management to predict the possibility of lung cancer [63]. Nodule management protocols
based on these volumetric or volume-based diameter thresholds (a volume ranging between
100–300 mm3 or a diameter of 5–10 mm) outperformed the ACCP nodule management
protocol in terms of the application of low-dose CT in a selected population, achieving a
higher sensitivity of 92.4% and a higher specificity of 90.0%. In the future, it is believed
that more research focusing on the use of radiomics will be able to be applied to lung
cancer screening and will be able to further improve the diagnostic accuracy and reduce
overdiagnosis, false positives, and false negatives in the lung cancer screening settings.

6. Application in Classifying Histological Subtypes of Early Lung Cancer

Lung cancer is currently the leading cause of cancer mortality in the world. However,
the histopathology of lung cancer subtypes is affected by environmental, smoking, and
genetic factors. Especially in the subgroup of non-smoking women who have received a
lung cancer diagnosis, the rate of the lung adenocarcinoma subtype can be as high as 90%
or more [4]. In general, small cell lung cancer (SCLC) is the most aggressive histopathologic
lung cancer subtype and accounts for 15–20% of all lung cancer cases [64]. The two
other types of lung cancer, commonly known as non-small cell lung cancer (NSCLC),
including adenocarcinoma (AD) and squamous cell carcinoma (SCC), account for about
70% of lung cancer cases. Since the two different types of lung cancer have different
prognoses, an accurate pre-operative diagnosis will lead to appropriate treatment and
will improve patient prognosis. Several studies have shown that radiomic analysis could
help to classify the histological lung cancer subtypes shown in Table 3 [21,65–78]. Lu et al.
reported that radiomics models yielded the diagnostic performance (AUC) of 0.741 (SCLC
vs. NSCLC), 0.822 (AD vs. SCLC), 0.665 (SCC vs. SCLC), and 0.655 (AD vs. SCC) in the
classification of histopathologic lung cancer subtypes [71]. However, the application of
radiomics in classifying histological lung cancer subtypes is currently suboptimal. The
ability to distinguish between different histological subtypes is limited, especially in the
performance settings of these two models (SCC vs. SCLC, AUC = 0.665; AD vs. SCC, AUC
0.655). In addition, Wu et al. reported that 53 radiomic features were associated with tumor
histology using a combination of wavelet-based feature analysis and diagnosis performance
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(AUC = 72%) to differentiate histopathologic lung cancer subtypes [66]. Radiomics models
have good diagnostic performance in classifying histopathologic lung cancer subtypes (SCC
vs. AD, the best AUC was 0.72). Some studies have addressed that radiomics models could
be a promising tool for the non-invasive prediction of histological lung cancer subtypes
based on multiphasic contrast-enhanced CT images because of the different vascularity
in histological lung cancer subtypes [65]. However, the main limitations of the current
research on this topic are the limited case numbers and the number of single-center studies.
The sample size principle for radiomics is based on the rule of thumb that 10 subjects are
needed for each radiomic feature to maintain sufficient power for the predictive model [79].
Therefore, it is necessary to cross-validate data using multi-center cohort data in the future.

Table 3. Description of studies using different radiomics featured to determine the histologic subtype
classification of lung cancer.

Year References Number
of Cases

Imaging
Modality Group a Validation * Combined

Model b Diagnostic Performance

2018 Xinzhong
Zhu [67] 129 CT SPN Yes (internal) No AUC = 0.905 (ADC vs. SCC)

2021 Yong Han [76] 1419 CT SPN Yes (internal) No AUC = 0.903

2021 Huanhuan
Li [73] 200 CT SPN Yes (internal) No

AUC = 0.879 (ADC vs. SCC),
0.836 (ADC vs. SCLC), 0.783

(SCC vs. SCLC)

2019 Linning E [68] 229 CT SPN No No
AUC = 0.801 (ADC vs. SCC),
0.857 (ADC vs. SCLC), 0.657

(SCC vs. SCLC)

2021 Yixian Guo [75] 920 CT SPN Yes (internal) No AUC = 0.84 (Accuracy = 71.6%)

2021 Fengchang
Yang [77] 324 CT SPN Yes (internal) No AUC = 0.78

2021 Zahra Khod-
abakhshi [74] 354 CT SPN No No AUC = 0.747

(Accuracy = 86.5%)

