
Pseudomonas aeruginosa Elastase Provides an Escape
from Phagocytosis by Degrading the Pulmonary
Surfactant Protein-A
Zhizhou Kuang1., Yonghua Hao1., Brent E. Walling1, Jayme L. Jeffries1, Dennis E. Ohman2, Gee W. Lau1*

1 Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 2 Department of Microbiology and Immunology,

Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute pneumonitis in immunocompromised
patients and chronic lung infections in individuals with cystic fibrosis and other bronchiectasis. Over 75% of clinical isolates
of P. aeruginosa secrete elastase B (LasB), an elastolytic metalloproteinase that is encoded by the lasB gene. Previously, in
vitro studies have demonstrated that LasB degrades a number of components in both the innate and adaptive immune
systems. These include surfactant proteins, antibacterial peptides, cytokines, chemokines and immunoglobulins. However,
the contribution of LasB to lung infection by P. aeruginosa and to inactivation of pulmonary innate immunity in vivo needs
more clarification. In this study, we examined the mechanisms underlying enhanced clearance of the DlasB mutant in
mouse lungs. The DlasB mutant was attenuated in virulence when compared to the wild-type strain PAO1 during lung
infection in SP-A+/+ mice. However, the DlasB mutant was as virulent as PAO1 in the lungs of SP-A-/- mice. Detailed analysis
showed that the DlasB mutant was more susceptible to SP-A-mediated opsonization but not membrane permeabilization.
In vitro and in vivo phagocytosis experiments revealed that SP-A augmented the phagocytosis of DlasB mutant bacteria
more efficiently than the isogenic wild-type PAO1. The DlasB mutant was found to have a severely reduced ability to
degrade SP-A, consequently making it unable to evade opsonization by the collectin during phagocytosis. These results
suggest that P. aeruginosa LasB protects against SP-A-mediated opsonization by degrading the collectin.
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Introduction

Pulmonary surfactant is a layer of lipoprotein complex with

critical surface tension lowering properties, which reduces the

work of breathing and helps to maintain airspace patency. Also, it

protects the lungs against inhaled air laden with microbes,

oxidants, pollutants and allergens [1–7]. About 10% of the

surfactant layer consists of proteins that have been identified as

surfactant protein-A (SP-A), SP-B, SP-C and SP-D. The lung

immune defense functions of surfactant are primarily mediated by

SP-A and SP-D, which are members of the collectin family of

proteins [2,6,8]. Severe depletion of SP-A and SP-D has been

associated with several respiratory diseases including bacterial

pneumonia, adult respiratory distress syndrome, and cystic fibrosis

(CF) [9–14]. SP-A-/- and SP-D-/- mice have been shown to be

more susceptible to lung infection by P. aeruginosa and other

pathogens [2,7,15].

In the past decades, studies have demonstrated that SP-A is an

important component of the pulmonary innate immune system.

SP-A opsonizes and enhances the phagocytosis of a myriad of

microbial pathogens in a calcium-dependent manner [2,3,6,

7,15,16]. Also, SP-A activates phagocytic cells and upregulates

the expression of host cell-surface receptors involved in microbial

recognition [8,17–21]. Most recently, we and others have reported

that SP-A also directly kills microbes in a macrophage-indepen-

dent manner by increasing the permeability of microbial

membranes [22–27]. However, the mechanism by which SP-A

permeabilizes microbial membranes and its relative importance in

the lung defense is not clear. For example, it is not known whether

microbes that are membrane permeabilized by SP-A are

phagocytized more efficiently than the microbes with intact cell

membranes.

P. aeruginosa is a Gram-negative bacterial pathogen that causes

both acute pneumonitis in immunocompromised patients and

chronic lung infections in individuals with CF and non-CF

bronchiectasis, and chronic obstructive pulmonary disease

(COPD) [28–32]. Multiple virulence factors of P. aeruginosa

contribute to lung infection [33]. These virulence determinants

work in concert either offensively to inactivate components of host

immune response, or defensively to camouflage or evade host

response [33]. Cell surface associated virulence factors of P.

aeruginosa include pili, flagella, alginate, and lipopolysaccharides
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(LPS) [33]. Type III and Type IV secretion effectors are injected

into the host cells to modulate host immune response [34–37].

Secreted components include exotoxin A, phospholipases, phen-

azines, rhamnolipids and exoproteases [33]. Among the exopro-

teases, elastase B (LasB), is a major elastolytic zinc metalloprotei-

nase of 33 kDa encoded by the lasB gene of P. aeruginosa [38,39].

Also known as pseudolysin, LasB has received much attention and

been recognized as an important virulence factor. LasB is thought

to damage host tissues through hydrolysis of the components of

extracellular matrix and by breaching the endothelial and

epithelial barriers by attacking intercellular tight junctions

[40,41]. Under in vitro experimental conditions, LasB degrades

numerous components of innate and adaptive immune systems,

including SP-A and SP-D [42,43], cytokines and chemokines

TNF-a, IFN-c, IL-2 and IL-8 [40,44–47], and antibacterial

peptide [48]. Also, there are reports of elastase inactivating

secretory immunoglobulin A, immunoglobulin G and opsonin C3

[31,48–50]. Most recently, we have confirmed that P. aeruginosa

LasB is able to degrade lysozyme in vitro [22,51].

Despite numerous in vitro studies, direct evidence of LasB-

mediated proteolytic activities in the lungs, and to what extent they

contribute to the pathogenesis of P. aeruginosa requires more

investigation. In this study, we compared the virulence role of

LasB by using wild-type P. aeruginosa strain PAO1 versus an

isogenic DlasB mutant strain in an acute model of lung infection in

SP-A+/+ versus SP-A-/- mice.

Results

The DlasB bacteria are severely attenuated in
exoprotease activities

We examined the amounts of LasB in the supernatants of

stationary phase P. aeruginosa cultures. As expected, the PDO240

mutant (Table 1) (from here in DlasB) bacteria did not secrete

LasB. In contrast, both the wild-type PAO1 and the genetically

complemented PDO240LasB bacteria produced the 33 kDa LasB

(Figure 1A). In addition, the DlasB bacteria had approximately 10-

fold less total exoprotease activity when compared to PAO1 and

PDO240LasB (Figure 1B).

