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Abstract 

Background:  Connective tissue growth factor (CTGF), is a secreted matricellular factor that has been linked to 
increased risk of cardiovascular disease in diabetic subjects. Despite the biological role of CTGF in diabetes, it still 
remains unclear how CTGF expression is regulated. In this study, we aim to identify the clinical parameters that modu-
late plasma CTGF levels measured longitudinally in type 1 diabetic patients over a period of 10 years. A number of 
patients had negligible measured values of plasma CTGF that formed a point mass at zero, whereas others had high 
positive values of CTGF that were measured on a continuous scale. The observed combination of excessive zero and 
continuous positively distributed non-zero values in the CTGF outcome is referred to as semicontinuous data.

Methods:  We propose a novel application of a marginalized two-part model (mTP) extended to accommodate 
longitudinal semicontinuous data in which the marginal mean is expressed in terms of the covariates and estimates 
of their effect on the mean responses are generated. The continuous component is assumed to follow distributions 
that stem from the generalized gamma family whereas the binary measure is analyzed using logistic model and both 
have correlated random effects. Other approaches including the one- and two-part with uncorrelated and correlated 
random effects models were also applied and their estimates were all compared.

Results:  Our results using the mTP model identified intensive glucose control treatment and smoking as clinical 
factors that were associated with decreased and increased odds of observing non-zero CTGF values respectively. In 
addition, hemoglobin A1c, systolic blood pressure, and high density lipoprotein were all shown to be significant risk 
factors that contribute to increasing CTGF levels. These findings were consistently observed under the mTP model 
but varied with the distributions for the other models. Accuracy and precision of the mTP model was further validated 
using simulation studies.

Conclusion:  The mTP model identified new clinical determinants that modulate the levels of CTGF in diabetic 
subjects. Applicability of this approach can be extended to other biomarkers measured in patient populations that 
display a combination of negligible zero and non-zero values.

Keywords:  Connective tissue growth factor, Longitudinal data, Marginalized two-part model, One-part model, 
Semicontinuous data, Two-part model, Type 1 diabetes
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Background
Diabetes mellitus is a progressive disease of the vascu-
lature, leading to increased risk of both microvascular 
complications such as diabetic nephropathy (DN) and 
retinopathy (DR), and cardiovascular disease (CVD), 
including myocardial infarction and stroke [1, 2]. Emerg-
ing evidence points to a mechanistic link between micro-
vascular complications such as DN and DR and increased 
risk of cardiovascular disease [3–5]. Since early patho-
logic events are similar within small and large vessels, it 
is postulated that common risk markers and mechanisms 
that initiate and promote vascular damage are involved. 
One such factor that has been identified as a pathogenic 
risk determinant for the development of microvascular 
and cardiovascular complications is connective tissue 
growth factor (CTGF). CTGF is a secreted matricellular 
potent chemotactic and extracellular matrix-inducing 
factor that has been implicated in progression of inflam-
matory and fibroproliferative disorders [6]. Plasma CTGF 
levels were independently associated with hyperten-
sion, increased albumin excretion rate, increased carotid 
intima-media thickness, hemoglobin A1c (HbA1c) and 
circulating levels of lipoproteins [7]. Plasma CTGF was 
also linked to increased risk of cardiovascular events and 
mortality in patients with atherosclerotic disease and was 
associated with plaque stabilization following stroke [8, 
9]. Moreover, plasma CTGF levels were shown to pre-
dict myocardial infraction in type 2 diabetic subjects [10]. 
Taken together, these studies suggest that CTGF may 
have substantial value both as a pathogenic risk marker of 
inflammation-induced tissue injury and as a therapeutic 
target.

Despite that the divergent biological effects of CTGF 
on the vasculature was established, it still remains unclear 
how CTGF expression is regulated. To gain insights into 
the factors that modulate plasma CTGF levels, circulat-
ing levels of CTGF were measured longitudinally in type 
1 diabetic patients over a period of 10 years. Our results 
indicated that a number of patients had negligible meas-
ured values of plasma CTGF that formed a point mass 
at zero, and other patients had high values of CTGF that 
were measured on a continuous scale. The combina-
tion of excessive zero and continuous positively distrib-
uted non-zero values in the CTGF outcome observed 
in our study is referred to as semicontinuous data [11]. 
The cause behind the semicontinuous data of plasma 
CTGF may be attributed to factors or clinical covari-
ates that either promote expression and release of CTGF 
and/or inhibition of CTGF in diabetic subjects. Hence, 
it is important to identify the clinical factors that asso-
ciate with the odds of having detected non-zero CTGF 
values as well as determining the factors that correlate 
with CTGF levels. This clinical problem motivated our 

research work in which we present different models for 
analysis of the semicontinuous CTGF data considered in 
this manuscript.

Semicontinuous data is given special attention in the 
literature due to its widespread occurrence under dif-
ferent settings, and the importance of its appropriate 
analysis in order to obtain accurate estimates and infer-
ences [12]. Given the mixture of zero and non-zero 
values, it was intuitive to view the semicontinuous out-
come as arising from two different stochastic processes. 
One process, referred to as the binary part, indicates if 
the outcome is zero or not, and the second referred to 
as the continuous part, determines the positive values 
conditional on the outcome being non-zero. Semicon-
tinuous data are typically analyzed using two-part mod-
els wherein the zero process and the continuous values 
are modeled separately using logistic regression for the 
binary part and log-normal for the continuous part to 
ensure prediction of positive values [12]. To analyze lon-
gitudinal semicontinuous data, two frameworks were 
proposed, the two-part mixed models with either cor-
related or non-correlated random effects in both parts 
[11–15] and the other is based on the two-part marginal 
models [16], in addition to Smith et  al. [17] who pro-
posed a Bayesian inferential approach for a marginal-
ized Two-part model with correlated random effects. 
Interpretation of the covariate estimates depends on the 
model’s specification. Estimates of the continuous com-
ponent of the Two-part mixed models are interpreted 
as having conditional effect on the population average 
given that the outcome values are positive and non-zeros. 
However, parameter estimate of a covariate in the con-
tinuous part of two-part marginal models, is interpreted 
as having subject-specific and population average mul-
tiplicative effect on the population marginal mean if the 
corresponding covariate is not a random effect. If inter-
cept is the only parameters included as a random effect in 
the specification of the overall mean, then all covariates 
will have a multiplicative effect on the population mean. 
Traditional approaches such as zero inflated Poisson and 
zero inflated negative binomial models are mainly imple-
mented to address data with zero mass discrete count 
outcome and cross-sectional data. Available approaches 
for semicontinuous data are known to be computation-
ally intensive and sometimes not feasible to implement 
[15]. Some of the available models involve complex and 
intractable integration of high dimensional integration 
over the stochastic processes in the marginal likelihood 
function rendering them difficult to implement [12]. In 
this manuscript we present a novel application of differ-
ent approaches to analyze semicontinuous data with the 
aim of assessing the effect of clinical parameters on the 
processes of the zero and non-zero values of CTGF. The 
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approaches considered in this manuscript included mar-
ginalized two-part that we extend to accommodate longi-
tudinal repeated measures data, two-part correlated and 
uncorrelated random effects, and one-part models. These 
models are advantageous in terms of feasibility of imple-
mentation by using available statistical procedures such 
as SAS proc NLMIXED used for mTP and TP with corre-
lated random effects, and SAS Proc Glimmix for TP with 
uncorrelated random effects compared to the other avail-
able approaches which are complex and computationally 
intensive [12, 15] and require EM algorithms or Bayesian 
approaches to be implemented. Another advantage of the 
mTP when modelled for cross sectional data is that its 
estimates were consistent and unbiased [18].