2019 Linning E [71] 278 CT SPN No No AUC = 0.741 (SCLC vs. NSCLC)

2020
Charlems
Alvarez-

Jimenez [65]
171 CT SPN Yes (external) No AUC = 0.72 (ADC vs. SCC)

2019 Jian Liu [70] 349 CT SPN Yes (internal) No Accuracy = 89%

2021 Yan lei Ji [72] 253 CT SPN Yes (internal) Yes AUC = 0.982 (ADC vs. SCC)

2021 Jianyuan
ZHOU [78] 182 PET-CT SPN Yes (internal) Yes

AUC = 0.862 (Sensitivity = 88%,
Specificity = 72.73%, ADC

vs. SCC)

2019 Xue Sha [69] 100 PET-CT SPN Yes (internal) Yes
AUC = 0.781

(Sensitivity = 100%,
Specificity = 70%, ADC vs. SCC)

2016 Weimiao Wu [66] 350 CT SPN Yes (internal) Yes AUC = 0.72 (ADC vs. SCC)

ADC: adenocarcinoma; SCLC: small cell lung cancer; NSCLC: non-small cell lung cancer; SCC: squamous cell
carcinoma. a Group: refers to the type of lung nodules analyzed in this study. b Combined model: refers to
whether the model has clinical or semantic information added to it. * Internal stands for internal validation;
external stands for external validation. Internal validation was defined as a prediction method drawn from
a similar population as the original training cohort; external validation is the action of testing the developed
prediction model in a set of the population independent of the original training cohort.

7. Current Controversies and Future Directions in Early Lung Cancer Diagnosis

The use of radiomics can improve the diagnostic accuracy of early-stage lung cancer.
However, it may also lead to the overdiagnosis of lung cancer if the relevant personnel have
not received professional education for lung cancer screening or if they do not understand
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the limitations of radiomics applications. Gao and colleagues have suggested that attention
be paid to the overdiagnosis caused by LDCT among Asian women in Taiwan [80]. While
we appreciate that they highlighted the potential for overdiagnosis resulting from LDCT,
we are concerned about the potential overestimation of overdiagnosis and understated
value of LDCT based on our clinical experience over the past two decades. First, although
it is reasonable to assume that the occurrence of true cancer incidences is stable, it is
questionable to assume stable “observed” cancer incidences, something that was implicitly
assumed by the authors. The National Health Insurance Program, launched in the mid-
1990s, improved the accessibility of medical care in Taiwan, but the awareness of lung
cancer only increased several years after it was implemented. Thus, it is not surprising
to observe the increase in late-stage lung cancer that took place from 2004 to 2009. Lung
cancer previously being underdiagnosed is an alternative explanation of their findings.
Second, many reasons can explain the increasing tendency of early-stage lung cancer,
and the most important reason may not be LDCT but the awareness of lung cancer. In
fact, although there are some research projects that focus on this issue, LDCT screening
has not been covered by the National Health Insurance for lung cancer in Taiwan as of
yet. In fact, we have observed many people visiting physicians to consult them about
lung cancer after the media reported the deaths of several celebrities due to lung cancer
over the past two decades. Third, Gao et al. used a dataset that was not designed for
studying the impact of LDCT and did not account for detailed cancer staging and histology,
potentially underestimating the pros of LDCT. In contrast, an LDCT research program in
Kaohsiung, a major city in southern Taiwan, showed that lung cancer incidence shifts from
stage IV., stage III., to early stage [3,81]. Additionally, the heterogeneity of the lead time
across different cell types was ignored. Assuming a 2-year lead time for all lung cancer
types may be inappropriate. Wu et al. have demonstrated that, as the amount of lung
cancer screening increases year by year, the proportion of pre-cancerous lesions found by
surgery also increases [3,81]. There is stigma that is clearly linked to lung cancer-related
fears about death for most people who are struggling with this terrible disease as well
as for their relatives, especially with non-smoker lung cancer patients [82,83]. Feeling
fearful about death regarding the uncertainty about the fate of subsolid nodules affect the
willingness of patients to participate in lung cancer screening programs and in decision-
making processes, even if screening criteria are not met. It is believed that the main reason
for non-participation is a fear of lung cancer among the general population, especially in
the Asian non-smoker population. The high mortality rate among lung cancer patients also
causes people to be afraid of death due to the disease. Due to the uncertainty of the future of
ground-glass nodules, patients tend to choose early surgical resection instead of following
the wait-and-see policy for indolent GGNs, increasing the possibility of overdiagnosis.
However, ground-glass nodules have a relatively high rate of indolent behavior in the
non-smoking Asian population [84]. We agree that overdiagnosis is inevitable and believe
that longitudinal follow-ups for pre-cancerous lesions in screening programs can be an
effective strategy for the active surveillance to prevent overdiagnosis. For lung cancer
screening programs for non-smoking populations in Asia in particular, a considerable
degree of ground-glass nodules can be found in the general population. Previous studies
have reported that about 10% of the Asian lung cancer screening population had pure
ground-glass nodules of various sizes [4,85]. Therefore, how to optimize the pros and
cons of lung cancer screening via radiomics and health education (shared decision making)
strategies will affect the quality of lung cancer screening. Instead of waiting for the results of
a randomized trial in a low-risk group, we suggest the use of shared decision making- and
risk-based strategies for lung cancer screening using LDCT and the watch-and-wait strategy
for LDCT-found indeterminate pulmonary nodules based on combined clinical–semantic–
radiomic models in clinical practice [86,87]. There are four major goals at the core of the
success of personalized precision medicine in early lung cancer diagnosis: professional
physician education, patient education, radiomic-assisted diagnostics, and shared decision
making (SDM), as shown in Figure 3. As such, physicians and patients could make decisions
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according to the current clinical situation. Due to the heterogeneous growth patterns of
ground-glass nodules, they may be affected by the patient’s environment, genetics, and risk
factors [88]. Therefore, how to use radiomics to dynamically track pulmonary nodules and
develop a personalized model that combines clinical, semantic, and radiomic information to
predict the interval growth of ground-glass nodules has become an important clinical issue.
At present, radiomics studies on lung cancer are mostly used for cross-sectional predictions
and future prognosis predictions. Due to the difficulty of obtaining and analyzing long-term
follow-up data from longitudinal lung CT scans, there are few related studies that have
addressed this issue due to limited case numbers. Therefore, how to efficiently manage
ground-glass nodules at follow-up and predict interval growth in high-risk groups through
radiomics is a clinically important issue that requires further research.
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8. Limitations