The DlasB bacteria are cleared more efficiently following
lung infection in SP-A+/+ but not SP-A-/- mice

To determine the contribution of LasB to lung infection, we

compared the virulence of the wild-type P. aeruginosa PAO1, the

isogenic DlasB mutant, and the genetically-complemented strain

PDO240lasB in a mouse acute pneumonia model of single infection

studies. In the absence of bacterial infection, histopathological

features of SP-A-/- mouse lungs were indistinguishable when

compared to the lungs of SP-A+/+ mice (data not shown). Eighteen

hr after intranasal inoculation with PAO1 or PDO240lasB, SP-A+/+

mice showed signs of infection and respiratory distress but were not

moribund. In contrast, PAO1-infected SP-A-/- mice were moribund

and had to be euthanized (data not shown). The number of viable

wild-type PAO1 or PDO240lasB bacteria in SP-A-/- were 1.72 log

and 1.88 log higher than in SP-A+/+ mice, respectively (Figure 2A).

Eighteen hr after infection with the DlasB mutant bacteria, the lungs

of SP-A+/+ mice showed little sign of disease. In contrast, SP-A-/-

infected with DlasB mutant bacteria developed significant respira-

tory distress or were moribund, and had to be euthanized (data not

shown). The viable counts of DlasB mutant were 1.5 log lower than

PAO1 in SP-A+/+ mice. However, the number of DlasB bacteria was

3.1 log higher in SP-A-/- mice than in SP-A+/+ mice, and was

statistically indistinguishable when compared to the number of

PAO1 and PDO240lasB bacteria in the SP-A-/- mice (Figure 2A).

By 36 hr, the number of bacteria for each strain in the SP-A+/+ mice

further decreased by approximately 0.5 log. However, the decrease

was not obvious in the Sp-A-/- mice (Figure 2B). These results

indicate that DlasB bacteria are more virulent in the lungs of SP-A-/-

mice than in the lungs of SP-A+/+ mice. Virulence attenuation in

DlasB bacteria was not due to reduced growth rate as wild-type

PAO1, DlasB and PDO240LasB bacteria had virtually identical

growth kinetics (Figure 2C).

Next, we examined various infected mouse lungs with

histopathological methods (Figure 3). Our analysis showed that

PAO1 and PDO240lasB caused more severe alveolitis with

pulmonary infiltrates (Figure 3A and 3E) whereas the DlasB

mutant only caused mild alveolitis in the lungs of SP-A+/+ mice

(Figure 3C). In contrast, PAO1, DlasB mutant and PDO240lasB

caused similar amounts of consolidation with more areas of

pneumonia in SP-A-/- lungs (Figure 3B, 3D, and 3F). These results

indicate that LasB plays an important protective role against anti-

P. aeruginosa activity mediated by SP-A.

The DlasB bacteria are deficient in their ability to degrade
SP-A

Previously, it has been shown that P. aeruginosa elastase degrades

human SP-A (hSP-A) [22,43,52]. Here, we examined the ability of

DlasB mutant on its ability to degrade hSP-A. The hSP-A (25 mg)

was incubated with 16108 wild-type PAO1, DlasB, or genetically

Figure 1. The DlasB mutant has severely attenuated exopro-
tease activity. (A) Western blot analysis of the LasB production in the
supernatant of PAO1, DlasB mutant and PDO240LasB as detected by
anti-LasB antibody. (B) Proteolytic activity of stationary phase culture
supernatant collected from PAO1, DlasB and PDO240lasB. Experiments
were performed independently three times in triplicates. The mean +
standard deviation from one representative experiment is shown.
*p,0.01 when comparing the exoprotease activity of DlasB against
PAO1 or PDO240lasB.
doi:10.1371/journal.pone.0027091.g001
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complemented PDO240lasB bacteria (Table 1) for the indicated

time intervals. After 6 hr of incubation, the degradation of hSP-A

by PAO1 and PDO240lasB bacteria was evident (Figure 4A). By

18 hr post incubation, hSP-A was almost completely degraded by

PAO1 and PDO240lasB. In contrast, there was only minimal

degradation of hSP-A by the DlasB bacteria, with majority of the

collectin remaining intact even after 18 hr of exposure (Figure 4A).

Densitometry analysis indicates that PAO1 degraded approxi-

mately 40% hSP-A after 6 hr incubation. By 12 and 18 hr,

majority of the hSP-A had been degraded (Figure 4B). Increasing

amount of hSP-A degradation was correlated with higher amount

of LasB secretion by PAO1 and PDO240lasB as the time of

incubation was lengthened (Figure 4C). The degradation of SP-A

was not influenced by the presence or absence of Zn2+, suggesting

that LB provided sufficient Zn2+ for the proteolytic activities of

LasB (Figure S1). These results suggest that DlasB bacteria are

strongly attenuated in their ability to degrade hSP-A, and that

LasB is a major exoprotease of P. aeruginosa that is responsible for

the removal of hSP-A.

The DlasB bacteria are impaired in the degradation of SP-
A during infection of SP-A+/+ mouse lungs

Although in vitro studies have shown that P. aeruginosa secretes

elastase to degrade SP-A [22,43,52], the biological importance of

SP-A removal by LasB and the resulting resistance to clearance

during infection of SP-A+/+ lungs have not been investigated. We

compared the in vivo degradation of mouse SP-A (mSP-A) by wild-

type PAO1, the elastase-deficient mutant DlasB, and the comple-

mented strain PDO240lasB in SP-A+/+ mice. The amounts of mSP-

A in the BAL fluids from mice infected with all three bacterial

strains were similar at 6 hr (Figure 5A) and 12 hr post-infection

(Figure 5B). However, by 18 hr post-infection, PAO1 or PDO240-

lasB had significantly lower amounts of mSP-A. In contrast,

significant amounts of intact mSP-A dimers and monomers were

detected in the BAL of mice infected withDlasB bacteria (Figure 5C).

Western blot data were confirmed by densitometry analyses, which

showed that both PAO1 and PDO240lasB degrade significantly

more mSP-A than DlasB mutant (Figure 5D). These results suggest

that LasB plays important role in removal of mSP-A in vivo.

A previous study has suggested that mSP-A is a principal factor

that permeabilizes microbial membranes in the alveolar lining fluid

of mouse lungs [53]. Thus, proteolytic degradation of mSP-A by

LasB-secreting PAO1 or PDO240lasB would inactivate the ability

of mSP-A within lung BAL fluids to permeabilize microbial

membranes. To further assess the function of LasB against mSP-

A in vivo, we compared the ability of BAL fluids from 18 hr post-

infection (from Figure 5C) to permeabilize the membrane of E. coli

DH5a. Purified hSP-A was used as a positive control. Pure hSP-A

has the highest levels of membrane permeabilization activity, which

was 2.3 and 2.5 fold higher than BAL fluids from PAO1 and

PDO240lasB infected SP-A+/+ mice after 90 min of incubation

(Figure 5E). In contrast, even though the extent of membrane

permeabilization on DH5a mediated by pure hSP-A was

consistently higher than BAL fluids from DlasB-infected animals,

the difference was not statistically significant (Figure 5E). Impor-

tantly, BAL fluids from PAO1 or PDO240lasB -infected SP-A+/+

mouse lungs, where mSP-A had been degraded by LasB, showed

lower ability to permeabilize DH5a (Figure 5E). On the contrary,

BAL fluids from DlasB-infected mice permeabilized DH5a bacteria

at 1.9 and 2.1 fold higher than BAL from PAO1 and PDO240lasB,

respectively, after 90 min of exposure (Figure 5E). Taken together,

these results suggest that during infection of mouse lungs, P.

aeruginosa protects itself against the antimicrobial activities of mSP-A

by degrading the collectin through the secretion of LasB.

