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يضرعلاىوتسملايفمدقلاعضوريثأتيفةساردلاهذهتققح:ثحبلافادهأ
.ةدحاوقاسبءاصفرقلاءانثأةيلفسلافارطلأاتايكرحىلع

ابيردتنيبردمروكذنييضايرنيبةيعطقملاةساردلاهذهتيرجأُ:ثحبلاقرط
رابتخادنعةيحورلاةيعيبطلاةبكرلايوذنمنيكراشملاطقفةفاضإتمتو.ايلاع
عم،ةدحاوقاسبصفرقتلابائدتبمايضاير١٢ماق.يصحفلايطاقسلإاطوبهلا
ةثلاثبءاصفرقلاتاسلجتقٰبطُ.ةجرد٦٠دنعةبكرلاءانثناةيوازىلعظافحلا
مدقلاداعبإو،)ةجرد١٠-(مدقلابيرقتو،)ةجردرفص(لدتعملا:مدقللعاضوأ
)þةيكرحلاتاسايقلاطاقتللاداعبلأايثلاثةكرحلاليلحتلامدختسا.)ةجرد١٠
كروللةيكرحلاتاسايقلاةنراقمتمت.نيكراشملاىدللضفملايلفسلافرطلل

ةثلاثىلعوءاصفرقلاءانثأةيضرعلاوةيهبجلاوةيمهسلاتايوتسملايفةبكرلاو
."افونأ"هاجتلاايداحأنيابتلاليلحتمادختسابمدقللعاضوأ

٥.٣[ةيكيمانيدلاءاحورلاةبكرلانمايعيبطلادعمنيكراشملاىدلرهظ:جئاتنلا
،كرولاءانثنايفةيئاصحإةللادتاذقورفيأظحلاتُمل.])�١.٦(ةجرد
ظحلايُمل،لثملابو.مدقللةفلتخمعاضوأربعيلخادلانارودلاوكرولابيرقتو
نارودلاوةبكرلابيرقتو،ةبكرلاينثيفةيئاصحإةللادتاذقورفدوجو
.مدقللةفلتخمعاضوأربعيلخادلا

يضرعلاىوتسملايفمدقلاعضويفةريغصلاتارييغتلارثؤتلا:تاجاتنتسلاا
نيقهارملاروكذلادنعةدحاوقاسبءاصفرقلادنعيلفسلافرطلاتايكرحىلع
قاطنلانمضةيكيمانيدلاءاحورلاةبكرلاةيعضوءانثأايلاعابيردتنيبردملا
روحمتلاو،طوبهللانامأرثكأبيلاسألوحتاداشرإانجئاتنرفوتدقو.يعيبطلا
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Abstract

Objectives: The purpose of this study was to investigate

the effect of transverse plane foot position on lower limb

kinematics during a single leg squat.

Methods: This was a cross-sectional study conducted

among highly-trained male athletes. Only participants

who showed normal knee valgus during a drop landing

screening test were recruited. Twelve junior athletes per-

formed single leg squats while maintaining a knee flexion

angle of 60�. The squats were executed in three foot po-

sitions: neutral (0�), adduction (�10�), and abduction

(þ10�). Three-dimensional motion analysis was used to

capture the lower extremity kinematics of the partici-

pants’ preferred limb. The hip and knee kinematics in the

sagittal, frontal, and transverse planes during squatting

were compared across the three foot positions using one-

way ANOVA.

Results: The participants showed a normal range of dy-

namic knee valgus (5.3��1.6). No statistically significant

differences were observed in hip flexion (p ¼ 0.322),

adduction (p ¼ 0.834), or internal rotation (p ¼ 0.967)

across different foot positions. Similarly, no statistically

significant differences were observed in knee flexion

(p ¼ 0.489), adduction (p ¼ 0.822), or internal rotation

(p ¼ 0.971) across different foot positions.

