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Insects are arguably the most successful group of animals in the world in terms of both
species numbers and diverse habitats. The sesquiterpenoids juvenile hormone, methyl
farnesoate, and farnesoic acid are well known to regulate metamorphosis, reproduction,
sexual dimorphism, eusociality, and defense in insects. Nevertheless, different insects
have evolved with different sesquiterpenoid biosynthetic pathway as well as products.
On the other hand, non-coding RNAs such as microRNAs have been implicated in
regulation of many important biological processes, and have recently been explored
in the regulation of sesquiterpenoid production. In this review, we summarize the latest
findings on the diversity of sesquiterpenoids reported in different groups of insects, as
well as the recent advancements in the understanding of regulation of sesquiterpenoid
production by microRNAs.
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DIVERSE BIOSYNTHETIC PATHWAYS AND TYPES OF INSECT
SESQUITERPENOIDS

In insects and crustaceans, sesquiterpenoid hormones including farnesoic acid (FA), methyl
farnesoate (MF) and juvenile hormone (JH) regulate the development, metamorphosis and
reproduction (Cheong et al., 2015). The beginning step in the biosynthesis of the sesquiterpenoids
starts from acetyl-CoA which goes through the universal eukaryotic mevalonate (MVA) pathway
to synthesize farnesyl pyrophosphate (FPP) (Tobe and Bendena, 1999; Belles et al., 2005; Hui et al.,
2010, 2013). In the presence of FPP pyrophosphatase, FPP is then converted to farnesol and can
further generate farnesal with the catalyzation by farnesol dehydrogenase. Farnesoic acid (FA) will
then be generated via further dehydrogenation with farnesal dehydrogenase in different insects.
A summary of the sesquiterpenoid biosynthetic pathway is shown in Figure 1.
Despite all insects utilizing a common biosynthetic pathway in the production of FA, diverse
pathways have evolved in the downstream process of sesquiterpenoids production. For insects
in the order blattodea, coleoptera, diptera, and orthoptera, esterification of FA occurs in the
corpora allata (CA), which will form MF catalyzed by a SAM-dependent juvenile hormone acid O-
methyltransferase (JHAMT) (Shinoda and Itoyama, 2003). In insects such as cockroaches (Huang
et al., 2015), honeybees (Bomtorin et al., 2014), locusts (Marchal et al., 2011), and pea aphids
(Daimon and Shinoda, 2013), MF is oxidized by epoxidase CYP15A1 in formation of JH-III
(Figure 1). Direct applications of FA on fruit flies increased the biosynthesis of MF and JH-III in
both larval and adult stages, while JHB3 biosynthesis is inhibited in larvae (Bendena et al., 2011).
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FIGURE 1 | Diverse biosynthetic pathways of juvenile hormones in insects.

TABLE 1 | Different types of juvenile hormones isolated from hexapods.

Type of JH Chemical structure Insects Tissue extracted References

JH-0 Lepidopterans EG Bergot et al., 1980

JH-I LE, EG Röller et al., 1967

JH-II LE, EG Meyer et al., 1968

4-Methyl JH-I EG Bergot et al., 1981

JH-III All insects CA Judy et al., 1973

JHB3 Dipterans CA Richard et al., 1989

JHSB3 Hemipterans CA Kotaki et al., 2009

CA, corpora allata; EG, egg; LE, lipid extract.

Moreover, diverse biosynthetic pathways for production of JH-
III have also been identified in other insects (Figure 1). For
instance, in the coleopterans such as beetles, CYP15A1 can
first oxidize FA to form JH-III acid, followed by methylation
with JHAMT resulting in the formation of JH-III (Minakuchi
et al., 2015; Jiang et al., 2017); while in lepidopterans, the

conversion of FA to JH-III acid is performed with another
epoxidase CYP15C1 followed by subsequent methylation by
JHAMT (Daimon et al., 2012; Figure 1). Furthermore, different
sesquiterpenoid products have also been identified in various
types of insects (Figure 1 and Table 1). In the dipterans
including flies, JH-III bisepoxide (JHB3) has been identified
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(Richard et al., 1989). In the hemipterans like the stinkbugs,
JH-III skipped bisepoxide (JHSB3) is formed (Kotaki et al.,
2009); and in the lepidopterans such as moths, specific JH
homologs including JH-I, JH-II, JH-0, and 4-methyl JH-I are
produced (Belles et al., 2005; Figure 1 and Table 1). It is worth
mentioning that JH-I is found in the male accessory glands
of the cecropia moth, and whether it performs the suspected
hormonal function remains unknown (Paroulek and Sláma, 2014;
De Loof and Schoofs, 2019).