The DlasB bacteria are not susceptible to SP-A-mediated
membrane permeabilization

Previous studies have demonstrated that SP-A protects lungs

against microbial infection by opsonization [2,3,7,15]. More

recently, we and others have shown that SP-A is capable of

directly killing microbes in a macrophage-independent manner, by

permeabilizing microbial membranes [22–27]. We examined

which defense mechanism(s) led to enhanced clearance of DlasB

bacteria in the lungs of SP-A+/+ mice. Previously, we have

reported that the wild-type P. aeruginosa strain PAO1 is resistant to

hSP-A-mediated membrane permeabilization [22,26,27]. First, we

compared the susceptibility of the DlasB mutant to hSP-A-

mediated membrane permeabilization against its parental wild-

type PAO1 and the complemented strain PDO240lasB. E. coli

DH5acells incubated with hSP-A were used as positive control. As

expected, hSP-A permeabilized the membrane of DH5a cells

(Figure 6). In contrast, PAO1, DlasB, and PDO240lasB bacteria

demonstrated similar levels of resistance to hSP-A-mediated

membrane permeabilization (Figure 6). These results suggest that

Table 1. P. aeruginosa strains used in this study.

Bacterial Strains Relevant characteristics Reference

P. aeruginosa

PAO1 Wild-type M. Vasil, 58

PAO1-gfp PAO1 strain harboring the green fluorescent protein expression broad host range plasmid pUCP19-gfp This study

PDO240 (DlasB) Elastase-deficient mutant derived from PAO1 [57]

DlasB -gfp DlasB mutant harboring GFP plasmid pUCP19-gfp This study

PDO240lasB DlasB mutant harboring a wild-type lasB gene on plasmid pKSM3 This study

E. coli

DH5a F-f80 DlacZDM15 endA1 recA1 hsdR17 (r-km+k) supe44 thi-1 l-gyr A96 relA1 D(lacZYA-argF) U169 [66]

Plasmids

pUCP19-gfp Broad host range vector. Polylinker lacZ, laciq selection, bla, gfp [26]

pKSM3 pLAFR3 with lasB gene on a 2.6 kb EcoRI-Pstl fragment [65]

doi:10.1371/journal.pone.0027091.t001
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mSP-A-mediated membrane permeabilization is not responsible

for the enhanced clearance of DlasB bacteria in mouse lungs.

The DlasB bacteria are unable to degrade SP-A and are
more susceptible to SP-A-mediated opsonization in vitro

Previously, P. aeruginosa has been shown to be susceptible to SP-

A-mediated opsonization [54,55]. Because the DlasB mutant

bacteria were not sensitive to hSP-A-mediated membrane

permeabilization, we examined whether they were more suscep-

tible to hSP-A-mediated opsonization. Bacterial phagocytosis

assays were performed using the murine macrophages RAW

264.7. The number of P. aeruginosa cells internalized by

macrophages RAW 264.7 was enumerated by gentamicin

exclusion assays [56]. The presence of hSP-A significantly

increased the phagocytosis of both the wild-type PAO1 and DlasB

mutant by macrophages in a concentration dependent manner

(Figure 7A). When exposed to 10, 20, or 50 mg/ml of hSP-A, the

number of DlasB bacteria internalized by macrophages was 2.3,

3.6 and 3.8 fold higher respectively compared to DlasB without

hSP-A treatment in 60 min. However, the increase in the

phagocytosis of DlasB bacteria was statistically indistinguishable

from PAO1. These results suggest that the ability of PAO1

bacteria to secrete LasB does not significantly interfere with the

ability of hSP-A to opsonize the bacteria within the short duration

(1 hr) under our in vitro experimental conditions. This observation

is not surprising because a large amount of intact hSP-A still

remained after 6 hr of exposure to PAO1, partly due to high

amounts of hSP-A (25 mg) used in the experiments (Figure 4).

Next, we examined the impact of prolonged exposure of hSP-A to

PAO1 or DlasB on the ability of the collectin to opsonize the bacteria.

hSP-A (20 mg/ml) was preincubated with PAO1 or DlasB for 1, 6, 12

or 18 hr before the mixture was added to the macrophages for

phagocytosis assays. After 60 min of phagocytosis, internalized

bacteria were enumerated by gentamicin exclusion assay. The

number of internalized PAO1 decreased gradually in a time-

dependent manner (Figure 7B), in an inverse relationship to the

degradation of hSP-A (Figure 4). By 12 and 18-hr, the number of

PAO1 bacteria internalized by macrophages was 1.7-fold and 2.2-

fold lower than the DlasB bacteria, respectively (Figure 7B). As

expected, because of its greatly reduced ability to degrade hSP-A, the

phagocytosis rate of DlasB bacteria remained nearly constant

throughout the entire experiment. Even though there was a slight

decrease in the number of DlasB bacteria internalized by macro-

phages exposed to the bacteria/hSP-A mixture from the 12th and

18th-hr, the decrease was not statistically significant (Figure 7B).

These results are consistent with the observation that DlasB bacteria

lack the ability to degrade hSP-A, and are subsequently opsonized by

the collectin and phagocytized by macrophages.

The DlasB mutant bacteria are more susceptible to mSP-
A mediated opsonization in vivo