Conclusion: Small changes in transverse plane foot posi-

tion do not affect lower extremity kinematics during

single leg squat in highly trained adolescent males with

normal dynamic knee valgus. Our findings may provide

guidance on safer techniques for landing, pivoting, and

cutting during training and game situations.
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Introduction

Sports that require cutting, pivoting, landing, or sudden
deceleration prior to changing direction commonly result in
non-contact injuries to the knee joint.1 This type of injury is

associated with weak lower extremity alignment during
dynamic tasks and is often referred to as excessive dynamic
knee valgus (DKV).2 DKV can be defined as a

combination of hip adduction, hip internal rotation, knee
flexion, knee external rotation, knee abduction, ankle
inversion,3 and ankle dorsiflexion.4 Moreover, DKV can be
distinguished as a body position in which the knee

collapses medially from internal-external rotation and/or
excessive valgus.2

Excessive DKV can be assessed using different screening

tests including single leg squat (SLS), drop vertical jump
(DVJ), drop landing, and single leg landing.5 During these
tests, excessive DKV can be quantified by evaluating two-

dimensional (2D) frontal plane projection angle (FPPA) of
the knee joint. For example, the typical range 2D knee
FPPAs during DVJ are between 7� and 13� in females, and 3�
and 8� in males.5 Subjects who exceed these angles may be

demonstrating kinematics that have an increased risk of
non-contact knee injuries, such as patellofemoral pain syn-
drome (PFPS) and ACL strain.2,3,5e8 In addition, these tests

simulate common motions in sports. For example, the DVJ
test mimics the demands of high-acceleration motions that
are common in sports with jump-landing tasks, such as

soccer, netball, and rugby.2 Meanwhile, the SLS test can
simulate functional activities, gait, and motions performed
in sports such as running, hockey, and soccer.9 SLS is also

a reliable clinical evaluation that is commonly used to
identify lower limb misalignment, muscle weakness, and
core strength deficiencies.10,11

Joint movements of the lower extremities are interde-

pendent during closed chain activities, whereby excessive
motion at a joint can overload tissues in the subsequent
joints of a kinetic chain.12,13 DKV often has proximal lower

limb origins consistent with a top-down kinetic chain, such
as hip muscle weakness or trunk control deficits.14 In
particular, weakness or aberrant motor control of the hip

abductors and external rotators has been implicated in
the development of knee injuries.14,15 Excessive or
aberrant motions at the transverse and frontal planes of
the hip joint may cause tibia abduction, foot pronation,

and medial motion of the knee joint, all of which indicate
DKV.16 Thus, diminished core and hip muscle strength
are related to DKV, and can further affect the kinematics

of the entire lower extremity.14,16 Indeed, during SLS, hip
muscle weakness has been associated with greater medial
knee displacement.14,17
By contrast, a bottom-up kinetic chain contradicts the
top-down kinetic chain. A bottom-up kinetic chain is

concentrated on the ankle joint, and suggests that an increase
of strength, especially in small muscles crossing the ankle
joint, may affect movements and joint moments in the ankle,

knee, and hip joints.18 Due to the mitered hinge design of the
ankle, increased rearfoot pronation results in greater tibial
internal rotation and knee valgus.18 Hence, foot position is

also an adjustable factor that could improve excessive
DKV, and further reduce the risk for associated lower limb
injuries. For instance, Ishida et al.19 noted that knee
rotation during SLS in young females is associated with toe

direction, whereas Khamis and Yhizar20 observed that ankle
eversion caused tibial internal rotation to occur during foot
hyperpronation and natural standing. Foot hyperpronation

has also been positively associated with traumatic knee
injury.21 In addition, the relationship between limited ankle
dorsiflexion range of motion (ROM) and PFPS has been

described by Piva et al.22 Moreover, a recent meta-analysis
showed that reduced dorsiflexion ROM was consistently
present among individuals with DKV compared to controls,
regardless of whether the method of evaluation used weight

