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Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a
broad spectrum of clinical manifestations, an aberrant autoimmune response to self-
antigens, which affect organs and tissues. There are several immune-pathogenic
pathways, but the exact one is still not well known unless it is related to genetics. SLE
and other autoimmune diseases are known to be inseparable from genetic factors, not only
pathogenesis but also regarding the response to therapy. Seventy-one human studies
published in the last 10 years were collected. Research communications, thesis
publication, reviews, expert opinions, and unrelated studies were excluded. Finally, 32
articles were included. A polymorphism that occurs on the genes related to drugs
pharmacokinetic, such as CYP, OATP, ABC Transporter, UGT, GST or drug-target
pharmacodynamics, such as FCGR, TLR, and BAFF, can change the level of gene
expression or its activity, thereby causing a variation on the clinical response of the
drugs. A study that summarizes gene polymorphisms influencing the response to SLE
therapy is urgently needed for personalized medicine practices. Personalized medicine is
an effort to provide individual therapy based on genetic profiles, and it gives better and
more effective treatments for SLE and other autoimmune disease patients.

Keywords: Genetic polymorphism, pharmacokinetics, pharmacodynamics, systemic lupus erthematosus, precision
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1 INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a broad
spectrum of clinical manifestations, an aberrant autoimmune response to self-antigens, which can
affect organs and tissues, while organ involvement is unpredictable. There are several immune-
pathogenic pathways of SLE, but the exact one is still not well known unless it is related to genetics
(La Paglia et al., 2017).

In general, innate and adaptive immune systems play a role in the pathogenesis of SLE. Activation
of toll-like receptor (TLR) is a part of the innate immune system, leading to the downstream pathway
for producing pro-inflammatory mediators, such as Interferon (IFN). Another innate immune
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system that plays a role in the pathogenesis of SLE is NETosis, a
program for the formation of neutrophil extracellular traps. Apart
from innate immune systems, adaptive immune systems are
played by T- and B-lymphocytes. T-cells in SLE show a
distorted gene expression, leading to the production of several
cytokines. T-cells induce the activation of autoreactive B-cells,
and the production of cytokine leads to autoantibody production,
a hallmark of SLE. Moreover, B-cells serve as antigen-presenting
cells, creating a loop to activate T-cells that leads to autoimmunity
(Vaillant et al., 2021).

The presence of clinical manifestation and comorbidities
caused by treatment of SLE can increase disease burden and
lead to different choices and responses to therapy. One of the
manifestations that affect drug disposition is kidney involvement.
Lupus nephritis (LN) or renal disease manifestation such as
nephrotic syndrome, may affect the pharmacokinetic profile of
therapy. It should be tested for and monitored and assessed every
3 months to detect early signs of kidney disease (Tang et al., 2010;
Artim-Esen et al., 2014; Duarte-García et al., 2017; Fanouriakis
et al., 2019). In addition, liver involvement on SLE which may
occur around 25–50% of SLE patients (van Hoek, 1996), can also
affect the pharmacokinetics profile. Drug metabolizing enzymes
are primarily decreased due to loss of liver tissue caused by
hepatic disease (Elbekai et al., 2004).

There are three major comorbidities of SLE according to the
updated European League Against Rheumatism (EULAR); first,
Antiphospholipid syndrome (APS), associated with thrombotic
and obstetric complication, lead to dangerous clotting in arteries
and veins (Conti et al., 2016; Taraborelli et al., 2016; Bhana, 2020).
Second, infections. The treatment of SLE with long and high dose
glucocorticoid and other immune-suppressant could be a risk
factor for patients with developing infections. The third is renal
involvement. Disease activity like severe leucopenia and the
presence of renal disease also contribute to the development of
infections (Zou et al., 2013; Singh et al., 2016; Taraborelli et al.,
2016; Hiraki et al., 2017; Rúa-Figueroa et al., 2017). Related
diseases such as LN and the presence of APS as well as related
treatments such as glucocorticoid use may be considered
regarding the increased risk of cardiovascular development
(Magder and Petri, 2012; Gustafsson and Svenungsson, 2014;
Ballocca et al., 2015; Wu et al., 2016). This is important to
consider regarding the possibility that polymorphisms can lead
to an increased risk of the severity and burden of the
comorbidities.

The diversity of drug responses has been revealed since the
completion of the Human Genome Project. A developing field
called “personalized medicine” has adapted medical care like
treatment decision-making to the genetic background of
individuals (National Human Genome Research Institute,
2003). The most common variation in human DNA is Single-
Nucleotide Polymorphisms (SNPs), which are a single
substitution of nucleotides for another (Lander et al., 2001;
Subramanian et al., 2001; Kurkó et al., 2013). SNPs that occur
in genes related to pharmacokinetics and pharmacodynamics
drugs mechanism could affect the response, effectiveness,
resistance, and toxicity of drug (Calcagno et al., 2017;
Zastrozhin et al., 2018; Xiang et al., 2020). This article

summarizes gene polymorphisms and their effects on genes
related to the pharmacokinetic and pharmacodynamic
mechanisms of SLE therapy.

2 MATERIALS AND METHODS

This review summarizes the results of several studies related to
the effects of polymorphisms on the therapy of SLE. It includes
studies from the PubMed database identified using the keywords
“genetic polymorphism,” “clinical response,” and “SLE therapy.”
Articles that did not include therapy of SLE were excluded.
Further, research communications, thesis publication, reviews,
expert opinions, and unrelated studies were excluded (Figure 1).