To our knowledge, all studies that centered on CTGF as 
an outcome applied conventional statistical methods that 
ignore the zero part and just analyze the non-zero con-
tinuous part. Ignoring the zeros will not allow for deter-
mining the factors that affect the zero values of CTGF, 
and information from the zero component will not con-
tribute to the likelihood function, which introduces bias 
to the estimation process.

The Marginalized two-part model implemented here is 
an extension of a previous work for cross sectional stud-
ies by Voronca et  al. [18] that we developed to analyze 
longitudinal semicontinuous data. This extension of the 
mTP model to longitudinal data with repeated measures 
imposes an added level of complexity due to the inclu-
sion of random effects that account for the within-subject 
correlation. In addition, this extended model incorpo-
rates higher dimensional variance–covariance matrix 
that accounts for the correlations between the random 
effects of the zero and non-zero processes. In specific, the 
within-subject correlation is accounted for by including 
correlated random effects in the binary and continuous 
parts. Random intercepts in both parts are jointly mod-
eled in a marginalized likelihood function integrated 
over the random effects. Intercepts are the only random 
effect included in the overall specification of the mean. 
The marginal mean is parameterized directly in terms 
of regression coefficients using both zero and non-zero 
values and direct interpretation of the covariate effects 
on the marginal mean can be drawn for the entire pop-
ulation and not conditional on the positive values. The 
generalized gamma family of distributions known for its 
flexibility to account for different types of data was incor-
porated in our longitudinal model. In addition, we con-
sidered the special cases of the generalized gamma that 
include standard gamma, Weibull, and lognormal. Gen-
eralized gamma distribution is defined by parameters 
for the shape and scale that give it flexibility and appro-
priateness to fit datasets with different skewness and 
asymmetry.

In the model’s section, we start first by describing the 
generalized gamma family of distributions, and the two-
part models for longitudinal data with uncorrelated and 
correlated random effects. We then describe the margin-
alized two-part model with generalized gamma and other 
distributions that stem from this family, and the one-part 
model that analyzes the whole data with zeros and non-
zeros. These models were applied to a cohort of diabetic 
patients with CTGF measures as the outcome of interest 
that motivated this study.

Study population
Plasma CTGF levels were measured on 693 subjects from 
the Diabetes Control and Complications Trial (DCCT)-
cohort of type 1 diabetes [19]. The patients enrolled in 
the DCCT study between 1983 and 1989 and half of the 
subject population was randomly assigned to conven-
tional diabetes treatment and the other half was assigned 
to intensive diabetes treatment. In 1993, the DCCT 
study was stopped when intensive treatment was clearly 
shown to reduce the risks of microvascular complications 
[20]. The DCCT study was approved by the Institutional 
Review Boards of all participating DCCT centers and all 
participants provided written informed consent. Clinical 
factors such as blood pressure, HbA1c, lipoprotein, dura-
tion of diabetes, and demographic factors such as age, 
gender, and smoking were all collected on these patients 
and were used as covariates in our analysis to assess their 
effects on CTGF levels.

CTGF measurement
Plasma CTGF levels were measured longitudinally at 
baseline [study entry (1983–1989)], mid-point of DCCT 
(1988–1991) and end of DCCT (1993) with a sand-
wich ELISA that detects both intact CTGF, and cleaved 
CTGF to release the N-fragment of CTGF (N + W-CTGF 
assay). The capture antibody is human anti-human 
CTGF-domain 1 and the detection antibody is mouse 
anti-human CTGF-domain 2 (FibroGen, San Francisco, 
CA, USA). Standard curve was prepared with rhCTGF 
(CTGF expressed in CHO cells and affinity purified with 
an anti-CTGF antibody column, FibroGen, San Fran-
cisco, CA USA). Absorbance at 405  nm was acquired 
on a SpectraMax 340PC spectrophotometer and ana-
lyzed with SoftMax Pro 4.8 software (Molecular Devices, 
Sunnyvale, CA, USA). The total CTGF values of the 
repeated measures (n = 1985) in all subjects throughout 
the study are plotted in Fig. 1. The data shows that about 
62% (n = 1231) of CTGF levels measured were negligible 
and close to zero, suggesting that the production and/or 
release of CTGF into the plasma is inhibited in subjects 
with zero measured values of CTGF.
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The models
Four models were explored and illustrated: (1) two-part 
model for longitudinal data with uncorrelated random 
effects, (2) two-part model for longitudinal data with cor-
related random effects, (3) marginalized two-part model, 
and (4) one-part model. We first start by describing the 
generalized gamma and the distributions that stem from 
this family which are the gamma, Weibull and lognormal 
distributions. These different distributions were considered 
for the continuous part of the Two-part models and the 
marginalized two-part model. As for the one-part model, 
these distributions were applied on the entire sample that 
has both the zero values and the continuous part altogether.

Generalized gamma family of distributions
We describe here the modeling framework of the gener-
alized gamma distribution determined by three param-
eters for the shape and scale. Specifications of these 
parameters result in certain distributions such as stand-
ard gamma, lognormal, and Weibull. Thus, this family 
of distributions is appropriate to help understand the 
dependent variable and the process behind generating its 
values by comparing the model fit for each of the distri-
butions and to select the best estimates using maximum 
likelihood approach in a regression framework.

The generalized gamma probability density function is 
specified as such:

(1)
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Specifications of σ and k result in different distribu-
tions. When σ = k the gamma distribution is obtained, 
when k = 1 the Weibull distribution is obtained, and 
when k → 0 the limiting distribution of the generalized 
gamma reduces to lognormal distribution.