The in vitro phagocytosis results presented in Fig. 6 suggest that

proteolytic degradation of SP-A is required to negate enhanced

clearance of P. aeruginosa by macrophages. We examined this

possibility by performing in vivo phagocytosis assays. After infection

with the wild-type PAO1 or DlasB bacteria, mouse lungs were

lavaged at 6, 12 and 18 hours post infection. Bacteria that were

internalized by lung leukocytes within the BAL fluids were

enumerated by gentamicin exclusion assays. As shown in

Figure 8A, the number of internalized DlasB bacteria was not

different than internalized PAO1 bacteria at 6 and 12 hr post-

infection. However, by 18 hr post infection, the number of

internalized DlasB bacteria was 2.6 fold higher than PAO1. The

Figure 2. The DlasB mutant is attenuated for virulence in SP-A+/+

mice. (A) Respiratory tract infections with wild-type PAO1, DlasB
mutant or genetically-complemented PDO240lasB bacteria were
performed by intranasal inoculation of anesthetized SP-A+/+ or SP-A-/-

mice. Mouse lungs were harvested 18 hr after infection for CFU
enumeration. Data are the mean CFU 6 SE (n = 5 per group). * p,0.05
when comparing lungs of SP-A+/+ mice infected with PAO1 and
PDO240lasB versus DlasB; ** p,0.05 when compared between SP-A+/+

and SP-A-/- mice infected with PAO1, DlasB or PDO240lasB bacteria. (B)
Mouse lungs were harvested 36 hr after infection for CFU enumeration.
Data are the mean CFU 6 SE (n = 5 per group). * p,0.05 when
comparing lungs of SP-A+/+ mice infected with PAO1 and PDO240lasB
versus DlasB; ** p,0.05 when compared between SP-A+/+ and SP-A-/-

mice infected with PAO1, DlasB or PDO240lasB bacteria. (C) Attenuation
of DlasB bacteria in mouse lungs was not due to a slower growth rate.
Bacterial growth was assessed by absorbance at OD600. The data from
one of the three independent experiments are shown.
doi:10.1371/journal.pone.0027091.g002
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latter time point correlates with the time interval when a significant

amount of mSP-A is degraded by PAO1 bacteria (Figure 5C) but

not by the DlasB bacteria. The increase in the phagocytosis of DlasB

bacteria was not due to disproportionately higher levels of

professional phagocytes because flow cytometry analyses showed

that both PAO1 and DlasB-infected mouse lungs had similar

numbers of neutrophils and macrophages (Figure 8B). Leukocytes

analysis was supported by ELISA assays, which indicated that the

levels of the neutrophil and macrophage chemotactic chemokines

CCL5 and MCP1 were not statistically different between mouse

lungs infected with PAO1, DlasB or PDO240lasB (Figure 8C).

These results suggest that the DlasB bacteria were unable to protect

themselves from mSP-A-mediated opsonization in vivo due to their

inability to remove the collectin through proteolytic degradation.

Aggregation of DlasB bacteria in the presence of SP-A
SP-A aggregates microbes, which are phagocytized at higher

efficiency by professional phagocytes [2,3,7,16]. We used fluores-

cent microscopy to examine whether there was a difference in the

efficiency of SP-A-mediated aggregation of GFP-expressing PAO1

versus DlasB bacteria. As shown in Figure 9A, after 120 min of

aggregation by hSP-A, the number of DlasB-GFP aggregates was

slightly higher than PAO1-GFP. However, the increase was not

statistically significant. This is not surprising considering that

excess amounts of intact hSP-A still present in the mixture

(Figure 4A). Also, we examined the bacterial aggregates in the

BAL fluids at 18 hr post-infection (Figure 9B). The DlasB-GFP

bacteria were frequently found in aggregates, suggesting of

opsonization by mSP-A (Figure 9B, arrows). In contrast, no

aggregates of PAO1-GFP bacteria were apparent in infected

mouse lungs. Taken together, these results suggest that failure by

the DlasB bacteria to degrade SP-A allows the collectin to

effectively aggregate, opsonize and facilitate the phagocytosis and

preferential clearance of the LasB-deficient bacteria.

DlasB bacteria are attenuated in degradation of
pulmonary innate immunity protein lysozyme

Our phagocytosis assays shown above have demonstrated that

SP-A enhances the phagocytosis of P. aeruginosa by ,2-3 fold.

However, the final difference in bacterial load of SP-A+/+ versus

SP-A-/- is , 100 fold (Figure 2A), suggests that LasB may be

required to degrade other components of pulmonary antimicrobial

proteins. We examined whether the DlasB bacteria are attenuated

in degradation of lysozyme, which has been previously shown to

be important against P. aeruginosa [57]. In addition, we have

previously shown that SP-A and lysozyme act synergistically to

permeabilize the membranes of wild-type P. aeruginosa strain PAO1

[22]. Given this unanticipated discrepancy, we examined in vitro

and in BAL fluids of infected mouse lungs for evidence of reduced

degradation of lysozyme. As shown in Figure 10, LasB was able to

degrade lysozyme both in vitro and in vivo experimental conditions.

To confirm lysozyme degradation, we incubated 5 mg/ml

Figure 3. Histopathology of P. aeruginosa infected lungs. Representative H&E-stained lung sections from SP-A+/+ and SP-A-/- mice (n = 5) 18-hr
post intranasal instillation of PAO1 (A-B), DlasB (C-D) and PDO240lasB (E-F) bacteria.
doi:10.1371/journal.pone.0027091.g003
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lysozyme with 16108 PAO1, DlasB, and PDO240lasB bacteria.

After 18 hr incubation, lysozyme exposed to DlasB mutant

remained intact (Figure 10A). In contrast, PAO1 or PDO240lasB

bacteria were able to degrade lysozyme (Figure 10A). Similarly,

BAL samples from mice infected with PAO1 or PDO240lasB had

reduced amounts of lysozyme (Figure 10B). In contrast, BAL

samples from mice infected with DlasB mutant still contained

intact lysozyme. Densitometry quantifications indicated that by

18 hr, PAO1 and PDO240lasB had degraded 50-60% more

lysozyme than the DlasB mutant in vitro (Figure 10C) and in vivo

(Figure 10D). Thus, infection by P. aeruginosa likely induced the

expression of lysozyme, which was subsequently degraded by LasB

and other exoproteases produced by PAO1 or PDO240lasB. In

contrast, due to inability of the DlasB mutant to elaborate

adequate exoprotease activity, lysozyme remained intact.

Discussion

P. aeruginosa LasB is an important virulence factor during host

infections. In addition to damaging tissues and disrupting

intercellular junctions of lung epithelia, LasB also is capable of

degrading components of the innate and acquired immune system,

including cytokines and chemokines, antimicrobial peptides,

immunoglobulins, serum complement factors, and surfactant

protein [31,40,43–50,58,59]. However, most of these studies were

performed in vitro with a combination of purified elastase and

purified host components, or purified host component exposed to

P. aeruginosa. Thus, direct proof of LasB-mediated proteolysis in

lung infection is lacking. In this study, we provide evidence that P.