Seventy-one human studies published in the last 10 years were
collected. Then we conducted an abstract screening, analyzing to
determine which articles were included in the inclusion criteria.
Total 18 review studies, 2 thesis publications, and 17 unrelated
studies, which discuss genetic polymorphism related to the
susceptibility of SLE, were excluded. Hence, a total of 32
articles were included in this study. Most of the articles
discuss the effect of gene polymorphisms on the therapeutic
outcome—side effects, effectiveness, resistance, and survival
rates–of the SLE therapy. All the data results of studies are
summarized in a table, arranged by analyzed SNP, drugs used,
and sample population. Differences in results between studies
were discussed.

3 SLE THERAPY

Based on updated 2019 EULAR recommendations for SLE
management, SLE treatment aims to prevent organ damage,
optimize health-related quality of life, and prolong the survival
of patients. This can be achieved when organ/life-threatening SLE
is treated early with the high-intensity immunosuppressive agent
to curb disease activities, followed by a longer period of less

FIGURE 1 | Research methodology flowchart.
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intensive therapy to consolidate the response and prevent relapse.
Prevention relapse was aimed at remission or lessening the
disease activity, preventing flares in all organs, and treating by
using the lowest possible dose of glucocorticoid for maintenance
(Fanouriakis et al., 2019).

The first-line therapy for SLE is hydroxychloroquine (HCQ),
known as the anti-malarial group (Fanouriakis et al., 2019). This
drug is recommended for all patients with SLE unless its
contraindicated, such as hypersensitive with 4-aminoquinolone
derivatives, patients with serious heart problems, and low blood
sugar (Saghir et al., 2021). The HCQ combined with
Glucocorticoid (GC) become the standard care of SLE therapy.
GC pulses of intravenous methylprednisolone high dose
(250–1,000 mg per day) could provide immediate therapeutic
effect and enable the use of a lower dose of oral form. For chronic
maintenance, GC should be minimized, then slowly tapering off,
thus finally could be withdrawn. Immunosuppressive therapies,
such as methotrexate (MTX), azathioprine (AZA),
cyclophosphamide (CYC), and mycophenolate mofetil (MMF),
can be included in the initial therapy of organ-threatening disease
(Fanouriakis et al., 2019). Other immunosuppressive agents,
tacrolimus, are commonly used particularly for LN (Szeto
et al., 2008). The immunosuppressive agent could be used for
HCQ nonresponsive patients (with or without GC) or additional
therapy for patients unable to reduce GC doses. Biologic agents,
such as anti-CD20 rituximab (RTX), or anti-B-cell Activating
Factor (BAFF), belimumab can be used for patients who do not
respond to standard-care, or for patients with organ-threatening
disease refractory/intolerance/contraindication to standard
immunosuppressive agent (Fanouriakis et al., 2019). Anti-
tumor necrosis factor (anti-TNF) α such as infliximab,
adalimumab, and etanercept exerts both deleterious tissue-
damaging effects mainly through its pro-inflammatory
activities and beneficial activities by dampening aggressive
autoimmune responses, but the outcome may vary, depending
on timing and duration of treatment (Zhu et al., 2010).

4 GENETIC POLYMORPHISM INFLUENCE
THERAPY RESPONSES:
PHARMACOKINETICS MECHANISM
The pharmacokinetics mechanism is divided based on the
pathway: absorption, distribution, metabolism, and excretion
(ADME) (Grogan and Preuss, 2020). In brief, the standard
route of the drug journey explains the pharmacokinetics
pathway. Through oral administration, absorption of the drug
occurs in the lumen gut and then enters the liver to go through the
first-pass metabolism, which activates the drugs. Besides the liver,
drug metabolism occurs in the intestine (enterocyte) as an initial
metabolism. When these drugs are active, they are distributed to
target cells by blood circulation. On the target cells, drugs bind to
the receptor resulting in molecular and physiological effects as
pharmacodynamics mechanisms. After some time (half-life), the
drugs begin to be eliminated from systemic blood, and these
drugs return to the liver and get metabolized. The goal of this step
is to make the drugs inactive and make the substrates ready to

excrete. For intravenous administration, the drugs directly to the
systemic circulation and then into the target cells (Doogue and
Polasek, 2013). The fate of drugs in every pathway is influenced
by proteins. SNPs of its encoded genes affect the function of these
proteins, and thus the effect of the drugs (Figure 2).

4.1 Absorption, Distribution, and Excretion
4.1.1 ABC Transporter Family (ABC)
ABC transporters cover a wide spectrum of substrates, including
small inorganic and organic molecules (Wilkens, 2015). These
transporters work via pumps and can move substrates in (influx)
or out (efflux) of the cells. ABC transporters participate in the
movement of most drugs and their metabolites across the cell
surface and cellular organelle membranes; thus, defects in these
genes can be important regarding cancer and autoimmune
therapy, pharmacokinetics, and innumerable pharmacogenetic
disorders (Vasiliou et al., 2009).

ABCB1 rs2032582 and rs1128503 may influence the clinical
efficacy of tacrolimus in patients with nephrotic syndrome (Li
et al., 2018a). A study on ABCC2 rs2273697 stated that Adenine-
Guanine (AG) genotype is associated with lower MMF exposure
(Yap et al., 2020). In contrast, a study of ABCG2 in SLE patients,
who use teriflunomide as treatment, showed that rs2231137 and
rs2231142 were found to affect pharmacokinetics (Yao et al.,
2019a; Yao et al., 2019b).