Two‑part model for longitudinal data with uncorrelated 
random effects
The longitudinal two-part model can be described as 
such:
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Fig. 1  Histogram depicting the frequency of CTGF (ng/ml) levels 
measured in 693 type 1 diabetic patients
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where b1i represents the random effect intercept that 
accounts for the within subject correlation pertaining to 
the repeated measures for the same subject in the zero 
part

Assuming that the log for the g link function, the loca-
tion parameter μij for the continuous component is mod-
eled in the second part as

where b2i represents the random effect intercept that 
accounts for the within subject correlation pertaining to 
the repeated measures for the same subject in the con-
tinuous part

The two random effect intercepts b1i and b2i in the two 
process of zero and non-zero are assumed to be inde-
pendent and uncorrelated. Z′

ij is the vector of covariates 
for the ith subject measured at the jth time point for the 
binary part and X ′

ij is the vector of covariates for the ith 
subject measured at the jth time point used for the con-
tinuous part. The two parts might have common covari-
ates or completely different ones. α is the vector of model 
coefficients corresponding to the binary part and δ is the 
vector of coefficients corresponding to the continuous 
part conditional on the values being non-zero.

The marginal mean and variance of Yij from a TP model 
can be derived as such:

When GG is assumed in the continuous part, the mar-
ginal mean is

The variance of Yij corresponding to TP can be obtained 
using the variance formula in Eq. (10) and the sth moments 
for GG in Eq. (2). C is defined in Eq. (3) and its specifica-
tion leads to the different distributions that belong to 
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the GG family of distributions. For instance, when C = 0 
and σ = k then the GG distribution reduces to the TP-
gamma distribution model for the continuous part; when 
C(σ ) = log [Γ (1+ σ)] and k = 1 then the TP-Weibull dis-
tribution is obtained, and when C(σ ) = σ 2

/

2 and k → 0 
then the TP-lognormal distribution is obtained.

In the binary part, the estimates of the vector of coeffi-
cients α represent population based averages for the whole 
population for the probability of positive values. When 
taken on an exponential scale, exp (α) can be interpreted 
as the odds ratio of having positive value for a one unit 
increase in the corresponding covariate. Meanwhile, in the 
continuous part the vector of coefficients δ are estimated 
for only those with positive non-zero values that represent 
a portion of the data and not the whole sample. When the 
log link is assumed in the continuous part, then conditional 
on the observation being non-zero, the exponential of the 
estimate of δ is the multiplicative change in the value of the 
outcome when the corresponding covariate increases by 
one unit. Hence, the binary part provides population esti-
mates for the probability of non-zero, and the continuous 
part provides estimates for the effect on the population 
mean given that the value is non-zero.

Two‑part model for longitudinal data with correlated 
random effects
So far it was assumed that the intercepts in the two pro-
cesses are the only random effect specified in the two-part 
model and that these random variables are independent. 
This assumption of independence leads to biased estimates 
in the regression coefficients and the variance components 
in the continuous part [21]. To correct this assumption the 
two random effects are assumed to be dependent and their 
correlation is included in the model specification and likeli-
hood function. In this case the random effects are assumed 
to have joint distribution which could be the bivariate nor-
mal distribution determined as such:

The binary part provides subject-specific estimates 
for the probability of obtaining non-zero values, and the 
continuous part provides subject-specific estimates of 
the conditional mean of log of the outcome provided the 
value is non-zero.

The estimation of Zi, Xi, and Σ can be estimated by 
maximizing the marginal of the log likelihood function 
that is integrated over the random effects that can be 
described as such:
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where f represents the distribution function of the con-
tinuous part of the outcome Y, and θ represents the 
bivariate normal distribution for the random intercepts.

Marginalized two‑part models (MTP) extended 
to longitudinal data
The longitudinal form of the probability density function 
(pdf) for an MTP model 

(

gMTP

)

 can be written as such:

where πij is the probability of non-zero value for the out-
come Yij and is obtained from a logistic model, thus it will 

take the form of πij =
exp

(

Z′
ijα+u1i

)

1+exp
(

Z′
ijα+u1i

) and β representing 

the vector of marginal coefficients corresponding to the 
continuous part of an MTP model, ui represents the cor-
related random effect intercepts in both parts of MTP

The marginal mean is of the form

Solving for the location parameter of the GG distribu-
tion in E(Yij) expressed in Eq.  (11), we get the following 
parameterization:
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distribution model for the continuous part, when 
C(σ ) = log [Γ (1+ σ)] , and k = 1 the MTP-Weibull dis-
tribution is obtained, and when C(σ ) = σ 2

/

2 and k → 0 
the MTP-lognormal distribution is obtained. The dis-
tribution used in the continuous non-zero part of MTP 
should have a finite closed-form mean that can be param-
eterized as in Eq. (16).

The binary part provides subject-specific estimates of 
the probability of having non-zero values for the outcome 
wherein the exponential of α is interpreted as the subject-
specific odds ratio for having a non-zero response attrib-
uted to a one unit increase in the respective covariate. 
The continuous part provides effects of the estimates on 
subject-specific and population mean for parameters cor-
responding to covariates that are not included as random 
effects in the model’s specification. This specification was 
assumed in the correlated mTP model described earlier. 
Parameter estimates in the continuous part will only have 
subject-specific interpretation if the corresponding covari-
ates are included as random effects. The exponential of the 
parameter β in the continuous part represents the multi-
plicative effect on the overall mean for the whole popula-
tion attributed to a one unit increase in the corresponding 
covariate X. The continuous component of the correlated 
marginalized Two-part model provides effects of the esti-
mates on the entire sample, while that of the correlated 
Two-part model provides estimates of the effect on portion 
of the sample pertaining to the positive non-zero values.

Statistical estimation and inference for MTP longitudinal 
models
The general format of the likelihood function can be 
described as such:
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where f represents the pdf of the GG distribution or any 
other distribution from its family and q is the bivariate 
normal distribution for the random intercepts. Express-
ing μij in terms of Eq. (16), and πij as denoted earlier, the 
marginal likelihood function for the GG distribution can 
be described as such

C is defined in Eq.  (3) and its specification leads to the 
different distributions that belong to the GG fam-
ily of distributions. For instance, when C = 0, and 
σ = k the GG distribution reduces to the MTP-gamma 
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where

In this likelihood function (Eq. 18), q(ui) represents the 
bivariate normal distribution for the random effects with 
mean vector of zeros and variance–covariance matrix G. 
The random effects ui are integrated out to get the mar-
ginal likelihood function. The log of the marginal likeli-
hood function is then maximized by taking the first 
derivative with respect to each parameter and setting the 
equation to zero to obtain the maximum likelihood esti-
mate for each of the fixed effects, α, β, k, σ, G respectively. 
Empirical Bayes estimators using the adaptive Gaussian 
quadrature approach [22] was used to obtain predicted 
values of the random effects ui. The likelihood function 
for the standard Gamma, lognormal, and Weibull distri-
butions are obtained in a similar manner by just replacing 
the distribution of the continuous non-zero part by the 
corresponding probability density function. The asymp-
totic standard errors are computed using Fisher informa-
tion after substituting the maximum likelihood estimates 
for α, β, k, σ, G corresponding to the MTP-GG model:

The marginal likelihood function is maximized using 
dual Quasi-Newton optimization [23].