Although the results of previous studies on early lung cancer diagnosis using ra-
diomics are promising, there are several limitations that need to be addressed [89]. First,
different acquisition and reconstruction settings, ROI delineation, and image pre-processing
steps have created major concerns about inconsistencies in the parameter measurements in
these studies. This so-called “batch effect” is theoretically similar to bias and variations
induced in radiomic features caused by different scanner models, acquisition protocols,
and reconstruction settings. For the harmonization of radiomic features, ComBat has
been considered to be a promising standardization method for reducing the measurement
errors caused by center effects (batch effect) [90,91]. Second, the standardized radiomic
research steps and the quality of standard reports are not unified. Previous studies have
addressed the insufficient overall scientific quality and reporting of previously published
radiomics studies. The radiomics quality scores (RQSs) were low [92,93]. In addition, trans-
parent reporting of a multivariable prediction model for individual prognosis or diagnosis
(TRIPOD) checklists have indicated that there is room for improvement [92,93]. Third,
radiomic models need to be evaluated and used in the real world. In addition, radiomics
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has the added value of clinical relevance [20]. Since many of the relevant studies have only
been conducted at the research level, whether radiomics can be truly practiced in clinical
practice for personalized medicine still needs to be verified by more studies in the future.
Fourth, a limited number of studies have tried to address early lung cancer diagnosis by
PET modality, especially in relatively small (less than 1 cm) and ground-glass pulmonary
nodules. However, some studies have explored the use of radiomic analysis using PET-CT
to differentiate between benign and malignant pulmonary nodules, especially in solid
pulmonary nodules [94].

9. Conclusions

In this literature review, we comprehensively discussed the current applications of
radiomics in early lung cancer diagnosis and described its potential clinical limitations and
future applications in interval growth prediction and in radiogenomics. The content of this
review could help clinical physicians and radiologists understand the use of personalized
radiomics applications in early lung cancer diagnosis and could encourage teamwork to
improve the quality of lung cancer screening programs and optimize and balance costs and
benefits through health education and technological developments in radiomics.
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