4.1.2 Organic-Anion Transporter Polypeptide (OATP)
OATP gene encodes a sodium-independent organic anion
transport system, which works on the basolateral (sinusoidal)
membrane of hepatocytes for the uptake of certain organic anions
(König and Fromm, 2011; NAKANISHI and TAMAI, 2012).
OATPs are also involved in the intestinal absorption of drugs,
expressed at the apical membrane of epithelial cells in the human
small intestine (Kobayashi et al., 2003). OATPs protein is
encoded by genes that are classified as solute carriers (SLC
superfamily) (König and Fromm, 2011). A study on the effect
of genetic polymorphism of transporter genes and associated
functional alterations in drug transport showed that 12 SLCO
transporter genes (OATP proteins) with different tissue
expression profiles have been identified (NAKANISHI and
TAMAI, 2012). Another study on autoimmune disease has a
result that SLCO1B1 521T > C demonstrated a significant
association with MMF, patients with Cytocine-Cytosine (CC)
genotype showed a higher blood concentration level than the
Thymine-Thymine (TT) genotype or the Cytosine-Thymine
(CT) genotype (Shu et al., 2021). But, study on LN patients,
MMF 12-h post-dose is related to renal flare, infection, and
anemia, without significant association between genetic
polymorphism of OATP rs7311358, and rs4149117, to the
blood level of MMF (Yap et al., 2020).

4.2 Metabolism
4.2.1 Cytochrome P450 (CYP)
CYP is a protein that plays a key role in the metabolism of drugs
and other xenobiotic compound (Estabrook, 2003). Drug
metabolism is categorized into two reaction phases—phase I
and phase II. Drug metabolism is achieved through phases I,
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II, or both, catalyzed by the CYP system (Gibson and Skett, 2013).
CYP450 was assigned a family number (e.g., CYP1, CYP2) and a
subfamily letter (e.g., CYP1A1, CYP2D6). Several CYP proteins
are found to be widespread throughout the body, demonstrating
involvement in chemical activation, deactivation, and
carcinogenesis (Estabrook, 2003). Genetic polymorphism of
CYP exists, and the metabolism of certain drugs may be
affected, varying the response of the therapy.

Many reports suggested that CYP3A5 rs776746 has an impact
on the clinical response of SLE regiments, such as tacrolimus and
CYC. Studies in Japan show that Guanine-Guanine (GG)
genotype (homozygote mutant) has higher blood
concentrations of tacrolimus rather than in wild-type genotype
(Ito et al., 2017). In that genotype, increasing blood concentration
occurred in a whole subject (100%) (Yap et al., 2020). Another
study on nephrotic syndrome subjects about tacrolimus response
related to polymorphism at rs776746 showed no significant
association (Li et al., 2018a). As well as studies in Korean SLE
patients regarding HCQ response, polymorphism in CYP2D6
influences the ratio of DCHQ: HCQ significantly (Lee et al.,
2016). CYP2C19 rs424485 is related to ovarian toxicity and risk of
failure of CYC treatment (Ngamjanyaporn et al., 2011; Lee et al.,
2016; Kumaraswami et al., 2017).

4.2.2 Glutathione S- Transferase (GST)
GSTs are a family of detoxification (phase II metabolism
reaction) enzymes that catalyze the conjugation of
glutathione (GSH) to various endogenous and exogenous
electrophilic compounds. It is divided into two super-family
members, the membrane-bound microsomal and cytosolic.
Microsomal GSTs influence the metabolism of
leukotrienes and prostaglandins, whereas cytosolic GSTs are
divided into six classes—α, μ, ω, π, θ, and ζ, and the π and μ
classes play a regulatory role in MAP kinase (MAPK)
pathway involved in cellular survival and death signals.
Related to this role, GST has been implicated in the
development of resistance toward chemotherapy agents
(Townsend and Tew, 2003), and various members of the
GSTs family member were found overexpressed in several
patients (Allocati et al., 2018).

There are many studies on Glutathione S- transferase Pi (GSTP1)
rs1695 with autoimmune subjects. In CYC treatment, SNP has a
synergetic influence on CYC (Kumaraswami et al., 2017). Moreover,
a decrease in activities of GSTP1 might be a background for more
effective treatment of CYC (Hajdinak et al., 2020).GSTA1 rs3957356
is associated with the risk of unresponsiveness and toxicity of CYC
treatment (Attia et al., 2021).

FIGURE 2 | Pharmacokinetics mechanisms of the oral drug are affected by many proteins in every pathway—absorption, metabolism, distribution, and excretion.
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4.2.3 Arylamine N-Acetyltransferase (NAT)
NATs are polymorphic drug-metabolizing enzymes. The human
gene products NAT1 and NAT2 have distinct substrate
specificities: NAT2 is acetylated hydralazine, human NAT1 is
acetylated p-aminosalicylate (p-AS) and the folate catabolite is
para-amino benzoyl glutamate (p-abaglu). Human NAT2 is
primarily in the liver and gut (Sim et al., 2014). The genetic
polymorphism of liver NAT2, as an acetylator enzyme, causes
individual variation in the response to a variety of amine drugs,
such as teriflunomide (Spielberg, 1996; Hein et al., 2000). Some
studies indicated the increasing frequency of slow acetylator
phenotype in idiopathic SLE patients (Johansson et al., 1981;
Spielberg, 1996; Hein et al., 2000), while other studies found no
association (Kumana et al., 1990; Shiokawa et al., 1992). The
observation of the drug-induced Lupus (DIL) found in the slow
acetylator phenotype, suggests that non-acetylated drugs may
accumulate and convert into reactive metabolites. Reactive
metabolites might alter self-proteins presented to the immune
system, thus stimulating T-cells which induce pathological and
clinical signs of autoimmunity by different effector mechanisms
(Griem et al., 1998; Zschieschang et al., 2002). NAT
polymorphism could affect the pharmacokinetic profile of
xenobiotic, risk of toxicity, and/or DIL, which means
increasing the progression of SLE itself.