One‑part model for longitudinal data
The one-part model does not distinguish between zero 
and non-zero values in the sense that it assumes that all 
values are generated from the same process and the con-
cept of having a zero and non-zeros processes as in the 
Two-part models does not apply here. Hence, the one-
part model analyzes both the zeros and non-zeros as one 
sample and produces parameter estimates for the whole 
data (for both the zero and non-zero values altogether).
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(19)Var
(

α̂, β̂ , k̂ , σ̂ , Ĝ
)

= diag
{

I−1
(

α̂, β̂ , k̂ , σ̂ , Ĝ
)}

The one-part model can be described as:

where b0i ∼ N
(

0, σ 2
b0i

)

 , γ is the vector of parameters for 
the fixed effect covariates Wij. The parameter estimates 
are generated for the entire sample using approaches 
such as quasi-likelihood generalized linear models that 
allow fitting of zero values, or by adding a small constant 
to the zero values [24]. The one-part model provides 
estimates of the population-based effects of parameters 
γ on the overall marginal mean, with the exponential of 
γ representing the multiplicative change on E(Yij) corre-
sponding to a one unit increase in the respective covari-
ate when the log link is assumed. It was established that 
this model results in less efficient, imprecise and biased 
estimates with inflated type 1 error [24, 25].

Results
The different models, mTP, TP with correlated random 
intercepts, TP with uncorrelated random intercepts 
wherein the zero and continuous parts are fit separately, 
and the one-part model that fits the zero and non-zero 
values together in one model and assumes that a single 
process generates these values, were all applied on the 
CTGF levels measured longitudinally presenting the out-
come of interest. The objective was to identify factors 
that associate with the zero and non-zero processes that 
generate the CTGF values in order to gain insight on how 
these levels are regulated.

Three different distributions were assumed for the con-
tinuous part of CTGF; gamma, lognormal and Weibull 
and their corresponding respective results are shown in 

(20)g
(

E
(

Yij
))

= log
(

µij

)

= W ′
ijγ + b0i
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Tables 1, 2, 3 wherein we included the slope estimates, its 
standard errors and P-values. The distribution that fits 
the data the most was the one that had the least meas-
ures of fit, Akaike information criterion (AIC), Bayesian 
information criterion (BIC) and log Likelihood values. 
Gamma distribution had the lowest AIC, BIC and log 
likelihood values indicating that it fits best the data for 
mTP and TP with correlated random intercepts models 
(Table 4). Our results discussed in detail below indicated 
that mTP model gives parameter estimates that are con-
sistent across all distributions while the other models had 
discrepancy in the hypothesis testing and inferences that 
were dependent on the distribution of the continuous 
measures. The models that appeared to have increased 
inconsistent, inaccurate and biased estimates are the 
one-part and two-part uncorrelated random intercepts 
models. The low coverage in the confidence interval and 

the inflated type 1 error in the one-part model and the 
attributed bias in the estimates under this model and the 
uncorrelated two-part especially when zero values are 
prevailing in the data, explain some of the contradictory 
results observed in this study.

Our results showed that smoking status was sig-
nificantly associated with an increase in the probabil-
ity of non-zero values for CTGF. Specifically smokers 
had higher odds of 1.7–1.96 of getting non-zero lev-
els of CTGF than nonsmokers with P-values ranging 
between < 0.0001 and 0.04 depending on the model. This 
result was consistently demonstrated for mTP, TP with 
uncorrelated and correlated random effects models, and 
for all 3 distributions. This result suggests that smoking 
is associated with increased plasma CTGF levels in type 
1 diabetic patients. This lends support to previous find-
ings that CTGF expression levels in pulmonary vessels 

Table 1  Parameter estimates for  one-part model, two-part (TP) model with  uncorrelated random effects, TP 
with correlated random effects, and marginalized two-part (mTP) models assuming gamma distribution for the non-zero 
component

One-part modela fits the entire sample without distinction between zero and non-zero processes, so only one estimate for the intercept and one for time were 
generated. In one-part modelb the parameter estimates for txt group and smoking represent the effect of these covariates on the CTGF levels themselves and not 
on the probability of non-zero values, unlike the TP and mTP models. TP model uncorrelated random effectsc and TP model correlated random effectsd generate 
estimates for the continuous part using only a portion of the sample pertaining to positive non-zero values. mTP modele provides estimates for the parameters in the 
continuous part for the entire sample (zero and non-zero values)

Model component Covariate One-part modela,b: 
parameter estimate, 
(SE), P-value

TP model 
uncorrelated random 
effectsc: Parameter 
estimate, (SE), 
P-value

TP model correlated 
random effectsd: 
Parameter estimate, 
(SE), P-value

mTP modele: 
Parameter estimate, 
(SE), P-value

Zero part Intercept 1.4790, (1.0269), 0.1498 0.5006, 
(0.1246), < 0.0001

− 0.8797, 
(0.1737), < 0.0001

− 0.1172, (0.0896), 
0.1917

Txt group 0.1582, (0.0942), 0.0932 − 0.2506, (0.1496), 
0.0944

− 0.6384, (0.2472), 
0.0100

− 0.2899, 
(0.0609), < 0.0001

Smoking − 0.2739, (0.2573), 
0.2870

0.5177, (0.1944), 0.0080 0.5693, (0.2767), 0.0400 0.6705, (0.0864), < 0.0001

Time 0.0630, (0.0176), 0.0003 0.0355, (0.0190), 0.0626 − 0.5005, 
(0.0725), < 0.0001

− 0.0657, 
(0.0165), < 0.0001

Continuous Non-zero 
part

Intercept – 2.5112, 
(0.3580), < 0.0001

− 1.8443, (0.5939), 
0.0020

− 1.9699, 
(0.4325), < 0.0001

HbA1c 0.0597, (0.0507), 0.2387 − 0.0065, (0.0179), 
0.7164

0.0970, 
(0.0244), < 0.0001

0.0755, (0.0214), 0.0005

Age − 0.0114, (0.0084), 
0.1771

− 0.0121, (0.0041), 
0.0045

− 0.0018, (0.0057), 
0.7476

− 0.0020, (0.0049), 
0.6879

Duration − 0.0336, (0.0165), 
0.0425

− 0.0082, (0.0065), 
0.2098

0.0035, (0.0092), 0.7007 0.0030, (0.0081), 0.7072

SBP 0.0103, (0.0073), 0.1614 0.0047, (0.0024), 0.0534 0.0267, 
(0.0043), < 0.0001

0.0243, (0.0029), < 0.0001

Male 0.0662, (0.1111), 0.5515 0.0501, (0.0637), 0.4330 0.0356, (0.0747), 0.6331 0.0099, (0.0782), 0.8985

HDL 0.0052, (0.0116), 0.6537 0.0058, (0.0024), 0.0195 0.0172, 
(0.0034), < 0.0001

0.0124, (0.0031), < 0.0001

Time – 0.0201, (0.0102), 0.0530 0.0127, (0.0149), 0.3957 − 0.0225, (0.0164), 
0.1710

Random effects Zero part variance – 1.0528 0.1894 0.4409

Non zero part variance – 0.1620 0.2438 0.3357

Covariance – – 0.2149 0.3847
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isolated from smokers was higher than those from non-
smokers [26].