DIVERSE ROLES OF
SESQUITERPENOIDS IN INSECTS

Regulation of Metamorphosis
A special feature of insects is that they have evolved with distinct
modes of metamorphosis, including hemimetaboly (incomplete)
and holometaboly (complete) (Sehnal et al., 1996). These
biological events are collectively controlled by sesquiterpenoids
that inhibit metamorphosis, and ecdysteroids such as 20-
hydroxyecysone (20E) that trigger metamorphosis (Konopova
et al., 2011; Liu et al., 2018; Niwa and Niwa, 2014a,b). In
general, sesquiterpenoid inhibits ecdysteroids action, and when
their biosynthesis in the CA is suppressed via the inhibition of
JHAMT and 3-hydroxy-3-methylglutaryl Coenzyme-A reductase
(HMGR), metamorphosis can then occur (Cheong et al., 2015;
Liu et al., 2018; Qu et al., 2018). An overview is shown in Figure 2.

In the best studied holometabolous insect, the fly Drosophila
melanogaster, sesquiterpenoids exert status quo function to
prevent metamorphosis in the early larval stage (Cheong et al.,
2015; Qu et al., 2018). Sesquiterpenoids JH-III, JHB3, and their
immediate precursor MF can all bind to the C-terminal of the
intracellular receptor Methoprene-tolerant (Met) or its paralog
named Germ-cell expressed (Gce) in Drosophila, which encodes
a transcription factor of the bHLH-PAS family (Ashok et al.,
1988; Jindra et al., 2015; Wen et al., 2015). The binding affinities
of sesquiterpenoids to Gce are differ with a rank order of JH-
III > JHB3 > MF which is in line with their developmental
potency (Bittova et al., 2019). After the binding of JH with
Met or Gce in formation of a functional complex, another
bHLH-PAS protein that acts as the steroid receptor co-activator
[Taiman (Tai)] in D. melanogaster or SRC in other insect species
is recruited, which together binds to the specific JH response
element (JHRE) on the promoter region of Krüppel homolog
1 (Kr-h1) to activate transcription (Kayukawa et al., 2012; Qu
et al., 2018). Previous studies have demonstrated that Kr-h1
can transduce the JH signal to repress 20E primary responsive
genes, including ecdysone receptor (EcR), Broad-complex (Br-C),
ecdysone-inducible proteins E75 and E93, which subsequently
inhibit 20E biosynthesis in the prothoracic gland (Kayukawa
et al., 2016; Liu et al., 2018); and can also inhibit the expression of
steroidogenic enzyme gene Spok by binding to the Kr-h1 binding
site (KBS) and turn on the methylation which in turns also leads
to the suppression of ecdysone biosynthesis (Song and Zhou,
2019; Zhang T. et al., 2018; Figures 2, 3).

In other holometabolous insects including beetle Tribolium
castaneum, moths Bombyx mori and Helicoverpa armigera, as
well as hemimetabolous insects including cockroach Blattella

germanica, planthopper Nilaparvata lugens, and stinkbug
Pyrrhocoris apterus and Rhodnius prolixus, Kr-h1 has also
exhibited anti-metamorphic effects (Minakuchi et al., 2009;
Konopova et al., 2011; Lozano and Belles, 2011; Kayukawa et al.,
2017; Li et al., 2018; Zhang W. N. et al., 2018).

During the larval-pupal transition in Drosophila, 20E binds
to EcR proteins and Ultraspiracle (Usp) to form a heterodimer
(Riddiford et al., 2000), and this complex will further trigger
the transcription of 20E primary-response genes including Br-
C, E74, E75, and E93. These downstream genes have been
identified with essential functions in molting. For instances,
E93 enables the larval tissues to execute apoptosis and
promotes the formation of adult tissues (Ureña et al., 2016);
and the Gce/Tai (but not Met/Tai) complex activates E75A
functions in preimaginal molts (Dubrovsky et al., 2011).
In beetle T. castaneum, Met has also proven to bind JH
with high affinity via the highly conserved hydrophobic
pocket within its PAS-B domain (Charles et al., 2011). In
lepidopteran, USP can also bind JH (Dubrovsky, 2005). In
moth Manduca, JP29 isolated from epidermis has also been
suggested as another potential JH receptor, which has found
to be highly specific to JH binding but with low affinity
(Truman and Riddiford, 2002).