4.2.4 UDP-Glucuronosyltransferase (UGT)
UGT enzymes play a key role in terminating the biological
actions and enhancing the renal elimination of nonpolar
(lipophilic) drugs from all therapeutic classes. Although the
liver, a major detoxification organ has a vast abundance and
diversity of UGTs, these enzymes exhibit significant but
variable extrahepatic expression (Rowland et al., 2013).
However, research conducted on LN with MMF treatment
showed no association between UGT polymorphism with the
clinical response of drugs, and the other studies have stated
that there was no variation in genes in all study subjects (Yap
et al., 2020).

4.2.5 Thiopurine S-Methyltransferase (TPMT)
Thiopurine S-methyl transferase (TPMT) is a key enzyme
involved in the metabolism of thiopurine drugs. Its function
includes catalyzing the S-methylation of aromatic and
heterocyclic sulfhydryl groups. Genetic heterogeneity of TPMT
results in vast inter-individual-enzyme activity differences, that
affect clinical efficacy and toxicity profiles (Weinshilboum and
Sladek, 1980; Tai et al., 1996; Benkov et al., 2013; Coelho et al.,
2016). Polymorphism of TPMT gene (rs1142345) on SLE patients
with AZA is related to the risk of severe leukopenia and
thrombocytopenia (myelosuppression toxicity) (Rashid et al.,
2020).

4.2.6 NAD (P) H Quinone Dehydrogenase (NQO)
NQO1 is one of the twomajor Quinone reductases in mammalian
systems. NQO1 was hypothesized to influence the protection
against oxidative stress and was shown to be a multifunctional
antioxidant and an exceptionally versatile cytoprotector (Ross
and Siegel, 2017). Genetic variations in NQ O 1 can influence the

expression of the genes known to play a central role in the
glucocorticoid pathway, and increase the secretion of IL6 (a
pro-inflammatory cytokine) (Maranville et al., 2011).

5 GENETIC POLYMORPHISM INFLUENCE
THERAPY RESPONSES:
PHARMACODYNAMICS MECHANISM
5.1 Fc Gamma Receptor (FCGR)
FCGR is a gene coding for Immunoglobulin G (IgG) Fc receptor
that belongs to the immunoglobulin superfamily. FCGR is an
essential receptor located in every cell surface of white blood cells.
This receptor mediates the cellular effector function of IgG
antibodies (Castro-Dopico and Clatworthy, 2019).

CD20 is a protein expressed on the surface of normal and
malignant B-lymphocytes. An anti-CD20 monoclonal antibody
can bind to FCGR and CD20, resulting in the linking of B-cell to
its effector. Treatment with anti-CD20 antibodies can deplete all
subsets of B-cells, except the early pre-B-cells and plasma cells.
When B-cells are depleted, BAFF occasionally supports the
survival and proliferation of B-cell. Polymorphism in BAFF
has been discussed in the following paragraph (Boross and
Leusen, 2012; Ajeganova et al., 2017). In contrast, the
monoclonal antibody of TNF αn (anti-TNF α) binds to FCGR
and the effector cells, then induces cell death. This mechanism is
called antibody-dependent cellular cytotoxicity (ADCC).
Another pathway called Complement Dependent Cytotoxicity
(CDC) induces cell death by bonding protein C1q to a
monoclonal antibody, resulting in the formation of a
Membrane Attack Complex and target cell lysis (Boross and
Leusen, 2012; Julià et al., 2013). Polymorphism on FCGR causes
alteration of bond affinity between the monoclonal antibody and
FCGR and affects the individual response to monoclonal
antibody (Julià et al., 2013; Ajeganova et al., 2017).

Previous studies have analyzed the relationship between
polymorphisms in FCGR and the clinical response of therapy.
Themajority shows a significant association between the presence
of SNPs in FCGR3A, FCGR2A, and FCGR2B with clinical
outcomes of anti-CD20 and anti-TNF-α. Some studies have
stated that polymorphism of FCGR3A is associated with the
improvement of clinical response and longer Progression-Free
Survival (PFS) (rs10127939). Another study has stated that the V
allele as a wild-type of FCGR3A rs396991 could be an indicator of
biological therapeutic activity and longer flare-free survival. For
FCGR2A, studies have stated that polymorphism on rs1801274
affects the outcome of anti-TNF in patients with SLE; however, in
contrast, another study provided no significant results (Treon
et al., 2011; Robledo et al., 2012a; Ajeganova et al., 2017).