bearing or non-weight bearing ROM.23

Despite the importance of identifying DKV among ath-
letes, its bottom-up kinetic chain has not yet been established,

particularly during SLS. Excessive DKV is most likely caused
by a combination of hip and ankle muscular strength imbal-
ance. Therefore, comprehensive strategies that focus on the

joints that are proximal and distal to the knee should be
investigated.24 This is crucial to determining whether or not
knee alignment can be modified during functional tasks.24 In

addition, previous studies on SLS kinematics mostly
involved female subjects who were not screened for excessive
DKV, which may have influenced the findings. However, the
bottom-up kinetic chain during SLS among physically active

males has not yet been investigated. Consequently, this study
was conducted to investigate the effects of foot position on hip
and knee kinematics during SLS, in state-level male adolescent

athletes who exhibited a normal range of DKV.

Materials and Methods

Subjects

This study used a cross-sectional design with purposive
sampling. A sample size of 12 participants was determined a

priori using GPower software (v.3.1.9.2), based on one-way
ANOVA with the p-value set at 0.05. The effect size was
calculated based on the association of foot position with
knee kinetics and kinematics.19

All participants were recruited voluntarily through
their team’s coach. The details of the study methodology
were provided and explained to each individual prior to

their participation. Participants were encouraged to
decide whether or not to participate without the influence
of their coach. The study was conducted at a sport science

laboratory of a local university. The duration of partici-
pation was approximately 30 min for the screening test,
and 1.5 h for the 3D SLS test. The test sessions were

conducted on separate days, with at least 24 h of rest
between sessions.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Twelve state-level male adolescent athletes with a
normal range of knee FPPA during DVJ screening test

were recruited voluntarily. The participants included
seven cyclists, three middle distance runners (400 m and
800 m) and two squash players. All participants were

between 13 and 18 years of age and had represented their
state in their respective sport at the national level at least
once. Each participant had a normal body mass index

(BMI) (i.e. between 18.5 and 24.9925) and did not have
any lower limb or back injuries at the time of data
collection. The protocol of this study was approved by
the research ethical committee from a local university

and was conducted in compliance with the Declaration
of Helsinki. Upon agreement, signed consent was
obtained from the participants and their guardians.

Testing procedure

Screening test

Initially, all participants performed a DVJ screening
test to confirm their qualification for the study. DVJ is
often utilised to assess excessive DKV, which is corre-

lated with increased risk of non-contact knee injuries.26

Participants stood with feet shoulder-width apart on a
box 30 cm high. They were instructed to lean forward and

drop from the box as vertically as possible, and then
immediately perform a maximal vertical jump before
landing back on the ground.27 There were no instructions

regarding arm movement, other than for the participants
to perform the movement naturally.6 Markers were
attached at both sides of the anterior superior iliac spine
(ASIS), greater trochanter, medial and lateral femoral

condyle, tibia tubercle, and medial and lateral malleolus.
Each participant performed three DVJ trials starting
from a standing position, with a 1-min rest interval be-

tween trials.28 The rest interval was crucial to avoid
fatigue-influenced jumping and landing. The trials were
captured from the frontal plane using a digital camera

(SONY HDR-CX240, Japan), and were further analysed
using Kinovea 0.8.15 (www.kinovea.org). The DVJ
screening test and 2D knee FPPA analyses were con-

ducted based on methods developed by Herrington and
Munro.6 The 2D knee FPPA was used because it is a cost-
effective injury-prevention screening tool and is easy to
execute.5

The knee FPPA was evaluated as the intersection of the
line created between ASIS and knee markers and another line
created between knee and ankle markers. Normative values

for 2D FPPA during DVJ were reported in previous studies
whereby ‘average’ performance for women were within 7�e
13�, while those for men were within 3�e8�.5,6 Only

participants with normal 2D knee FPPA during the DVJ
screening test were included in the three-dimensional (3D)
SLS test, which was conducted on a separate day with at least

24 h of rest interval after the screening test.