aeruginosa elastase reduces the phagocytosis of the bacteria in

mouse lungs by degrading SP-A, an important innate immune

system component that opsonizes and membrane permeabilizes

microbes. By comparing lung infections between SP-A+/+ and SP-

A-/- mice using a combination of wild type P. aeruginosa strain

PAO1 and isogenic mutant strain DlasB, we demonstrate that: (i)

the DlasB mutant is attenuated in the lungs of SP-A+/+ mice but is

fully virulent in the lungs SP-A-/- mice; (ii) inability to secrete LasB

impairs the ability of P. aeruginosa to degrade SP-A both in vitro and

in mouse lungs; (iii) LasB deficiency does not result in increased

Figure 4. SP-A-degrading ability is reduced inDlasB mutant bacteria in vitro. (A) hSP-A (25 mg) was incubated with 16108 PAO1, DlasB or
PDO240LasB bacteria for the indicated time intervals. hSP-A degradation was assessed by western blot analyses using 10 ml of SP-A/bacterial
suspension. Image from one of the three independent experiments is shown. (B) Densitometry quantification of hSP-A degradation in A. (C)
Production of LasB in the mixture was assessed by western blot analyses using 10 ml of supernatant from the hSP-A/bacterial suspension.
Immunoblots were probed with anti-SP-A (A) or anti-LasB (C) antibody, respectively.
doi:10.1371/journal.pone.0027091.g004
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susceptibility of P. aeruginosa to membrane permeabilization by SP-

A; (iv) failure to degrade mSP-A results in increased opsonization

and enhanced clearance of the DlasB mutant from the lungs of SP-

A+/+ mice; (v) substantial amounts of SP-A degradation by LasB

needs to occur before the phagocytosis of P. aeruginosa by

professional phagocytes is significantly reduced. Collectively, these

results suggest that LasB affords a protective role to P. aeruginosa by

negating the ability of SP-A to serve as an opsonin that helps to

augment phagocytosis.

In vitro degradation of hSP-A by exoproteases of P. aeruginosa was

previously reported [43,52]. These authors observed the degra-

dation of hSP-A when the collectin was co-cultured with P.

aeruginosa, and with BAL fluids from the lungs of CF patients

chronically colonized by the bacterial pathogen. After purification

and mass spectroscopy analysis, the proteolytic enzyme was

identified as P. aeruginosa elastase. By comparing the infection of

SP-A+/+ versus SP-A-/- mouse lungs using both wild-type PAO1

and the DlasB mutant, we reveal that LasB plays an important role

in negating the innate immunity role of mSP-A through

proteolytic degradation of the collectin.

Apart from serving as an opsonin, SP-A also has the ability to

permeabilize microbial membranes, similar to antimicrobial

peptides [22,23,26,27,58,60]. It has been suggested that SP-A

may be one of the major lung innate immunity proteins that

permeabilize bacterial membranes [53]. However, we have

reported that wild-type P. aeruginosa is resistant to SP-A-mediated

Figure 5. Elastase deficient DlasB mutant is attenuated in the degradation of SP-A during lung infection. (A-C) The amounts of intact
mSP-A were not visibly changed at 6-hr (A) or 12- hr (B) post-infection. By 18 hr post-infection (C), intact mSP-A was reduced in the BAL fluid from
PAO1- or PDO240lasB-infected SP-A+/+ mice (n = 6), suggesting that mSP-A was degraded in mouse lungs. In contrast, more abundant mSP-A was
clearly visible in the BAL fluids from DlasB (n = 8). C = Purified human SP-A. M1 – M8 = BAL of mice infected with P. aeruginosa. Western blot
analyses were performed using a polyclonal antibody against SP-A. (D) Densitometry analysis of mSP-A degradation by PAO1, DlasB and PDO240lasB
in mouse lungs. The amounts of remaining mSP-A in DlasB were set to the value of 100%. *p,0.05 when compared the amount of mSP-A in BAL
fluids from lungs infected with PAO1 or PDO240lasB against BAL fluids from DlasB-infected mice. (E) Mouse BAL from DlasB-infected animals contains
intact mSP-A that permeabilizes bacterial membranes. Pooled BAL fluids (from C) (50 mg/ml total proteins) were used for membrane permeabilization
assays. hSP-A (50 mg/ml) was used as positive control. BAL fluids from PAO1 and PDO240lasB infected mice failed to permeabilize E. coli membranes.
hSP-A and BAL samples from DlasB-infected mice were able to permeabilize bacterial membranes of E. coli DH5a at higher levels. Experiments were
performed independently three times in triplicates. The mean + standard deviation from one representative experiment is shown. **p,0.05 from
60 min onward when comparing the membrane permeabilization of E. coli by pure SP-A or BAL samples from DlasB-infected mice against BAL
samples from PAO1 or PDO240lasB-infected mice.
doi:10.1371/journal.pone.0027091.g005
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membrane permeabilization [26,27]. P. aeruginosa confers resis-

tance to SP-A-mediated membrane permeabilization by elaborat-

ing LPS, flagella, phosphoenolpyruvate phosphotransferase and

salicylate biosynthesis, and exoproteases [22,26,27]. Especially

interesting is that the loss of flagella seems to reduce the ability of

P. aeruginosa to synthesize adequate LPS, resulting in increased

susceptibility to SP-A. Furthermore, flagella-deficiency also causes

P. aeruginosa to produce less exoproteases [22]. As we have shown

here, the loss of LasB, a major exoprotease in P. aeruginosa, renders

the pathogen susceptible to increased clearance from lungs

through opsonization, not membrane permeabilization. However,

we have previously shown that the flagella-deficient mutants of P.

aeruginosa do not exhibit increased susceptibility to SP-A-mediated

opsonization. This discrepancy could be explained because the in

vitro and in vivo phagocytosis studies of the flagella mutants were

performed for only 60 - 120 minutes [26], and the data is similar to

what we have observed for the DlasB mutant, where phagocytosis

was carried out for 60 min (Fig. 5). However, as we have

demonstrated, wild-type P. aeruginosa PAO1 induces a time-

dependent degradation of SP-A with a corresponding reduction

in SP-A-mediated opsonization at 6-hr or longer post-incubation

in vitro, or 18 hr in vivo. In contrast, the DlasB mutant bacteria are

unable to degrade adequate amounts of SP-A, and are increasingly

cleared by hSP-A-augmented phagocytosis by RAW 246.7

macrophages through the 18 hr incubation. We are currently

performing experiments to clarify the relationship between

exoprotease deficiency of flagella mutants and susceptibility to

SP-A-mediated opsonization.