With respect to the impact of intensive glycemic treat-
ment, its effect on the probability of non-zero values of 
CTGF varied between models and distributions. The 
mTP model consistently demonstrated its significant 
effects on the non-zero probability across all 3 distribu-
tions. Patients that were on intensive glycemic treat-
ment had 1.34 times lower odds of getting non-zero 
CTGF values compared to patients on standard treat-
ment (P-values were < 0.0001, 0.0113, 0.0125). Hence, 
mTP model showed that intensive glycemic treatment 
is associated with increased probability of having negli-
gible CTGF values. However, the effect of intensive gly-
cemic treatment was not consistently observed in the 
TP model with correlated random effects in all 3 distri-
butions. In Table  1, when the gamma distribution was 

used for the continuous measure and in Table 2 with the 
lognormal distribution, intensive glycemic treatment 
was significantly associated with decreased odds of hav-
ing non-zero values for CTGF by about 1.6 times com-
pared to patients on conventional glycemic treatment 
(P-values = 0.01 and 0.04). However, using the Weibull 
distribution for the continuous part (Table  3), intensive 
glycemic treatment had a borderline significant effect 
with P-value of 0.0509. Given that the gamma distribu-
tion was the best fit for this data (AIC = 4279 Table  4), 
one can deduce that the odds of observing zero CTGF 
values is exp (0.6384) = 1.89 times higher in intensively 
treated patients compared to those on the conventional 
arm. On the other hand, the TP model with uncorrelated 
random effects failed to capture this significant associa-
tion between the intensive glycemic treatment group and 
the probability of non-zero values (P-value = 0.0944). The 

Table 2  Parameter estimates for  one-part model, two-part (TP) model with  uncorrelated random effects, TP 
with correlated random effects, and marginalized two-part (mTP) models assuming lognormal distribution for the non-
zero component

One-part modela fits the entire sample without distinction between zero and non-zero processes, so only one estimate for the intercept and one for time were 
generated. In one-part modelb the parameter estimates for txt group and smoking represent the effect of these covariates on the CTGF levels themselves and not 
on the probability of non-zero values, unlike the TP and mTP models. TP model uncorrelated random effectsc and TP model correlated random effectsd generate 
estimates for the continuous part using only a portion of the sample pertaining to positive non-zero values. mTP modele provides estimates for the parameters in the 
continuous part for the entire sample (zero and non-zero values)

Model component Covariate One-part modela,b: 
parameter estimate, 
(SE), P-value

TP model 
uncorrelated random 
effectsc: parameter 
estimate, (SE), 
P-value

TP model correlated 
random effectsd: 
parameter estimate, 
(SE), P-value

mTP modele: 
parameter estimate, 
(SE), P-value

Zero part Intercept 2.8436, 
(0.5773), < 0.0001

0.5006, 
(0.1246), < 0.0001

− 0.3271, (0.1657), 
0.0488

− 0.1414, (0.1120), 
0.2072

Txt group 0.1966, (0.1507), 0.1923 − 0.2506, (0.1496), 
0.0944

− 0.4389, (0.2148), 
0.0414

− 0.3077, (0.1211), 
0.0113

Smoking 0.3783, (0.1731), 0.0289 0.5177, (0.1944), 0.0080 0.7144, (0.2542), 0.0051 0.6825, (0.1752), < 0.0001

Time 0.0195, (0.0284), 0.4933 0.0355, (0.0190), 0.0626 − 0.3811, 
(0.0397), < 0.0001

− 0.0802, 
(0.0192), < 0.0001

Continuous non-zero 
part

Intercept – 2.4621, 
(0.3478), < 0.0001

− 1.9921, (1.1613), 
0.0867

− 1.9869, (0.6854), 
0.0039

HbA1c − 0.0914, (0.0350), 
0.0089

− 0.0058, (0.0174), 
0.7370

0.0934, (0.0576), 0.1052 0.0877, (0.0381), 0.0218

Age − 0.0427, (0.0154), 
0.0055

− 0.0119, (0.0039), 
0.0029

0.0011, (0.0131), 0.9339 − 0.0001, (0.0086), 
0.9884

Duration − 0.0071, (0.0203), 
0.7254

− 0.0058, (0.0062), 
0.3459

0.0105, (0.0207), 0.6130 0.0012, (0.0141), 0.9307

SBP 0.0074, (0.0049), 0.1290 0.0042, (0.0024), 0.0801 0.0347, 
(0.0084), < 0.0001

0.0260, (0.0053), < 0.0001

Male − 0.0277, (0.0149), 
0.8526

0.0544, (0.0596), 0.3630 0.0011, (0.2038), 0.9957 0.0053, (0.1355), 0.9683

HDL 0.0080, (0.0052), 0.1207 0.0058, (0.0023), 0.0139 0.0206, (0.0078), 0.0092 0.0142, (0.0053), 0.0078

Time – 0.0151, (0.0101), 0.1374 0.0125, (0.0340), 0.7140 − 0.0315, (0.0256), 
0.2197

Random effects Zero part variance – 1.0528 0.8638 1.4051

Non zero part variance – 0.0983 1.2669 1.2052

Covariance – – 1.0543 1.3013
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fact that this model ignores the correlation between the 
two components and fits the zero part separately from 
the continuous part treating them as two independent 

entities might have lowered the power of hypothesis test-
ing and introduced bias in the parameter estimates and 
inaccuracy in the results.