5.2 Interferon Gamma (IFNG) and
Interleukin (IL)
IFNG plays a crucial role in innate and adaptive immune
responses. IFNG is a pro-and anti-inflammatory cytokine. In
addition to the role of IFNG in host defense, its excessive release
has been associated with the pathogenesis of chronic

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8209275

Barliana et al. Genetic Polymorphism in SLE Treatment

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


inflammatory and autoimmune diseases (Mühl and Pfeilschifter,
2003). Interleukin is divided into three types, proinflammatory
(e.g., IL-1, IL-17, IL-2, IL-21, etc.), anti-inflammatory (IL-10),
and pro/anti-inflammatory (IL-6) (Zhang and An, 2007).
Regulation of IFN-G and IL expression is largely driven by
activators like transcription factors, and the expression of both
cytokines could affect drug therapy (Zhang and An, 2007; Cuneo
and Autieri, 2009). Methods to manipulate this upregulation
involve specific systems using the phosphorylation of

transcription factors, driven by activation of multimeric
receptors of cytokines linked to Janus kinases (JAK) and signal
transducer and activator of transcription (STAT) activation,
called JAK/STAT pathway (Figure 3). When JAK is
phosphorylated, it causes recruitment and phosphorylation of
STAT. Then, phosphorylated-STAT will bind to another STAT
and cause a homodimer, and then the homodimer STAT enters
the nucleus and induces the transcription of genes involved in cell
viability, survivability, or immunity. Another pathway related to

FIGURE 3 | NFkB pathways involved in the activation of TLR or IL gene expression include noncanonical, canonical, and JAK/STAT pathways, which result in
immunity responses like chemokine/cytokine production or survival cell.
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regulating some interleukin (IL1) is the nuclear factor-kB (NFkB)
pathway (Zhang and An, 2007; Bank et al., 2014).

A study in Denmark showed that IFNG polymorphism
(rs2430561) may be an option for treating patients who do
not respond to anti-TNF α77, whereas IL-1β genetic variance
(rs1143623 and rs143627) related to increasing IL-1β levels may
be unfavorable in treating psoriatic with anti-TNF α or
ustekinumab (Loft et al., 2018). Glucocorticoid, treatment of
several autoimmune diseases, influences clinical responses by
stimulating the expression of genes that play central roles in
IL-6 secretion (Maranville et al., 2011). SNPs rs6822844 (IL-2 and
IL-21) play a role in response to rituximab for treating SLE
(Márquez et al., 2013). Lastly, the expression of IL-10, influenced
by polymorphism rs1800896, affects the antimalarial regulation
(downregulated) and leads to alteration of the clinical response
(López et al., 2006).

5.3 TLR, Toll/Interleukin-1 Receptor
Domain-Containing Adapter Protein
(TIRAP), TNF, and BAFF
NFkB is a transcriptional regulator that deals with DNA
transcription, cytokine and chemokine production, survival
cell, and antibacterial production. NFkB activation has two
types of pathway—canonical and noncanonical (Figure 3).
Firstly, in a canonical pathway, lipopolysaccharide (LPS),
TNFα, and IL-1 ligands are involved. The ligand binds to their
receptor (TLR, TNFR, and IL-1R), which then activates the
inhibitory kB kinase (IKK) complex. The IKK complex is a
kinase that phosphorylates the IKKβ, forming IkB
phosphorylated-NFkB complex. NFkB enters the nucleus,
whereas ubiquitinated-IkB degrades by the proteasome. In
contrast, in a noncanonical pathway, ligands that are involved
are BAFF, leukotriene, CD40, and some of the LPS; LPS make a
complex with CD14 and MD2/LY96. These ligand binds to their
receptor (BAFFR, LTR, CD40), activating NFkB-inducing kinase
(coded by MAP3K14), which leads to the IKK complex. When
NFkB reaches the nucleus, it gets involved in the transcription
process, and the result can be an immunity response like
chemokine/cytokine production or survival cell (Lawrence,
2009; Bank et al., 2014).

Studies on relations between polymorphism in TLR gene and
the clinical response of anti-TNF α, in psoriatic, Crohn’s disease,
and ulcerative colitis patients showsative.

That the expression of the TLR gene is associated with the
response of anti-TNF α. These studies stated that
polymorphism in genes involved in activating the NFkB
pathway is an important predictor of the clinical response
of anti-TNF α (Bank et al., 2014; Loft et al., 2018). Moreover,
the TIRAP gene was associated with a response to ustekinumab
(Loft et al., 2018). The expression of TNFα, together with IL-10
expression, influenced by polymorphism of IL-10 rs1800896,
affects the antimalarial regulation (downregulated) and leads
to alteration of the clinical response (López et al., 2006).
Although TNFα agents such as infliximab are not included
in the SLE treatment regimen in the updated EULAR, because
of TNFα is known as Drugs-Induced Lupus (DIL), a case report

of the use of TNFα in SLE patients with Ulcerative Colitis (UC)
or Crohn’s disease (CD) resulted in no flare-up of SLE with CD
remission, and modest efficacy was observed especially in
patients UC with lupus nephritis, and no infliximab-induced
SLE exacerbations were observed (Kearsley, 2000; Aringer
et al., 2004; Principi et al., 2004; Aringer et al., 2009; Ben-
Horin et al., 2016).

BAFF is a cytokine expressed mainly by neutrophils and
monocytes. It plays a central role in B-cell proliferation,
differentiation, survival, and immunoglobulin secretion.
BAFF binding to BAFFR activates several downstream
pathways that regulate essential survival functions, including
protein synthesis and energy metabolism required to extend
the half-life of immature, transitional, and maturation of
B cells (Smulski and Eibel, 2018). Increases in BAFF in
blood levels cause stimulation of B-cell production. As
mentioned before, anti-CD20 monoclonal antibodies work
to deplete B-cells by binding with CD20 and effector cells
or C1q. Thus, the alteration in BAFF expression may affect the
efficacy of monoclonal antibodies, especially anti-CD20
(Ajeganova et al., 2017). A similar pathway was happening
with TLR, TNF, and IL-1R. Genetic polymorphism in gene
influences the expression of the protein receptor, affecting the
response of drug that works in NFkB or JAK/STAT pathway
(Bank et al., 2014; Loft et al., 2018).