Our comparative in vivo phagocytosis assays indicate that the

differences between the number of PAO1 and DlasB bacteria

internalized by pulmonary leukocytes are only apparent 18 hr

post-infection, but not at earlier time points. This observation is

reflective of the amounts of intact mSP-A remaining in the infected

lungs, which are not substantially degraded until 18 hr post-

Figure 6. DlasB mutant bacteria are resistant to SP-A-mediated
membrane permeabilization. Membrane permeabilization assays
were performed with 16108 of E. coli DH5a or P. aeruginosa exposed to
hSP-A (50 mg/ml) for 120 min. Three independent experiments were
performed in triplicates. The mean + standard deviation from one
representative experiment is shown. The membrane permeabilization
activity of hSP-A against PAO1, DlasB and PDO240lasB was not
statistically different among all three P. aeruginosa strains. *p,0.05
from 35 min onward when comparing the membrane permeabilization
of DH5a against PAO1, DlasB and PDO240lasB.
doi:10.1371/journal.pone.0027091.g006

Figure 7. The DlasB mutant is unable to degrade and impede
SP-A-mediated opsonization in vitro. (A) hSP-A opsonized and
increased the phagocytosis of both wild-type PAO1 and DlasB bacteria
in a concentration dependent manner. ,16107 PAO1 or DlasB bacteria
were treated with PBS alone or with increasing concentrations of hSP-A
for 1 hr in the presence of 16106 cultured RAW 264.7 macrophages.
The number of phagocytized bacteria was determined by gentamicin
exclusion assay. The fold increase in phagocytosis was calculated based
on the number of engulfed bacteria in macrophages treated with hSP-A
versus PBS alone. Three independent experiments were performed in
triplicates. The mean + standard deviation from one representative
experiment is shown. *, **p,0.01 when comparing the internalized
PAO1 or DlasB mutant pretreated with various concentrations of hSP-A
versus PBS alone. (B) The DlasB mutant bacteria are more susceptible to
hSP-A-mediated opsonization. hSP-A (20 mg/ml) was incubated with
16107 PAO1 or DlasB bacteria for 1, 6, 12, or 18 hr. At indicated time
intervals, the bacteria-hSP-A mixture was added to 16106 cultured RAW
264.7 macrophages, and incubated for another 1 hr. The number of
engulfed bacteria was examined as in (A), and normalized against PAO1
or DlasB bacteria phagocytized in the absence of hSP-A. Three
independent experiments were performed in triplicates. The mean +
standard deviation from one representative experiment is shown.
*p,0.01 when comparing the number of phagocitized DlasB bacteria
against internalized PAO1 bacteria.
doi:10.1371/journal.pone.0027091.g007
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infection. These results suggest that the kinetics of mSP-A

degradation are slower during lung infection. This is not surprising

considering the complexity of the pulmonary immune response

during an acute pneumonia infection. For example, it is known

that neutrophil elastase also degrades SP-A [60,61]. Thus, at 18 hr

post-P. aeruginosa infection when the neutrophil influx is prominent

(Fig. 7B), it is possible that a combination of LasB, other minor P.

aeruginosa exoproteases and neutrophil elastase all combine to

afford a quantifiable difference in mSP-A degradation to result in

an alteration in the phagocytosis of PAO1 and DlasB. However,

the contribution of neutrophil elastase seems less likely because

infections by both PAO1 and DlasB result in similar leukocytic

infiltration. In addition, the loss of LasB function should trigger P.

aeruginosa to overproduce other exoproteases to compensate for the

loss of the former, or at least maintain the secretion of these

exoproteases at the wild-type levels.

It is known that P. aeruginosa has a propensity to reduce the

expression of many virulence factors such as elastase, lipase,

exotoxin A, etc., during chronic infection of CF airways [33]. In

contrast, many of these clinical CF isolates overproduced alginate, a

major polysaccharide capsule, resulting in a mucoid phenotype.

Mucoid P. aeruginosa are more resistant to phagocytosis. Previously,

it was shown that LasB plays a role in the biosynthesis of alginate

[62]. Overexpression of LasB in both mucoid and non-mucoid P.

aeruginosa cells, stimulates alginate synthesis [62]. Mechanistically,

this is achieved by a genetic rearrangement that triggers mucoidy in

P. aeruginosa, which also allows retention of elastase in the periplasm

in an active oligomeric form. The LasB cleaves the 16 kDa form of

nucleoside diphosphate kinase (Ndk) to a truncated 12 kDa form.

Processed NdK is important for the generation of GTP required for

alginate synthesis [62]. Thus, the loss of LasB may negatively affect

alginate production, resulting in increased susceptibility to SP-A-

mediated opsonization. Even though we cannot rule out this

possibility, we predict that the effect of alginate is minimal since it is

only present in limited amounts in non-mucoid P. aeruginosa.

Collectins, including SP-A, frequently bind and aggregate

microbes. Aggregated microorganisms are phagocytized at higher

efficiency [2,3,7,16]. van Rozendaal et al reported that SP-D

inhibits protein synthesis and hyphal outgrowth in Candida albicans

[63]. These authors speculated that inhibition of protein synthesis

was an indirect consequence of fungal aggregation restricting

access of the organisms to essential nutrients. Undoubtedly,

aggregation of DlasB mutant bacteria but not wild-type PAO1 at

late stages of infection promotes more efficient clearance of the

former. We are currently determining whether aggregation of

DlasB bacteria is limiting access to nutrients.

One unresolved issue regarding our study is the relative

contribution of SP-A versus other pulmonary innate immunity

proteins in controlling P. aeruginosa infection. As we have discussed,

exposure to SP-A increases the phagocytosis of P. aeruginosa by 2-3

fold, and that at late stages of acute pneumonia infection, the DlasB

mutant bacteria are phagocytized better than the wild-type PAO1

because of the latter’s ability to degrade mSP-A. However, it was

likely that a 2-3 fold increase in phagocytosis would not have

accounted for ,100 fold increase in the clearance of DlasB mutant

bacteria. ELISA assays indicated that the levels of neutrophil and

macrophage chemotactic chemokines CCL5 and MCP1 in the

mouse lungs infected by PAO1 versus DlasB were not significant

different, suggesting that these chemokines were not susceptible to

degradation by LasB. However, additional experiments suggest that

LasB is also a major exoprotease that degrades lysozyme, which is

known to have antimicrobial activities [57]. Thus, we cannot rule

out that a synergistic or additive role of various pulmonary innate

immunity proteins, which are susceptible to LasB degradation, may

Figure 8. The DlasB mutant bacteria are more susceptible to SP-
A-mediated opsonization in vivo. (A) SP-A+/+ mice were intranasally
infected with 16107 of wild-type P. aeruginosa PAO1 or DlasB bacteria.
At each time interval, infected mice (n = 5) were lavaged for
macrophages and infiltrating leukocytes. Cells were centrifuged,
washed and the engulfed bacteria were enumerated by gentamicin
exclusion assay. Changes in bacterial phagocytosis were calculated
based on the number of intracellular PAO1. The mean + standard
deviation is shown. *p,0.01 when comparing the number of
internalized DlasB bacteria against PAO1 bacteria. (B) Leukocyte profiles
in mouse lungs infected with PAO1 or DlasB bacteria. Macrophages and
neutrophils within BAL fluids were determined using antibody specific
against each cell type by using flow cytometry. (C) Profiles of
macrophage and neutrophil chemotactic chemokines CCL5 and MCP1
in mouse lungs infected with PAO1, DlasB or PDO240lasB bacteria.
doi:10.1371/journal.pone.0027091.g008
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have contributed to removal of DlasB mutant bacteria. We are

currently examining in detail the susceptibility of these pulmonary

innate immunity proteins to LasB.