Regulation of Reproduction
Apart from repressing metamorphosis in insects,
sesquiterpenoids also play an important role in stimulating
reproduction in adult insects, including processes such as
vitellogenesis, oogenesis and polyploidization (Wyatt and Davey,
1996). In female Drosophila, sesquiterpenoids have long been
known to regulate the oogenesis and vitellogenesis (Postlethwait
and Weiser, 1973; Swevers et al., 2005; Riddiford, 2012). The
titer of JH is promoted with expression of ecdysis triggering
hormone (ETH) binding to its receptor (ETHR) whose synthesis
is governed by 20E (Meiselman et al., 2017; Roy et al., 2018).

Similar but diverse mechanisms have also been discovered
in other insects. In the beetle T. castaneum, JH-mediated Met
and Kr-h1 promote vitellogenin (Vg) synthesis in the fat body
(Parthasarathy et al., 2010; Figure 4Ai), and Met can also trigger
insulin-like peptides (ILPs) ILP2 and ILP3 by AKT pathway
to phosphorylate the fork head transcription factor (FOXO)
and induce Vg expression (Sheng et al., 2011; Figure 4Aii). In
mosquito Aedes aegypti, expression of Kr-h1 triggered by Met
together with Cycle and steroid receptor coactivator SRC/FISC
after adult emergence supported that sesquiterpenoid is essential
for previtellogenic development (Zhu et al., 2010; Shin et al.,
2012). In migratory locust Locusta migratoria, JH together with
Met/SRC complex are found to be pivotal in maintaining Vg
expression and oocyte development (Song et al., 2014), and
can promote cell polyploidization by regulating the expression
of cyclin-dependent kinase 6 (Cdk6) and adenovirus E2 factor-
1 (E2f1) (Wu et al., 2016; Wu Z. et al., 2018; Figure 4Aiii).
JH activates Na+/K+-ATPase for the induction of patency in
vitellogenic follicular epithelium, where Vg can then reach
the surface of maturing oocyte (Jing et al., 2018). In the
stinkbug P. apterus, nevertheless, Vg synthesis is mainly regulated
by JH signaling genes Met and Tai independent of Kr-h1
(Smykal et al., 2014).
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FIGURE 2 | Interaction of sesquiterpenoid juvenile hormone (JH) and ecdysteroid during metamorphosis in holometabolans (A–C) and hemimetabolans (D,E). (A) In
early larval stages of holometabolous insects, JH-Met/Tai receptor complex activates the transcription of primary JH-early responsive gene Kr-h1 which prevents
immature larvae from precocious larval development by inhibiting Br-C, E93, and Spok expression. (B) When JH levels drastically drop in the last larval stage, 20E
acts through EcR/USP to activate the transcription of 20E-early responsive genes such as Br-C, E93, E74, E75, Ftz-f1 and initiate larval-pupal transition. (C) At the
end of the pupal stage, the Br-C levels decline again which upregulates the expression of E93 that drives the pupa-adult transition. In hemimetabolous insect, JH
titer remains high from hatching until the last nymphal stage. (D) During the early nymphal, high Kr-h1 expression level is maintained by JH which inhibits
metamorphosis by repressing E93 expression. (E) In the last nymphal stage, the JH titers fall followed by the Kr-h1 expression level. For details, please refer to main
text and Truman, 2019.

In addition, sesquiterpenoids can mediate insect reproduction
under different light conditions. In aphids, reproductive
polyphenism alternates their reproductive modes from
parthenogenesis to sexual reproduction given different
photoperiodic duration. In Acyrthosiphon pisum, enhanced
sesquiterpenoid degradation by juvenile hormone esterase (JHE)
accounts for the lower JH titer during short-day conditions that
produces sexual morphs, in contrast to the higher JH titer in
parthenogenetic morphs during long-day conditions (Ishikawa
et al., 2012; Figure 4B). In beetle Colaphellus bowringi, high
sesquiterpenoid titer upregulates expression of vitellogenin
receptor (VgR) via JH-Met-Kr-h1 signaling and promotes Vg

synthesis and ovary development during short-day period,
while low JH titer initiates reproductive diapause and promotes
lipid storage in the fat body instead of Vg synthesis during the
long-day period (Liu et al., 2016, 2019; Figure 4C).