5.4 Innate Immunity Activator (INAVA/
C1orf106)
INAVA is a protein that has a bacterial clearance function via
Reactive Oxygen Species (ROS), autophagy, and Reactive
Nitrogen Species (RNS). INAVA contains three 14-3-3
binding domains, and 14-3-3τ recruitment, in turn,
modulates the recruitment of additional signaling molecules,
including phosphorylated-extracellular signal-regulated
kinase 1/2 (p-ERK), p-p38, and p-IkBα, which then
contribute to the activation of downstream signaling
pathways (MAPK and NFkB), followed by cytokine
secretion as a final result of transcription in the nucleus.
INAVA could be activated by TLR-induced cytokine or
NOD2 stimulation. Polymorphism could make some
alteration in INAVA expression and consistently decrease
MAPK/NFkB signaling, and thus affect the cytokine
secretion and bacterial clearance (Yan et al., 2017).

A study on INAVA polymorphism on autoimmune disease
subjects treated with glucocorticoid shows a result that it has a
significant local effect on GC response therapy; the
polymorphism influence the expression of the gene known to
play a central role in GC-related pathway (Maranville et al., 2011).

5.5 Autoimmune Regulator (AIRE)
Autoimmune regulator (AIRE) is a protein encoded by the AIRE
gene, a potent repressor of autoimmunity, and it can cause severe
autoimmune disease when it mutates. AIRE functions as a
transcription regulator that promotes central immunological
tolerance by inducing the ectopic thymic expression of many
tissue-specific antigens. AIRE plays a role in removing
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autoreactive T-cells in the thymus. AIRE also plays a role in B-cell
mediated immune response (De Martino et al., 2016). Alteration
in expression of AIRE by downregulation is associated with drug
response, especially in glucocorticoid treatment. A study on
Negroid and Caucasians with inflammatory-autoimmune
disease who were undergoing glucocorticoid treatment showed
thatAIRE polymorphism plays an important essential role in GC-
related biological processes and manifests to the response of its
therapy (Maranville et al., 2011).

5.6 TMEM 245 (C9orf5) (Transmembrane
Protein - 245)
It is related to Microtubule Associated Protein causing an
increase in mitotic delay and cell viability. TMEM245 is
encoded by C9Orf5, which is distributed broadly across the
mitotic spindle and is reversibly accumulated during reversible
mitotic arrest (Liu et al., 2009). When the gene is upregulated and
the expression of a protein encoded by the gene is increased, it
could affect drug therapy like a better response. In glucocorticoid
treatment, viable cells can enhance therapeutic response
(Maranville et al., 2011).

5.7 Glucocorticoid Receptor (GR), Heat
Shock Protein (HSP) and TNF
Receptor-Associated Protein (TRAP)
GR, HSP90, and HSP70 with FKBP52 and p23 make a complex
and activate the GR-glucocorticoid complex and then enter the
nucleus, which leads to transactivation (Figure 4) (Oakley and

Cidlowski, 2013). Diminished GR levels (mutation, variants, and
low expression) could be a significant factor in glucocorticoid
resistance. Another factor of Glucocorticoid resistance is an
alteration of the function of GR-associated protein, like
chaperons protein and nuclear factor. The HSP90, GR
chaperone protein, influences the efficacy of Glucocorticoid
(Leung and Bloom, 2003). A study on GR polymorphism
(rs4912905, rs17100234, and rs7701443) in patients with SLE
treated by GC showed that SNP affects the response of GC in SLE
treatment (Zou et al., 2013). In contrast, a study related to
HSP90B1 polymorphism showed that polymorphism in the
HSP gene might be associated with GC efficacy but with
Health-Related Quality of Life (HRQoL) (Sun et al., 2018).

TRAP1 is a mitochondrial survival protein, belonging to the
HSP90 family. Together HSP60 is physically associated with
cyclophilin D (CypD), which is a physical component of the
organelle permeability transition pore (PTP) (Altieri et al., 2012)
(Figure 4). There is a general understanding that opening of the
mitochondrial PTP is a key molecular for induction of
mitochondrial apoptosis which leads to cell death (Green and
Kroemer, 2004). The function is similar to HSP90 to some
extent—protecting cells from oxidative stress damage through
the fold and refolds damaged proteins. TRAP1 gene is also
thought to be associated with multidrug resistance.
Overproduction of TRAP1 could reduce ROS accumulation,
whereas its knockdown increases ROS formation. Excessive
ROS leads to mitochondrial dysfunction, reduced viability of
the cell, and cell death. Alteration in the expression of this gene
might be associated with glucocorticoid response (Li et al.,
2018b).