In conclusion, our study demonstrates that DlasB mutant is

unable to degrade mSP-A. This leads to more efficient clearance

by SP-A-mediated opsonization in infected mouse lungs. Thera-

peutic strategies aiming at inactivating the activity of this

exoprotease may enhance the clearance of P. aeruginosa, and

reduce the morbidity and mortality during lung infections

mediated by this versatile pathogen.

Materials and Methods

Chemicals
All chemicals were purchased from Sigma Chemical Co. (St.

Louis, MO), unless stated otherwise.

Bacterial strains, media and growth conditions
The parental wild-type P. aeruginosa PAO1 strain was originally

obtained from Dr. Michael Vasil as previously described [22,27,64].

The LasB-deficient mutant PDO240 (DlasB) was derived by gene

replacement by McIver et al [65] in the same PAO1 strain. The

genetically-complemented strain PDO240LasB was derived by

transforming the DlasB mutant with the plasmid pKSM3 carrying

a copy of the wild-type lasB gene [38]. Bacterial strains were grown

in Luria-Bertani Broth (LB) for 16 hr at 37uC, resuspended in LB

with 20% glycerol and frozen in aliquots at -80uC. Before each

experiment, bacteria were cultured from frozen stocks in LB with or

without antibiotics to stationary phase (OD600nm < 3.0). Bacterial

density was determined spectrophotometrically and was correlated

with numbers of viable bacteria by colony-forming units (cfu) after

plating serial dilutions on agar plates. When required, antibiotics

were used at the following concentrations: for P. aeruginosa,

carbenicillin (300 mg/ml), gentamicin (30 mg/ml), spectinomycin

(100 mg/ml), tetracycline (60 mg/ml); for Escherichia coli DH5a (66),

carbenicillin (100 mg/ml) and tetracyclin (20 mg/ml).

Murine macrophage cell line
Murine RAW 264.7 macrophages (ATCC #TIB-71) were

maintained in DMEM supplemented with 10% FBS, and 1%

streptomycin and penicillin, respectively, at 37uC in the presence

of 5% CO2.

Purification of human SP-A
Human SP-A was purified from the lung washings of patients

with alveolar proteinosis as previously described [67]. Pure hSP-A

samples were stored in membrane permeabilization buffer (5 mM

Tris, 150 mM NaCl, pH 7.4) at -20uC. The preparations were

deemed free of EDTA by a modified spectrophotometric assay,

using ß-phenanthrolene–disulfonic acid as the indicator [68].

Figure 9. The DlasB mutant bacteria are more susceptible to SP-A-mediated aggregation in vivo. (A) In vitro aggregation of GFP-
expressing wild-type P. aeruginosa PAO1 or DlasB bacteria co-incubated with hSP-A and observed under fluorescent microscopy. (B) In vivo
aggregation of GFP-expressing wild-type P. aeruginosa PAO1 or DlasB (arrows) bacteria lavaged from mouse lungs 18-hr post-infection (n = 5)
observed under FLUOVIEW FV300 confocal microscope.
doi:10.1371/journal.pone.0027091.g009
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Protein assays
Protein concentrations were routinely determined by the

bicinchoninic acid protein assay kit (BCA; Pierce Chemical Co.,

Rockford, IL, USA), using bovine serum albumin (BSA) as a

standard. Protein samples were resolved on 8–16% SDS-PAGE

gel and stained with Coomassie blue or silver nitrate.

Animal husbandry
Swiss Black SP-A-/- mice, a gift of J. Whitsett/T. Korfhagen,

were derived from embryonic stem cells after disruption of the

mouse SP-A gene by homologous recombination and were

maintained by breeding with Swiss Black mice [69]. The SP-A

null allele was backrossed into the C3H/HeN genetic background

through nine generations [25]. C3H/HeN control (SP-A+/+) mice

were purchased from Harlan Laboratory (South Easton, MA). All

comparisons made with the SP-A-/- mice were with age- and strain-

matched C3H/HeN controls. All animals were housed in positively

ventilated microisolator cages with automatic recirculating water

located in a room with laminar, high efficiency particulate-filtered

air. The animals received autoclaved food, water, and bedding.

Mice were handled in accordance with approved protocols through

the Institutional Animal Care and Use Committee at the University

of Illinois at Urbana-Champaign.

Mouse infection
Single intranasal infections of SP-A+/+ and SP-A-/- mice (groups

of 4-8) were performed with 16107 of PAO1, DlasB or

PDO240LasB bacteria as we have previously published

[22,26,27]. After 18 hr, mouse lungs (n = 5) were harvested for

bacterial enumeration, or broncho-alveolar lavaged (BAL) for

proteins used in western blots or membrane permeabilization

analyses (n = 5-8). Virulence attenuation was defined as the log10

difference in CFU of various P. aeruginosa bacteria recovered from

the lung tissues of SP-A+/+ versus SP-A-/- mice.

BAL
BAL was performed on P. aeruginosa-infected mice (n = 5) as we

have previously described [22,27]. The trachea was exposed and

Figure 10. Lysozyme-degrading ability is reduced inDlasB mutant bacteria in vitro and in vivo. (A) Chicken lysozyme (5 mg) was incubated
with 16108 PAO1, DlasB or PDO240LasB bacteria for the indicated time intervals. Lysozyme degradation was assessed by western blot analyses using
10 ml of lysozyme/bacterial suspension. (B) Elastase deficient DlasB mutant is attenuated in the degradation of mouse lysozyme during lung infection.
BAL fluids from Fig. 5C were used for western blot analyses. (C) Densitometry quantification of chicken lysozyme degradation in A. (D) Densitometry
analysis of lysozyme degradation by PAO1, DlasB and PDO240lasB in mouse lungs 18 hr post-infection. The amounts of remaining mouse lysozyme in
DlasB were set to the value of 100%. *p,0.05 when compared with the amount of lysozyme in BAL fluids from lungs infected with PAO1 or
PDO240lasB against BAL fluids from DlasB-infected mice.
doi:10.1371/journal.pone.0027091.g010
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intubated with a 1.7-mm outer diameter polyethylene catheter.

BAL was performed by instilling PBS in 361 ml aliquots per

mouse. In some experiments, the BAL samples were pooled for

membrane permeabilization assays.

Flow cytometry of mouse lung leukocytes
BAL fluids from P. aeruginosa-infected mice (n = 5) were

centrifuged and resuspended in flow cytometry staining buffer.