Sexual Dimorphism and Dimorphic
Behavior
Sexual dimorphism is commonly observed in insects.
Nevertheless, the extreme sexually dimorphic traits of juvenile-
like females without pupation and ephemeral winged males after
a pupal stage in scale insects have raised questions as to how these
features could arise. By transcriptomic and qRT-PCR analyses
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FIGURE 3 | Schematic diagram showing the mechanism of sesquiterpenoids in metamorphosis regulation in Drosophila and other insects. In fly Drosophila, JH-III,
JHB3, and MF will bind to the JH receptor Met or Gce, while in other insects, JH-III will bind to Met in other insects (for details, please refer to text). The complex will
then further dimerize with Tai and bind to specific JHRE to initiate the expression of Kr-h1. Kr-h1 protein will then bind to the KBS to inhibit expressions of 20E
response genes (Br-C and E93), and will also bind to KBS and initiates DNA methylation of a steroidogenic enzyme gene Spok, which will all result in the lower titer of
20E and inhibition of metamorphosis.

FIGURE 4 | Schematic diagram showing the mechanisms of sesquiterpenoids in regulation of insect reproduction. (Ai) The JH-Met-Tai/SRC complex upregulates
Kr-h1 to increase Vg synthesis level, as observed in T. castaneum, A. aegypti (with an additional complex FISC), L. migratoria but not in P. apterus. (Aii) The
JH-Met-Tai complex initiates transcriptions of ILP2 and ILP3, which phosphorylates the fork head transcription factor (FOXO) through ILP signaling pathway and
induces Vg expression in T. castaneum. (Aiii) The JH-Met-Tai/SRC complex promotes expression of core mediators in cell cycle progression, Cdk6 and E2f1, to
facilitate vitellogenesis in L. migratoria. (B) Reproductive polyphenism in aphid A. pisum occurs during the short-day condition given the increased JHE activity, and
the lowering of JH result in the switch from parthenogenesis to sexual reproduction. (C) Repression of reproduction diapause in beetles C. bowringi initiates in
short-day condition where the upregulation of the JH-Met-Kr-h1 pathway genes expression increases Vg synthesis.
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FIGURE 5 | Schematic diagram showing the mechanisms of sesquiterpenoids in regulation of insect sexual dimorphism and dimorphic behavior. (A) In scale insects,
sexual dimorphism of winged male adults is linked to the signaling of JH, Met, Tai/SRC, and Kr-h1, whereas they are increased in early developmental stages but
decreased during the pupal and adult stages. (B) The sexual dimorphic sleeping behavior in Drosophila is maintained by the JH-Gce signal on the fru and sxl genes
in male and female, respectively. fru then encodes Fru for inducing long-sleep pattern in male while sxl induces Tra for short-sleep phenotype in female.

of post-embryonic stages of Ericerus pela, lower Met, Tai, and
Kr-h1 expression levels are found in pupal and adult males as
compared to females. Together with a surge in Br-C expression
in male prepupal stage, the sex-specific regulation lead to the
complete metamorphosis in males but not in females (Yang et al.,
2015; Figure 5A). In another scale insect Planococcus kraunhiae,
qRT-PCR analysis on a daily sampling of different development
stages reveal that expression levels of Kr-h1 are higher in male-
biased embryos and early nymphs, and lower during prepupal
and after pupal stages (Vea et al., 2016). However, elevation of JH
or Met, Tai, and Kr-h1 gene expressions as observed in E. pela is
not found in the adult P. kraunhiae females.

In Drosophila, JH can also control sexual dimorphic behaviors
including locomotory and sleeping activities (Belgacem and
Martin, 2007; Wu B. et al., 2018; Figure 5B). In the presence of JH
by overexpression of JHAMT, longer sleep in males and shorter
sleep in females are observed (Wu B. et al., 2018). Interestingly,
gce mutant male flies sleep less while female sleep more but
mutation in the Met dose not exhibit a similar result (Wu B.
et al., 2018). The binary switch gene sex-lethal (Sxl) can impose
female development via promoting expression of fruitless (fru),
doublesex (dsx), and transformer (tra). Male development occurs
when sxl is turned off (Kappes et al., 2011). In the jhamt and
gce mutant, Fru, sxl, and tra transcript level were almost halved.
Decreasing sleep time occurred when fru in male flies and when
female tra was expressed in Fru neurons of males, suggesting
JH-Gce signaling can potentially act as a regulatory pathway in
sexually dimorphic sleep pattern (Wu B. et al., 2018).