Three dimensional SLS tests

Upon reaching the lab, participants changed into tight
clothes, which were necessary for accurate marker place-
ment. Participants’ body weight (kg) and height (m) were

measured with a digital medical scale (Seca 769, Hamburg,
Germany), and their body fat percentage was evaluated us-
ing Omron HBF-360 Electronic Body Fat Percentage Ana-

lyser (Kyoto, Japan). Next, participants warmed up for
5 min on a cycle ergometer (Cybex Inc., Ronkonkoma, NY,
USA) at 50 RPM with 60 W. Demonstrations by the

researcher and familiarisation trials were conducted. Thirty-
seven reflective markers were then placed on the participant’s
sacrum, both sides of ASIS, greater trochanter, heel, second

and fifth metatarsals, medial and lateral femoral condyles,
and medial and lateral malleolus. Cluster markers were
attached on the thigh and leg segments bilaterally. Next,
participants were asked to squat using both legs, while the

researcher determined the 60� of knee flexion with a clear
plastic goniometer. An adjustable plinth was set at the height
of the ischial tuberosity during the double limb squat to

indicate the desired squat depth (i.e. 60� of knee flexion).29

Participants then stood with both feet on the ground for
10 s to capture their static standing pose.

Participants were instructed to perform an SLS to 60� of
knee flexion. They were asked to maintain their hands on
their chest and keep the trunk upright while standing on one
limb and flexing the knee of opposing limb to 90�. Only the

preferred leg was tested, which was identified by asking in-
dividuals which leg they used to kick a ball.30 The foot
positions (from the heel to the second metatarsal head) of

the stance foot were set in three directions, namely
0� (neutral), 10� (toe-out), and �10� (toe-in) relative to the
horizontal plane of ankle joint. While tested in different

foot directions, participants were asked to maintain their
knee directed forward during the start position. During the
SLS test, a metronome app, JY Fitness Timer (Alphapod,

v.1.0.14, Malaysia), was set at 60 beats per minute to
provide desired movement speed. Participants were
requested to follow the tempo guided by the metronome
which was 5s of lowering and 5s of returning to standing.29

Participants were instructed to touch the plinth with their
buttocks to indicate the squat depth of 60� knee flexion
and to keep the opposite limb away from the ground

without any support from no upper limb.29 The SLS
motion was captured at 100 Hz and recorded using
Qualisys Track Manager Camera (Qualisys, Sweden).

Three SLS trials at 60� of knee flexion were conducted for
each foot position. Participants stretched their legs upon
the completion of the test session.

The trajectories of the reflective markers that were
captured during the test were identified using Qualisys Track
Manager Software (Qualisys, Sweden). Then, inverse dy-
namics calculation was applied to build a musculoskeletal

model using V3D software (version 5, Gothenburg, Sweden).
The hip and knee kinematics in sagittal, frontal, and trans-
verse planes during SLS were compared across neutral, toe-

out, and toe-in foot positions. The flowchart of the study is
presented in Figure 1.

Statistical analysis

Data were tested for normal distribution by using

ShapiroeWilk test as it is appropriate for small sample sizes
(<50 samples).31 A one-way ANOVA was applied to deter-
mine the effects of foot positions on hip and knee kinematics.

The Bonferroni post hoc test was applied whenever signifi-
cant differences were detected. All statistical analyses were

http://www.kinovea.org


Recruitment of participants 

Screening test (Drop Vertical Jump test)

Participants with normal range of knee frontal plane projection angle (3° to 8° 
of FPPA in males) were included (N = 12)

Cooling down 

Pulling the leg up behind to stretch the hamstring
Touching the toes. 

Data Analysis & Statistical Analysis

Single Leg Squat

(60° of knee flexion with the opposite 
limb flexed 90°) 

(3 trials for each foot position)

Neutral toe direction (0°)
Toe-in direction (10°) 

Warming up session (5 minutes)

Cycle ergometer (50 RPM, 60 watts)

Figure 1: Flowchart of the study.