Unlike mTP and TP, one-part model fits the entire 
sample and assumes that all values are obtained from a 
single process instead of two different zero and non-zero 
processes. Hence, parameter estimates under this model 
for treatment group and smoking represent the effect of 
these covariates on CTGF levels and not on the probabil-
ity of non-zero values. Our results showed that under the 
one-part model treatment group had no effect on CTGF 
levels and this was consistently demonstrated for all 3 
distributions (Tables 1, 2, 3, one-part model). This result 
is not in agreement with mTP and clinical findings which 
supported the hypothesis that intensive glucose control 
regulates and lowers CTGF levels [7, 27]. As for smoking, 
its effect on CTGF levels were captured under lognormal 

Table 3  Parameter estimates for  one-part model, two-part (TP) model with  uncorrelated random effects, TP 
with correlated random effects, and marginalized two-part (mTP) models assuming Weibull distribution for the non-zero 
component

One-part modela fits the entire sample without distinction between zero and non-zero processes, so only one estimate for the intercept and one for time were 
generated. In one-part modelb the parameter estimates for txt group and smoking represent the effect of these covariates on the CTGF levels themselves and not 
on the probability of non-zero values, unlike the TP and mTP models. TP model uncorrelated random effectsc and TP model correlated random effectsd generate 
estimates for the continuous part using only a portion of the sample pertaining to positive non-zero values. mTP modele provides estimates for the parameters in the 
continuous part for the entire sample (zero and non-zero values)

Model component Covariate One-part modela,b: 
parameter estimate, 
(SE), P-value

TP model 
uncorrelated random 
effectsc: parameter 
estimate, (SE), 
P-value

TP model correlated 
random effectsd: 
parameter estimate, 
(SE), P-value

mTP modele: 
parameter estimate, 
(SE), P-value

Zero part Intercept 3.8358, (1.9236), 0.0465 0.5006, 
(0.1246), < 0.0001

− 0.2263, (0.2050), 
0.2700

− 0.1352, (0.1160), 
0.2265

Txt group 0.2915, (0.3266), 0.3725 − 0.2506, (0.1496), 
0.0944

− 0.3951, (0.2021), 
0.0509

− 0.3018, (0.1205), 
0.0125

Smoking − 0.7732, (0.3887), 
0.0471

0.5177, (0.1944), 0.0080 0.5437, (0.2489), 0.0293 0.4978, (0.1708), 0.0037

Time − 0.0384, (0.0537), 
0.4747

0.0355, (0.0190), 0.0626 − 0.2700, 
(0.0387), < 0.0001

− 0.0768, 
(0.0192), < 0.0001

Continuous non-zero 
part

Intercept – 2.4153, 
(0.3739), < 0.0001

− 1.9956, (1.4045), 
0.1558

− 1.9886, (0.7085), 
0.0051

HbA1c − 0.2964, (0.0905), 
0.0011

− 0.0076, (0.0187), 
0.6844

0.0988, (0.0672), 0.1418 0.0828, (0.0380), 0.0296

Age − 0.0552, (0.0241), 
0.0221

− 0.0121, (0.0044), 
0.0071

0.0028, (0.0169), 0.8644 − 0.0017, (0.0086), 
0.8367

Duration − 0.0099, (0.0358), 
0.7816

− 0.0094, (0.0069), 
0.1749

0.0088, (0.0235), 0.7061 0.0003, (0.0141), 0.9832

SBP 0.0010, (0.0128), 0.4348 0.0055, (0.0025), 0.0303 0.0322, (0.0091), 0.0005 0.0231, (0.0054), < 0.0001

Male − 0.7926, (0.3534), 
0.0252

0.0453, (0.0673), 0.5010 0.0006, (0.2411), 0.9980 0.0057, (0.1352), 0.9659

HDL 0.0209, (0.0131), 0.1091 0.0058, (0.0025), 0.0230 0.0193, (0.0094), 0.0400 0.0130, (0.0053), 0.0150

Time – 0.0235, (0.0109), 0.0314 0.0099, (0.0373), 0.7888 − 0.0282, (0.0257), 
0.2716

Random effects Zero part variance – 1.0528 0.6612 1.3971

Non zero part variance – 0.2094 1.6636 1.2199

Covariance – – 1.0488 1.3055

Table 4  Model fit comparison for  mTP and  TP 
with  correlated random intercepts using gamma, 
lognormal, and  Weibull distributions for  the  none-zero 
component

Model AIC BIC − 2 log likelihood

mTP Gamma 5827.6 5900.2 5795.6

Lognormal 6161.1 6238.3 6127.1

Weibull 6151.3 6223.9 6119.3

TP with 
correlated 
intercepts

Gamma 4279.0 4351.6 4247.0

Lognormal 5186.0 5263.2 5152.0

Weibull 5357.5 5430.1 5325.5
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(P-value = 0.0289) and Weibull (P-value = 0.0471) dis-
tributions but not with Gamma distribution. This 
detected association showed that smoking contributes 
to decreased levels of CTGF which is not in line with the 
results from mTP and TP models as well as clinical find-
ings [26]. This inaccuracy in the estimates could be due 
to the bias and lack of consistency in the parameter esti-
mates attributed to one-part model.

As for the continuous non-zero part, high density 
lipoprotein (HDL) was consistently associated with the 
non-zero values of CTGF, and this was demonstrated 
for the TP and mTP models and in all 3 distributions 
(all P-values < 0.05), except for the one-part model that 
failed to show this association and which could be attrib-
uted to the low coverage in the confidence interval of 
this model. When a significant association was captured, 
patients with higher plasma HDL levels appeared to have 
increased levels of CTGF. For example, under the gamma 
distribution and the mTP model, type 1 diabetic patients 
who have 1 mg/dl higher HDL had about 1.24% (ng/ml) 
increased levels of CTGF (Table 1, P-value < 0.0001).

Duration of diabetes and gender consistently demon-
strated a non-significant effect on the observed CTGF 
levels across the TP and mTP models with different 
distributions. However, the one-part model showed 
that duration of diabetes, and gender were significantly 
associated with CTGF only under the gamma and 
Weibull distributions respectively. These significant 
associations could be attributed to the fact that the 
one-part model has increased biased in its estimates 
and inflated type one error that lead to inaccurate con-
clusion of significant association when in reality a cor-
relation does not exist. The increased bias and type 1 
errors in the one-part model are triggered by the fact 
that under this approach and unlike the two-part mod-
els estimates are generated for the entire sample with-
out distinguishing between the zeros and non-zeros 
when in fact these values are generated by two different 
processes.

Systolic blood pressure (SBP) did not have consist-
ently detected effects on the observed values of CTGF 
in all four models. In this regard, SBP showed a positive 
significant effect on CTGF under mTP model and TP 
model with correlated random intercepts for all 3 distri-
butions (P-values < 0.05). A borderline significant effect 
of SBP on CTGF was detected under TP with uncorre-
lated random intercepts model with gamma distribu-
tion (Table  1, P-value = 0.0534), an insignificant effect 
with lognormal distribution under these same models 
(Table  2, P-value = 0.0801), and a significant effect for 
these models under the Weibull distribution (Table  3, 
P-value = 0.0303). One-part model showed a non-sig-
nificant association between SBP and CTGF for all 3 

distributions which again could be attributed to the 
lower coverage in the confidence interval in this model. 
In addition, given that mTP model and TP model with 
correlated random effects have less bias in the estimates 
than one-part and TP with uncorrelated random inter-
cepts models, then one can conclude that SBP has a sig-
nificant positive effect on the observed non-zero CTGF 
values. If we were to interpret its marginal effect on the 
CTGF population mean under mTP model with gamma 
(Table  1), we can deduce that when SBP increases by 
1 mmHg the observed values of CTGF increase by about 
(exp(0.0243) − 1)*100% = 3% (ng/ml) on average.