Eusociality
Some insects such as ants, bees, termites and wasps are well
known for their eusociality in which they live cooperatively

in a colony and only some individuals are reproductive. Such
processes have also been linked to JH.

Across ant species, the effects of JH act with different eusocial
complexity (Figure 6A). For ants with simple, queenless societies,
e.g., Streblognathus and Diacamma, low JH titer is recorded in
the gamergates with high individual ranks within the hierarchy,
and elevated JH level result in a loss of the reproductive
status of the alpha workers (Sommer et al., 1993; Cuvillier-
Hot et al., 2004; Brent et al., 2006). For species that have
secondarily revert to queenless, simple societies, e.g., Dinoponera
quadriceps, JH application can increase the regressed ovaries in
queenless ants (Norman et al., 2019). For ants with complex
society such as Pogonomyrmex rugosus, JH analogs (methoprene)
stimulate the production of queens and upregulate Vg gene
expression. The effect of JH in ants is interpreted as mimicking
the effect of hibernation (Libbrecht et al., 2013), where low
temperature or the associated photoperiod changes up-regulate
the insulin/insulin-like growth factor signaling pathway (IIS)
genes in queens. No direct result has proven the relationship
of IIS and JH in ants to date, and yet, the production of JH
in the CA is affected by the release of neuropeptides regulated
by IIS in Drosophila (Tu et al., 2005). JH may also directly
or indirectly regulate of caste polyethism via changing the
division of labor and maternal effects. Elevated JH titer can
alter the behavior of workers of Acromyrmex octospinosus leaf-
cutting ants by making them more active, threat responsive,
and less interested in intranida works such as taking care
of larva and fungal cultivation (Norman and Hughes, 2016).
During the maternal stage of Pogonomyrmex harvest ants,
additional JH also resulted in a 50% increase in worker body
size and significantly reduced in total number of progeny reared
(Cahan et al., 2011).
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FIGURE 6 | Schematic diagram showing the mechanisms of sesquiterpenoids in regulation of insect eusociality. (A) The effect of JH on reproduction and polyethism
in ants. The elevation of JH represses ovary development in simple, queenless societies but promotes queen production and vitellogenin expression in complex
societies. JH also induces threat responsiveness and reduces interest in intraida works in ants, and may also increase their body size. (B) The effect of JH on
reproduction and polyethism in wasps. JH generally stimulates the production of queens and ovary development, and mediates cuticular hydrocarbon blend
resembling reproductive status in young workers of swarm-founding wasps. Besides, JH triggers the guarding and foraging behavior. (C) The queen releases QMP
which downregulates JH and Kr-h1 and thus inhibits ovary development of workers and the transition from in-hive worker to forager in bees. (D) The increase of JH
in JH-Met signaling pathway induces TGFβ and 20E signals that promote the modification molts from worker to soldier in the sterile caste of termite Z. nevadensis.

FIGURE 7 | Schematic diagram showing the potential involvement of juvenile hormone in regulation of insect defensive toxin production. The metabolism of JH-III
through its degradation pathway by JHE and JHEH is essential for the biosynthesis of the defensive toxin cantharidin in blister beetles.

Similarly, JH also appears to have different effects on wasp
species with various eusociality (Figure 6B). Previous studies
indicated JH could modulate age polyethism and promote the
production of foragers in highly eusocial species such as Polybiine
wasps (O’Donnell and Jeanne, 1993; O’Donnell, 1998), and could
mediate both age polyethism (Shorter and Tibbetts, 2009) and
reproductive division of labor in primitively eusocial species such
as Polistes. Application of JH analog methoprene promotes the
onset of guarding behavior, the number of foraging females,
and stimulates the production of queens (Barth et al., 1975;
Röseler et al., 1980, 1984, 1985; Lozano et al., 2015; Giray et al.,
2005). Nevertheless, in other primitive eusocial species such as

Ropalidia marginata that has both post-imaginal regulation of
reproductive division of labor and age polyethism, JH could only
accelerate ovarian development but not age polyethism (Agrahari
and Gadagkar, 2003). For caste-flexible swarm-founding wasp
Synoeca surinama, JH functions as gonadotropin and directly
modifies the cuticular hydrocarbon blend of young workers to
resemble that of a reproductive one but does not necessarily link
to dominance behavior (Kelstrup et al., 2014).