Cells were pre-incubated with anti-mouse CD16/CD32 (cat#: 14-

0161, eBioscience, San Diego, CA) for 20 minutes on ice prior to

staining to block non-specific Fc-mediated interactions. Mouse

macrophages were labeled with primary antibody anti-mouse F4/

80-PE (cat#: 12-4801-80, eBioscience). Mouse neutrophils were

labeled with anti-mouse Ly-6G-FITC (cat#: 11-5931-81,

eBioscience). Flow cytometric acquisition was performed using a

C6 flow cytometer (Accuri, Ann Arbor, MI) and analyzed with

CFlow Plus version 1.0.

Membrane permeabilization assays
The effect of SP-A on the cell membrane integrity of P.

aeruginosa and E. coli DH5a was assessed by determining

permeability to a phosphatase substrate, Enzyme-Labeled Fluo-

rescence 97 (ELF-97) (Molecular Probes, Carlsbad, CA), as we

have previously described [22,26,27]. hSP-A (50 mg/ml) or mouse

BAL fluids (50 mg total protein) was incubated with 16108

stationary phase P. aeruginosa or E. coli bacteria/ml in 100 ml of

membrane permeabilization buffer for 15 min at 37uC, and

100 mM ELF97 phosphatase substrate was added. Fluorescence

was measured at excitation and emission wavelengths of 355 and

535 nm, respectively, for 90 - 120 min.

Exoprotease assays
Exoprotease activities were determined by the SensolyteTM Red

Protease Assay Kit (AnaSpec Inc, San Jose, CA, Cat # 71140)

using cell-free supernatants of stationary phase cultures from P.

aeruginosa PAO1, DlasB or PDO240LasB grown in LB.

In vitro hSP-A and lysozyme degradation assays
P. aeruginosa strains PAO1, DlasB or PDO240LasB bacteria were

cultured in LB overnight to late stationary phase. hSP-A (25 mg) or

chicken lysozyme (5 mg) was added to 16108 P. aeruginosa cells

resuspended in 250 ml of fresh LB supplemented with 2 mM

CaCl2 in the presence or absence of 0.6 mM ZnCl2. At indicated

time intervals, a 10 ml aliquot of each bacterial-SPA mixture or

cell-free supernatants was mixed with loading buffer for SDS-

PAGE and Western blot analysis.

Western blot
Western blot analyses were performed using standard protocols

[70]. Briefly, protein samples of hSP-A, mouse BAL fluids, P.

aeruginosa bacteria or culture supernatants were resolved by SDS-

PAGE and electro-blotted onto Immobilon P polyvinylidene

difluoride membranes (Millipore, Bedford, MA). The membranes

were then incubated for 60 min at room temperature in blocking

solution (PBS containing 3% BSA), followed by a 4-hr incubation

with polyclonal antibody against hSP-A and mSP-A (Santa Cruz

Biotecnology Inc, Santa Cruz, CA), a polyclonal antibody against

chicken and mouse lysozymes [57], or with a polyclonal antibody

against LasB [38,39]. The membranes were hybridized with

horseradish peroxidase-conjugated goat anti-mouse IgG secondary

antibody. Immune complexes were visualized using the ECL Western

Blotting Detection System (Amershan Biosciences, Piscataway, NJ)

and Kodak BIOMAX (Kodak, Rochester, NY) X-ray films.

In vitro phagocytosis assays
For in vitro phagocytosis experiments, approximately 16106

RAW 264.7 macrophages were plated on 6-well tissue culture

plates overnight. Macrophages were exposed to 107 P. aeruginosa

cells in the presence of intact hSP-A (10–50 mg/ml), or to a

mixture of 16107 P. aeruginosa bacteria and (20 mg/ml) hSP-A that

had been incubating for 1, 6, 12 or 18 hr. After 1 hr of infection,

monolayer cells were washed 3 times with PBS and incubated with

DMEM containing 100 mg/ml gentamicin for 1 hr to kill off

extracellular bacteria [69]. Cells were washed again to remove

gentamicin, and lysed with 0.5% Triton X-100. The intracellular

bacteria were serial diluted for cfu enumeration on agar plates.

In vivo phagocytosis assays
For in vivo phagocytosis assays, 16107 P. aeruginosa bacteria were

intranasally inoculated into the lungs of SP-A+/+ mice (n = 5).

Infected lungs were BAL at indicated time intervals with PBS to

obtain alveolar leukocytes. BAL samples were centrifuged and

washed three times with PBS. Leukocytes were treated with

DMEM containing 100 mg/ml gentamicin for 1 hr to kill off

extracellular bacteria. The bacteria that were internalized by

phagocytes were enumerated using the gentamicin exclusion

assays.

Bacterial aggregation assays
The susceptibility of the wild-type P. aeruginosa PAO1 and DlasB

mutant bacteria to aggregation by SP-A was assessed by

aggregation assay. Briefly, 16107 stationary phase P. aeruginosa

bacteria transformed with pUC19-GFP were incubated with hSP-

A (20 mg/ml) in 500 ml of DMEM medium supplemented with

2 mM CaCl2. The mixtures were rotated at 37uC for 60 min at

120 rpm. Each mixture (10 ml) was spotted on slides and observed

under LEICA DMI4000 fluorescent microscope. The number of

bacterial clusters was enumerated from 10 independent fields

under 10x magnification, in three independent experiments. For ex

vivo aggregation, mouse lungs of SP-A+/+ mice (n = 5) infected with

16107 wild-type P. aeruginosa PAO1-GFP or PDO240-GFP

(Table 1) were lavaged at 18 hr post infection. Bacterial aggregates

within BAL fluids were observed directly under FLUOVIEW

FV300 confocal microscope.

ELISA assays
Protein levels of chemokines CCL5 and MCP1 in BAL or lung

homogenates were determined by ELISA according to the

manufacturer’s protocols (Invitrogen, Carlsbad, CA).

Statistical analyses
Statistical analysis was performed using the Student’s t-test and

one-way analyses of variance (ANOVA). A significant difference

was considered to be p,0.05.

Supporting Information

Figure S1 SP-A-degrading ability is reduced in DlasB
mutant bacteria in vitro. (A) hSP-A (25 mg) was incubated

with 16108 PAO1, DlasB or PDO240LasB bacteria in LB

supplemented with 0.6 mM ZnCl2 for the indicated time intervals.

hSP-A degradation was assessed by western blot analyses using

10 ml of SP-A/bacterial suspension. Image from one of the three

independent experiments is shown. (B) hSP-A degradation P.

aeruginosa strains in the absence of ZnCl2. Immunoblots were

probed with anti-SP-A antibody.

(TIF)
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