When the effect of age on CTGF values was assessed, 
it also had inconsistent relationship with CTGF observed 
values that varied with each model. Both mTP and TP 
models with correlated random effects indicated a non-
significant association between age and CTGF under 
all distributions. TP with uncorrelated random effects 
and one-part models showed significant effect of age 
on CTGF values (P-value < 0.05) for all distributions 
under the TP uncorrelated model, and for lognormal 
and Weibull under the one-part model. These significant 
results could be attributed to the inflation of type 1 error 
in the one-part model and TP model with uncorrelated 
random effects.

Our results also showed that HbA1c, a marker of meta-
bolic control, was significantly associated with CTGF 
under mTP model with all 3 distributions. In this respect, 
an increase of 8 ng/ml in the marginal mean of CTGF was 
attributed to a 1% increase in HbA1c (P-value = 0.0005) 
under the gamma distribution. Similar interpretation 
can be drawn for mTP with lognormal and Weibull dis-
tributions. The TP model with correlated random effects 
showed a significant effect of HbA1c only with gamma 
distribution but did not capture any significant effect 
with the other distributions. This could be attributed to 
the fact that mTP had better precision and accuracy in 
the parameter estimates compared to all other models.

The TP model with uncorrelated random effects did 
not show any significant association for HbA1c with 
CTGF. This could be triggered by the decreased power in 
the hypothesis testing when the zero values are not incor-
porated in the analysis but rather analyzed separately. 
One-part model showed a significant negative associa-
tion between HbA1c and CTGF under the lognormal and 
Weibull distributions which contradicts the hypothesized 
positive correlation between HbA1c and CTGF. Lack 
of precision and increased bias in the one-part model 
might have led to this inconsistent and inaccurate infer-
ence on the direction of the association between HbA1c 
and CTGF. Hence as previously indicated, our results 
suggested that mTP exhibited more accurate, precise 
and consistent estimates and inferences compared to 
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the other models. This conclusion was further examined 
using a simulation study that intended to determine the 
performance of each of the models and which we discuss 
in the following section.

Simulation study
To assess the performance of each of the models: mTP, 
TP with correlated random intercepts, TP with uncorre-
lated random intercepts, and the one-part model, a simu-
lation study was conducted wherein different proportions 
of zeros were included. We performed 1000 simulations 
with sample size of 200 and with 9 repeated measures 
and 30% proportions of zeros, and with 12 repeated 
measures with 50% proportion of zeros. The performance 
of each of the models was determined in terms of bias 
and mean square errors (MSE) and the smaller these per-
formance indicators the more accurate and precise the 
model’s estimates are. Our simulation results included 
in Table 5 indicated that mTP had the smallest bias and 
MSE compared to the remaining models and under the 
different zero proportions. In this regard, mTP had 35% 
decrease in bias and 88.4% decrease in MSE compared 
to TP with correlated random effects in the simula-
tion study that had 30% proportion of zeros, and 39% 
decrease in bias and 98% decrease in MSE under the sim-
ulation study with 50% proportion of zeros. Hence mTP 
performed better than the TP with correlated random 
effect and this was evident in both studies especially in 
the case of higher zero proportion of 50%. In the simula-
tion study with 30% zero proportion, TP with correlated 
random effect had a decrease of 7% to 12% in bias, and 
18% to 21% in MSE compared to TP with uncorrelated 
random intercepts and the one-part model respectively. 
Similarly, under the simulation study of 50% zero propor-
tion, a decrease of 2% and 9% was denoted for bias and 
8% to 16% in MSE compared to the TP with uncorrelated 

random intercepts and the one-part model respectively. 
Hence, our simulation study results suggested that TP 
with correlated random effects had better performance 
than the remaining two models (TP with uncorrelated 
random effects and one-part model), and that mTP had 
smaller attributed bias and MSE compared to the other 
3 models indicating better accuracy and precision of its 
estimates.

Discussion
In this manuscript, we present a novel application of a 
likelihood-based approach to analyze semicontinuous 
longitudinal data using a marginalized two-part model 
that we extended to incorporate longitudinal repeated 
measures. Various distributions were incorporated 
that included gamma, lognormal and Weibull. Random 
intercepts at an individual patient level were introduced 
in both the zero and non-zero components to account 
for the within subject correlation inherent due to the 
repeated measures on the same subject. We applied this 
model on a cohort of type 1 diabetic subjects with the 
aim of identifying clinical determinants that associate 
with CTGF, a pathogenic risk factor for diabetic compli-
cations. CTGF levels measured in this cohort displayed a 
mixture of negligible low values forming a point mass at 
zero and continuous observed positive values. The objec-
tive of this study is to determine what risk factors impact, 
these two components that ultimately result in CTGF 
levels. We also compared the estimates under different 
distributions using other models for analyzing semicon-
tinuous longitudinal outcomes. The models explored here 
included in addition to marginalized two-part model, 
the two-part model with correlated, and uncorrelated 
random effects wherein, the continuous and zero com-
ponents are fit separately, and the one-part model that 
provides estimates for the entire sample without distin-
guishing between the zero and non-zero processes. The 
marginalized two-part model allows for interpretation of 
the estimate in the continuous part as 1 unit increase in 
the covariate on the overall marginal mean comprised of 
zeros and non-zeros, while the effect of the estimates in 
the continuous part under the two-part model are inter-
preted conditional upon the values being observed.

When the mTP model was applied on a cohort of type 1 
diabetic patients, it gave consistent results for the param-
eter estimates across all 3 distributions, demonstrating 
robustness for the underlying distribution compared to 
one-part and two-part models with uncorrelated ran-
dom intercepts. The clinical determinants that displayed 
significant associations with the probability of non-zero 
values for CTGF under the mTP model were the glyce-
mic treatment and smoking status. However, the clinical 

Table 5  Simulation results for  mTP, TP with  correlated 
random intercepts, TP with  uncorrelated random 
intercepts, and  one-part model using simulated data 
with  (a) proportion of  zeros is  30% and  (b) proportions 
of zeros is 50%

1000 simulations with sample size of 200 were generated with (a) 9 repeated 
measures and (b) 12 repeated measures

Model (a) 30% zero 
proportion

(b) 50% zero 
proportion

Bias*10 MSE*10 Bias*10 MSE*10

mTP 0.0914 0.0022 0.0915 0.0025

TP with correlated intercepts − 0.1416 0.1903 − 0.1490 0.2134

TP with uncorrelated inter-
cepts

− 0.1522 0.232 − 0.1522 0.232

One-part − 0.1671 0.246 − 0.1692 0.253
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parameters that were significantly associated with the 
continuous observed positive values of CTGF were HDL, 
HbA1c and SBP.