FIGURE 4 | Signal pathway activated by GC through complex formation with HSP70, HSP90, p23, FKBP52, and GR. GC-GR complex formation will activate other
signals in the nucleus and mitochondria.
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6 DISCUSSION

Response to drug therapy varies among individuals. Variation
in the human genome, such as the presence of SNPs, influences
the disposition of drugs including pharmacokinetics (drug
metabolism enzyme and transporter protein)
(Supplementary Table S1) and pharmacodynamics (drug-
target proteins) mechanism, thereby impacting drugs
response (Supplementary Table S2) (Kitts et al., 2002; Lam,
2018). As we know that SLE and other autoimmune diseases
can not be separated from genetic factors, which is affected the
pathogenesis pathway and response of therapy. Polymorphism
related to pharmacokinetics mechanism will affect drug
availability at the target site, whereas polymorphism related
to pharmacodynamics mechanism may affect individual
sensitivity against drugs (Lam, 2018). The pharmacokinetic
mechanism includes ADME is affected by several proteins
(Figure 2). Genetic polymorphism on the gene encoding
those proteins have been discovered that affects the
expression of the gene, substrate specificity, intrinsic
transport activity, or both (Lam, 2018). Mapping and
finding out all of the SNPs related to the response of drug
therapy used in SLE is the key to the success of autoimmune
treatment as it can reduce or even eliminate the drug-related
problems (adverse drug reactions/ADRs) and increase the
efficacy of therapy (Figure 5).

The association of SLE with other diseases such as nephrotic
syndrome, psoriasis, and ulcerative colitis, can be explained in
terms of the pathophysiology and clinical manifestation of
SLE. The therapeutic agent used between the disease also has
similarities. So that, the genetic polymorphism that occurs on
those diseases related to the therapy response can be taken into
consideration in choosing therapy for SLE patients. The data
showed that there was a potential risk of SLE patients will
develop a LN within 3 years after the first onset, while 10–30%
of LN have the potential to develop nephrotic syndrome or
kidney failure (Ortega et al., 2010; Musa and Brent, 2021).
Meanwhile, in the case of psoriasis, the pathologic mechanisms
between SLE and psoriasis are different. But some case-study

state that they experience a case of psoriasis accompanied by
SLE. In addition, retrospective study results showed that the
prevalence of psoriasis in SLE patients is greater than in the
general population (Kim et al., 2015; Bonilla et al., 2016).
Association between SLE and Ulcerative Colitis (UC), and
Inflammatory Bowel disease (IBD), not known clearly. As
well as the co-existence between SLE and UC. But, there is
some case-report study about the co-existence between them.
Besides, a study revealed that patients with SLE have a greater
prevalence of IBD, which is also thought to be caused by
gastrointestinal involvement of SLE (Koutroubakis et al.,
1998; Shor et al., 2016; Mansour et al., 2018; Sun et al.,
2019). RA features were common in SLE, as well as the
personal history of the certain immune-related disease was
strongly associated with increased risk of Waldenström
Macroglobulinemia (Icen et al., 2009; Kristinsson et al.,
2010; Pabón-Porras et al., 2019). SLE is also frequently
complicated with cytopenias, including immune-
trombocytopenia (Galanopoulos et al., 2017).

Cytochrome P450 super-family isoenzymes represent the
most critical metabolic enzymes (Zanger et al., 2008). In
general, which also works on SLE therapy, polymorphisms in
the CYPs result in a phenotype alteration related to drug response
that is categorized into; 1) the poor metabolizers (PMs), which
exhibit abolished-enzyme activity, 2) the intermediate
metabolizers, which reduce the activity of the enzyme, 3) the
normal metabolizers or the extensive metabolizers, and 4) the
ultrarapid metabolizers (UMs), which have high enzyme activity.
For most drugs, PMs would exhibit a higher risk of ADRs. A slow
rate of metabolism could affect the rate of drug elimination,
increasing the concentration of the drugs trapped at the target site
or the excretion organ. Thus, the toxicity of the drugs might be
increased due to a poor metabolizer. A study on SLE patients with
CYP3A5 polymorphism (rs776746) to the tacrolimus response,
showed that the phenotype of the polymorphism classified into
PMs so that there was an increase in drug level on the mutant
homozygote compared to the wild type (Ito et al., 2017).
Therapeutic monitoring, selection of other drugs especially for
patients who have a renal disease, and adjustment dose would be

FIGURE 5 | Genetic Polymorphism that involved in the alteration of pharmacodynamics and pharmacokinetics on SLE therapy.
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necessary for this case. A study stated that the mutant genotype
was at a significantly higher risk of chronic irreversible drug-
induced nephrotoxicity (Orlando et al., 2017). In contrast, UMs
would experience lower efficacy when administered at a standard-
dosage regimen of a drug, but it mostly depends on the
polymorphic enzyme for elimination. This can be explained by
the faster the metabolic rate; the drug will quickly turn into an
inactive form and be prepared for elimination. One example of
this case is from the study on rs776746 to the cyclophosphamide
(CYC) drugs (Table S1). SNPs significantly decreased in AUC,
C-max, and half-life; thus, patients with this polymorphism have
a synergetic influence on CYC failure (Kumaraswami et al., 2017).
In contrast, in the case of a prodrug, the UMs exhibit a higher
incidence of ADRs because of the high concentration of drugs in
their active form. Lastly, the PMs experience lower efficacy,
reflecting a difference in the extent of therapeutically active
metabolite formed between the two metabolic genotypes (Lam,
2018).

Other metabolic enzymes apart from CYPs (non-CYPs
enzymes), such as UGT, GST, TPMT, NQO1, and NAT also
play a role in influencing the metabolism and elimination rate
of many drugs used on SLE. UGT contributes ~35% of phase II
drug metabolism. Polymorphism in UGT on LN patients who
received kidney transplantation is known to affect the MMF
exposure, with alteration in transactional and enzymatic
activities (Table S1). MMF exposure can also be confounded
by the use of GC high-dose. Therefore, the use of MMF and GC
high-dose would be better delineated when a patient is on
stable disease (Fleming andWeimert, 2010; Yap et al., 2020). In
contrast, other studies on MMF observed no significant
association (Yap et al., 2020). The variation in these results
proves the need for further research for each drug against UGT
polymorphism.