Table 1: Physical characteristics of participants (N [ 12).

Physical characteristics Mean (SD)

Body mass (kg) 47.78 (6.80)

Height (m) 16.19 (8.00)

Body mass index (BMI) (kg/m2) 18.13 (1.27)

Body fat percentage (%) 15.23 (2.71)
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performed using Statistical Package for the Social Sciences
(SPSS) version 22.0 with the level of significance set at
p < 0.05.

Results

Initially, 20 participants were recruited. However,
following the DVJ screening test, only 12 participants
showed normal range of DKV (5.3��1.6) and were thus
eligible for the 3D SLS test. The physical characteristics of

participants are presented in Table 1. All kinematics data
showed normal distribution as indicated by ShapiroeWilk
test. A comparison of hip and knee kinematics during 60�
SLS across neutral and toe-in and toe-out foot positions are
presented in Table 2.



Table 2: Comparison of hip and knee kinematics of the preferred leg in transverse, frontal and sagittal planes across neutral, and toe-in

and toe-out foot positions during single leg squat at 60� knee flexion (N [ 12).

Variable Neutral mean (SD) Toe-in mean (SD) Toe-out mean (SD) p value

Hip Flexion (�) 30.33 (10.60) 28.93 (9.53) 29.64 (9.28) 0.322

Hip Adduction (�) 5.01 (2.49) 3.54 (1.32) 4.48 (1.96) 0.834

Hip Internal Rotation (�) 13.20 (8.26) 13.45 (3.82) 11.32 (4.33) 0.967

Knee Flexion (�) 63.88 (7.60) 62.08 (7.26) 60.69 (9.03) 0.489

Knee Adduction (�) 7.21 (4.17) 7.51 (4.44) 6.97 (3.03) 0.822

Knee Internal Rotation (�) 11.97 (6.72) 10.30 (6.94) 11.90 (4.24) 0.971

Foot positions influences leg kinematics 347
Discussion

In this study, we aimed to investigate the bottom-up ki-

netic chain during SLS among state-level male adolescent
athletes who did not have excessive DKV. Overall, there were
no statistically significant differences in hip and knee kine-

matics in all planes across foot positions. In a previous study,
it was reported that foot position had a significant main ef-
fect on knee flexion angle, but the authors did not observe

either a main effect or an interaction between individual foot
positions.19 The discrepancy between our results and those
from the previous study by Ishida et al.19 may be due to
differences in sex, age, and physical fitness of the recruited

participants. Ishida et al.19 recruited adult females with
undetermined levels of physical fitness. By contrast, we
recruited state-level male adolescent athletes who trained

regularly. Differences in anthropometrics of males and fe-
males including femur length, hip width, and Q-angle may
also have influenced the results. Moreover, it has been shown

that during SLS, females have significantly greater hip
adduction than males, as well as increased hip flexion and
external rotation.32

SLS is a clinical test that resembles the single limb stance
position that can be seen in running, walking, and lunging,
which are typical motions in sports.7 The SLS test has
practical relevance in sports that require landing, cutting,

and running.29 There was a moderate-to-strong correlation
between SLS and lower extremity kinematics of lower ex-
tremity jogging.33 Currently, there are no studies that

evaluate the norms for knee FPPA during SLS.
Table 2 showed the hip kinematics during 60� SLS based

on different foot positions. Trials were conducted with the

right leg (the dominant leg for all participants) as the stance
leg. Graci et al.30 investigated SLS at 45� knee flexion
among male adults and found that the average hip
kinematics were 40.74� for hip flexion, 6.15� for hip

adduction, and 1.23� for hip internal rotation. The average
knee kinematics were 45.31� for knee flexion, 3.34� for knee
adduction, and 6.44� for internal rotation. In contrast to