It is worth also noting that the response to JH could
be different among members of the same colony. In Polistes
canadensis, the effect of JH on ovaries are different between
queens and workers as a potential trophic advantage of the queens
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FIGURE 8 | Canonical microRNA biogenesis pathway in Drosophila (the figure is summarized from Bartel, 2004; Denli et al., 2004; Kim et al., 2009; Iwasaki et al.,
2010; Cao et al., 2017; Qu et al., 2018).

over the workers (Giray et al., 2005), while in Polistes dominulus
where queens nest cooperatively with other queens, JH has a
stronger effect on the dominance, fertility, and aggressiveness
of large queens (Tibbetts and Izzo, 2009; Tibbetts et al., 2011,
2018). In species Polistes metricus with non-cooperative nest-
founding queen pattern, JH leads to an increase of fertility for
all individuals, but among the cooperative workers, large workers
increase their fertility in response to JH more while small workers
do not (Tibbetts and Sheehan, 2012).

In honeybees Apis mellifera, repression of ovary development,
of in-hive workers, were induced by the downregulation of Kr-
h1 expression controlled by the queen’s release of mandibular
pheromone (QMP) (Grozinger and Robinson, 2007; Figure 6C).
In methoprene (JH analog)-treated workers, Kr-h1 expression
is no longer repressed by QMP suggesting an antagonistic
relationship between sesquiterpenoids and QMP. In addition, the
transition of working to foraging behavior were also found to link
to a higher JH titer and Kr-h1 level (Grozinger and Robinson,
2007). On the other hand, in the bumblebee Bombus terrestris,
similar to the honeybee mentioned above, QMP reduces Kr-h1
level but the difference in Kr-h1 expression between the working
and foraging bees are not significant (Shpigler et al., 2010).
However, among a group of queenless workers, the dominant
individuals have a higher Kr-h1 expression with active ovaries
whereas subordinate individuals have a downregulated Kr-h1
expression level with undeveloped ovaries (Shpigler et al., 2010).
These studies highlighted the possible roles of sesquiterpenoids
in the eusociality in bees.

In termites, eusociality is maintained through differentiation
into reproductive caste and sterile soldier caste, in which
a higher JH titer induces differentiation of workers via an
intermediate presoldier stage to become sterile soldiers (Roisin,
1996). Transcriptomic and RNA interference (RNAi) analyses
in three molting stages (worker, presoldier and soldier) of

termite Zootermopsis nevadensis show that the JH-Met and
transforming growth factor beta (TGFβ) pathways are involved
in the ecdysteroid synthesis for molting in soldier formation
(Masuoka et al., 2018; Figure 6D). However, suppression on
Kr-h1 via RNAi has no effect on JH analog induced molting,
demonstrating that the molting effect mainly depends on JH-
Met induced pathways (Masuoka et al., 2018). This in turn also
suggested that JH may alternatively promotes molting instead of
solely inhibiting metamorphosis.

Defense
Terpenes in plants have been the major focus on the
understanding the plant defense against the insects, and the role
of sesquiterpenoids in insect defense has also been documented
in a much lesser extent when comparing to the aforementioned
roles. In blister beetles, sesquiterpenoid cantharidin is produced
and released as a defensive toxin during disturbance (Carrel et al.,
1993). Transcriptomic analyses on Mylabris cichorii identified
that the mevalonate pathway in synthesis of JH is correlated
with the cantharidin biosynthesis (Huang et al., 2016). In
another blister beetle Epicauta chinensis, RNAi knockdown of
CYP15A1 and JH epoxide hydrolase (JHEH) result in inhibition
of cantharidin biosynthesis, suggesting degradation of JH-III is
essential in producing potential precursors of cantharidin (Jiang
et al., 2017; Figure 7).

MicroRNA REGULATIONS ON
SESQUITERPENOIDS

Non-coding RNAs such as microRNAs (miRNAs) have been
implicated in regulation of many important biological processes
(Lucas and Raikhel, 2013; Wang et al., 2014; Yang et al.,
2014; Cao et al., 2017; Qu et al., 2018). In canonical
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TABLE 2 | Published studies of potential microRNA regulators on insect sesquiterpenoid pathway genes.