GST is a detoxification enzyme for the substrate, which
includes carcinogens and chemotherapeutic agents including
immunosuppressive agent, which is also used for SLE
treatment (Lam, 2018). Decreased activity of GSTs could be a
background of effective treatment or rather might be related to
severe drug-related toxicity (McLeod et al., 2010; Hajdinak et al.,
2020; Attia et al., 2021). A study on LN patients with GSTP1
rs1695 polymorphism observed that heterozygote genotype has a
better percentage of disease remission (p = 0.03) (Hajdinak et al.,
2020), whereas another study on the same SNPs showed that
rs1695 has a synergetic influence on CYC failure (Kumaraswami
et al., 2017). That can be a consideration when choosing CYC as a
treatment. In contrast, genetic polymorphism in NAT will affect
their phenotype, and thus their enzyme activity. A study on SLE
patients with teriflunomide (pyrimidine synthesis - inhibitor drug
class–one of the NAT substrate) therapy, showed the SNP did not
fulfill the relative standard error, representing the uncertainty of
the effect (RSE <47%) (Lam, 2018; Yao et al., 2019b) (Table S1).
So, NAT polymorphism has not been proven strong enough as a
factor that needs to be considered in SLE treatment.

TPMT plays a major role in the inactivation of thiopurine
drugs, including thioguanine, 6-mercaptopurine, and its
precursor-like azathioprine. Previous studies on thiopurine
with TPMT polymorphism show that TPMT mutant alleles

have much higher cytotoxic thiopurine nucleotides and are at
higher risk for developing severe hematological toxicities during
treatment (Relling et al., 1999). A recent study on patients with
SLE who were treated with azathioprine showed the same result,
i.e., heterozygote genotype (rs1142345) at a risk of azathioprine
induced myelosuppression (Rashid et al., 2020) (Table S1). A
polymorphism that is associated with an increased risk of adverse
effects, should be given caution especially if the patient has a
comorbid related to it.

Pharmacodynamics mechanisms were divided into three
groups based on the mechanism of action of the drugs on the
SLE regiment (Figure 5). The first mechanism of action of the
drugs involves intracellular signaling, such as JAK/STAT and
NFkB pathway. The second is ADCC and CDC pathway. Last is
the other group that includes the GC pathway, central tolerance
mechanism, and mitosis.

Pharmacodynamics encompasses drugs, biochemical and
physiological effects on the body, and the relationship between
concentration and effect of the drug. Thus, every polymorphism
that occurs in the genes related to the pharmacodynamics
mechanism can have significant consequences for drug
response by affecting either the activity or the expression of a
drug-target or intracellular signaling protein (Lam, 2018).

For example, polymorphism on the BAFF gene will influence
the expression of BAFF protein and then manifest to the serum
level of BAFF (Cambridge et al., 2006) (Table S2). As the result of
the studies that have been conducted on polymorphism in the
BAFF gene, the T allele (mutant allele) has a positive association
with the increased level of BAFF in serum. The heterozygote (CT)
genotype of BAFF tends to cause a longer-progression-free
survival, which might be related to the better outcome therapy
than that of the homozygote (TT) (Ajeganova et al., 2017).
Besides affecting protein expression, polymorphisms can affect
the activity or bond affinity between drugs and their receptors, as
in polymorphisms in the FCGR gene. Polymorphism on the
FCGR gene influences the expression of FCGR and also
controls the affinity of FCGR (Nagelkerke et al., 2019). The
impact of the affinity alteration is the clinical response of the
therapy. A recent study on rs396991 (−158F/V) FCGR3A showed
a statistically significant rituximab efficacy in the V allele (wild-
type) compared with FF genotype as a homozygote mutant.
Rituximab was more effective in V allele carriers (94%)
compared with those of the FF (81%) (Robledo et al., 2012a)
(Table S2). Another cause that alteration of the gene expression
could impact the clinical response of the drugs is IL expression.
Results of the study on polymorphism on IL-1β proved that
genetic variance related to increasing IL-1β levels might be
unfavorable for the treatment of psoriatic with monoclonal
antibody anti-TNFα r ustekinumab (Loft et al., 2018) (Table S2).

7 LIMITATION

This review is subject to have slight potential bias, including the
influence of the author’s viewpoints, gaps in literature searching,
and selection methods, that may lead to the omission of relevant
research.
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8 CHALLENGES AND FUTURE

Personalized medicine practices are an endeavor that will yield
effective-significant results in the treatment of SLE and other
autoimmune diseases. SLE treatment would be based on the
genetic profiles that are related to pathogenesis and response
therapy. The difficulty that becomes a challenge in its
implementation is the limited human and logistical
resources, especially in the low-middle and developing
countries.

9 CONCLUSION AND PROSPECTS

SLE is a disease that is closely related to genetic factors, not
only the pathology but also the response of therapy. A
polymorphism that occurs on the genes related to drugs
pharmacokinetics or drug-target pharmacodynamics causes
clinical response variation of the drugs. Has become a
must-to-do personalized medicine for the
patients, providing an individual therapy based on genetic
profile. It becomes necessary because it gives better and

more effective treatments for SLE and other autoimmune
disease patients.
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