the study by Graci et al.,30 our study investigated SLS at
60� knee flexion among male adolescent athletes. This
difference in squat depth may explain the different values of

hip and knee kinematics observed in our study. In addition,
previous studies19,30 did not conduct screening tests to
exclude individuals with excessive DKV. Thus, their results

may have included individuals with excessive DKV.
Research on the effects of foot positions on DKV is

lacking. The majority of the previous studies regarding DKV
focused on the top-down kinetic chain, such as trunk and hip

strength, rather than the bottom-up kinetic chain. The top-
down kinetic chain results suggest that increased muscular
strength around the hip and core may assist in reducing lower

extremity joint motions and related external joint moments
during running or landing, and thus reduce the frequency of
knee injuries.34,35 Moreover, Abdullah17 showed that

decreased isometric strength of hip abductors, adductors,
and extensors were associated with increased peak knee
valgus angle.

On the contrary, bottom-up kinetic chain analyses focus
on the influence of motion at the foot and ankle joint on knee
joint kinematics. Excessive foot pronation during exercise
has been cited as a risk factor for lower limb injuries.36,37 In

addition, limited ankle dorsiflexion is believed to influence
knee valgus.38 Previous research suggests that there is a
strong association between foot type and lower extremity

injury.39 In a study among volleyball players, reduced
dorsiflexion ROM (i.e., less than 45� of dorsiflexion) was
associated with a 1.8- to 2.8-fold increased risk of patellar

tendinopathy.40 This is because reduced dorsiflexion ROM
may reduce shock absorption and increase patellar tendon
load.40

Instead of using subjective raters’ evaluation, we quan-

tified lower extremity kinematics using 3D motion capture
and analysis, which is the gold standard of motion studies.
Moreover, while many previous DKV studies used female

subjects, our study focused on highly trained adolescent
male athletes. In addition, none of the previous studies
screened subjects for excessive DKV prior to motion

analysis. By contrast, we included the 2D DVJ screening
test to exclude those with excessive DKV from influencing
our results. It is crucial for coaches and health practitioners

to screen for excessive DKV, particularly in the young
athletes, so that preventive measures can be taken early in
an athlete’s career. The screening test can be conducted
using DVJ with 2D knee FPPA analysis. Assessing DKV is

one of the major goals in widely-conducted clinical tests.
These simple clinical tests provide better predictions of
lower extremities injuries that are related to biomechanical

risk factors. For example, in a prospective study by Hewett
et al.,2 the DVJ test was used to predict risk of knee injuries.
Injuries are associated with financial, psychological, and

missed training-time costs. Using a DKV screening test as
a preventive measure could substantially reduce these
injury-related costs.

The majority of the previous studies on DKV have
focused on the top-down kinetic chain, ather than the
bottom-up kinetic chain. In addition, studies on DKV
among trained male adolescent athletes are scarce, since

previous research has focused on female participants.
Furthermore, our participants were screened for excessive
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DKV to remove bias in the kinematics data. Hence, our
findings were limited to trained male adolescent athletes

who exhibited a normal range of DKV. Finally, we did not
include kinetic variables (e.g., moments, power), muscle
activity, and physiological data (e.g., muscle synergies,

efficiency),41 which could further enhance our
understanding regarding the lower limb biomechanics
during SLS.

Conclusion

The current study evaluated the effects of foot positions

during SLS, which is a crucial motion during sports that
require changing direction or landing from a jump. We
observed that small changes in transverse plane foot posi-

tions (e.g., 10� of toe-in or toe-out rotation) may not affect
lower extremity kinematics during SLS with 60� knee flexion
among highly trained adolescent males who exhibit DKV

within the normal range.

Recommendations

The mechanics of trunk and kinetics data from lower
limbs should be included in future studies on SLS to further
understand the bottom-up kinetic chain. Moreover, the ki-

netic chain during SLS can be compared across different type
of sports, age groups, gender, and competitive level.
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