In general, the TP model with correlated random 
effects resulted in estimates that are close to the parame-
ter estimates under the mTP model but showed some dis-
crepancy in the results of some clinical parameters that 
varied between the different distributions. Specifically, 
HbA1c was shown to be significantly associated with 
continuous observed values for CTGF under the TP cor-
related random intercepts with gamma distribution, but 
this association was not significant under the lognormal 
and Weibull distributions. Similarly, the intensive glyce-
mic treatment group was shown to be significantly asso-
ciated with the probability of non-zero under the gamma 
and lognormal distributions, but this association was not 
significant under the Weibull distribution. Gamma and 
lognormal distributions were better fit for this data given 
their lower AIB and BIC values and resulted in more 
stable results than TP with Weibull. This inconsistency 
in the inferences in the TP model with correlated ran-
dom intercepts, could be attributed to its sensitivity to 
the underlying distribution and the true random effects 
structure, which is not the case with the mTP model [15]. 
It is worth noting here that from a clinical perspective, 
HbA1c was shown in some studies to be positively asso-
ciated with CTGF levels, and treatment was shown to be 
correlated with the detection levels for CTGF [7, 27].

With respect to the TP model with uncorrelated ran-
dom intercepts and separate fitting of the zero and con-
tinuous components, this approach was consistent with 
the mTP and the TP models with correlated random 
intercepts in the inference for smoking that was shown 
to be significantly associated with the probability of non-
zero. However, this was not the case with the parameter 
estimate for intensive glycemic treatment in the zero 
part, wherein this model failed to capture the significant 
effect of intensive treatment on the probability of non-
zero measures. Similar result was obtained with HbA1c 
where a non-significant association was reached under 
this model with all distributions. SBP was shown to be 
significantly associated with the continuous part under 
the Weibull distribution, but not with lognormal or 
gamma distributions. This result is not in line with find-
ings from other clinical studies that showed a significant 
association between hypertension and CTGF [7, 9]. The 
discrepancy in the inferences between the mTP model 
and the TP model with uncorrelated random effect could 
be attributed to the increased lack of efficiency, and bias 
in the parameter estimates due to ignoring the correla-
tion between the random effects in the two components 
and fitting the zero and continuous parts separately [21, 
28].

The one-part model produced estimates and infer-
ences that contradicted clinical findings. For instance 
this model suggested that increased HbA1c and smok-
ing are protective factors that contribute to decreas-
ing CTGF which is opposite of what has been clinically 
demonstrated [26, 27]. In this regard, CTGF levels were 
shown to be significantly associated with HbA1c in type 
1 diabetic patients with nephropathy [27]. The expression 
of CTGF was also shown to be increased in the kidney 
and vasculature isolated from animal models of diabetes, 
implicating a role for hyperglycemia in modulating CTGF 
expression [29, 30]. Furthermore, hyperglycemia was 
shown to stimulate the expression of CTGF in mesangial 
cells, podocytes and vascular smooth muscle cells and 
this process involved activation of transforming growth 
factor beta, MAPK kinase pathway and protein kinase 
C [31–34]. In addition, the one-part and two-part with 
uncorrelated random effects were the only models that 
detected a significant association between age and CTGF 
levels. This inaccuracy in the results could be due to the 
inflated type 1 error and negative bias that pose major 
disadvantages of the one-part model [35].

A simulation study was conducted whereby two dif-
ferent proportions of zero values were considered (30% 
and 50%) to assess the performance of each of these 
models. Our simulation results showed that mTP had a 
superior performance in the sense that it had the small-
est attributed bias and MSE compared to the other three 
models, which suggests better accuracy and precision of 
the estimates under mTP. This is in line with the results 
obtained from the clinical application previously dis-
cussed wherein we denoted that the mTP model gener-
ated consistent and robust estimates for the assumptions 
pertaining to the distributions of the continuous part and 
also accounts for the longitudinal measures and skewness 
in the data due to the point mass at zero. An advantage of 
this model resides in the consistency of the estimates and 
feasibility of its implementation, unlike most of the avail-
able approaches for fitting longitudinal semicontinuous 
data that are computationally intensive and difficult to 
implement [15]. Other approaches require high dimen-
sional integrations of the stochastic processes in the mar-
ginal likelihood function which could be very complex 
and intractable [12]. As for the execution time, mTP and 
TP with correlated random effects needed more time to 
converge, which was about double the time needed for 
the TP with uncorrelated random effects and the one-
part models. This increased execution time is not sur-
prising given the complexity of the likelihood functions 
and its maximization under mTP and TP with correlated 
random effects compared to the simpler models of TP 
uncorrelated random effects that fits the zero and con-
tinuous components separately, and the one-part model 
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that fits both components as one sample. However, the 
overall execution time is still short and it needed less 
than or approximately 1 min maximum time to converge 
successfully. Nevertheless, this additional execution time 
is outweighed by the gain in accuracy and precision of 
the mTP model.

Conclusion
In summary, our findings showed that mTP provided 
stable estimates that are less sensitive to the underlying 
distributions when compared to the two-part and one-
part models. Our simulation results showed superiority 
of mTP over the other models in terms of minimum bias 
and mean square errors indicating better accuracy and 
precision of the parameters’ estimates. Incorporating the 
within-subject correlation and the correlation between 
the zero and continuous non-zero processes and express-
ing the marginal mean directly in terms of parametriza-
tion of the regression coefficients using both the zero and 
non-zero values could all contribute to the precision and 
accuracy of this model.

Furthermore, in this manuscript we adopted a novel 
approach that analyzes for the first time CTGF from 
the perspective of having different processes that result 
in the zero and non-zero values. The mTP model pre-
sented here has identified new clinical determinants 
that modulate the levels of CTGF in diabetic subjects. 
In this regard, intensive glycemic treatment was shown 
to be associated with decreased odds of CTGF detec-
tion, and smoking was identified as a factor that asso-
ciates with increased probability of non-zero which 
indicates its association with increased levels of CTGF. 
Moreover, HDL, SBP and HbA1c were associated with 
increased levels of CTGF. This finding is of clinical sig-
nificance, since it provides insights into factors that 
affect the levels of CTGF, a pathogenic risk factor for 
diabetic complications. In addition, a key advantage 
is that the analytical approaches described herein are 
applicable to all inflammatory biomarkers and cytokine 
profiles measured in patient populations that display a 
combination of negligible zero and non-zero values to 
understand the factors that regulate their production. 
Moreover, the models illustrated in this study are not 
limited to only clinical outcome datasets but could be 
also applicable to a vast array of real life situations such 
as health services research whereby lack or absence of a 
service may lead to proliferation of zero values, which 
requires this type of analyses. Hence, this study could 
be utilized as a model approach for the analyses of sim-
ilar settings wherein semicontinuous data is present.
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