Species Target miRNA Validation methods References

Ae. aegypti HMGR miR-31–5p In silico prediction Nouzova et al., 2018

PP-MevD Bantam-3p, miR-34-5p In silico prediction

ALDH miR-34–5p In silico prediction

FPPS miR-9a-5p, miR-317-3p In silico prediction

An. gambiae JHAMT miR-278 In vitro Qu et al., 2017

Met miR-8, miR-14, miR-34, miR-278 In vitro

Dr. melanogaster JHAMT Bantam In vivo

JHAMT miR-252, miR-304 In vitro

Gce Let-7, miR-8, miR-14, miR-34, miR-278, miR-304 In vitro

Tr. castaneum JHAMT bantam, miR-252a, miR-304, let-7, miR-92b In vitro

Met miR-92b In vitro

Met miR-6-3p, miR-9a-3p, miR-9d-3p, miR-11-3p, miR-13-3p,
miR-13a-3p, miR-2944a-3p, miR-2944b-3p,
miR-2944c-3p, miR-3804a-5p, miR-3893-3p

In silico prediction Wu et al., 2017

Kr-h1 miR-6-3p, miR-9a-3p, miR-11-3p, miR-13-3p,
miR-13a-3p, miR-2548-3p, miR-2944a-3p, miR-2944b-3p,
miR-2944c-3p, miR-31a, miR-31b-5p, miR-31c-5p,
miR-3893-3p, miR-6531-5p

In silico prediction

Lo. migratoria Kr-h1 Let-7, miR-278 In vivo Song et al., 2018

Bl. germanica Kr-h1 miR-2 family (miR-2, miR-13a, and miR-13b) In vivo Lozano et al., 2015

Da. pulex JHAMT Bantam, miR-92, miR-252b In vitro Qu et al., 2017

Met Bantam, miR-278 In vitro

N. denticulata JHAMT Bantam, miR-92, miR-252 In vitro

Met miR-8, miR-34, miR-278 In vitro

S. maritima JHAMT Let-7, miR-34, miR-252, miR-278 In vitro

Ta. tridentatus JHAMT Bantam, let-7, miR-34, miR-92, miR-278 In vitro

Met Bantam, let-7, miR-8, miR-34, miR-252 In vitro

For details, please refer to the text.

FIGURE 9 | MicroRNA bantam regulates JH titer via targeting JHAMT in D. melanogaster. Up-regulation of bantam repressed expression of JHAMT and reduced
the titer of JH III and JHB3, which resulted in dead pupa and male genital defects.

miRNA biogenesis pathway in insects (Figure 8), primary
miRNA transcript (pri-miRNA) is first transcribed from
miRNA gene by RNA polymerase II, followed by processing
by Drosha with the help of partner Pasha to generate
the precursor miRNA (pre-miRNA) (Denli et al., 2004;
Kim et al., 2009). Transported from nucleus to cytoplasm
with the help of Exportin-5 and RAN-GTP, pre-miRNA

is further processed by Dicer and Loquacious to produce
miRNA/miRNA∗ duplex, which will be loaded into the
Argonaute (Ago) by HSP70/HSP90 chaperone machinery to
form mature RNA-induced silencing complex (RISC) after
strand selection (Bartel, 2004; Kim et al., 2009; Iwasaki
et al., 2010). Recently, miRNAs have been explored in
the regulation of sesquiterpenoids. In Blattella germanica,
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silencing the expression of Dicer-1 shows that miRNAs regulation
is related to metamorphosis (Gomez-Orte and Belles, 2009), and
treatment of methoprene on Drosophila S2 cells also reveal the
differential expression of miR-34, miR-100, miR-125, and let-7
(Sempere et al., 2003).

In many insects, miRNAs have also been found to potentially
regulate different sesquiterpenoid pathway genes (Table 2).
For instances, in mosquito A. aegypti, four JH biosynthetic
enzyme genes including 3-hydroxy-3-methylglutaryl-coenzyme
A reductase (HMGR), diphosphomevalonate decarboxylase
(PP-MevD), aldehyde dehydrogenase (ALDH), and farnesyl-
pyrophosphate synthase (FPPS) were in silico predicted to be
potentially regulated by miRNAs (Nouzova et al., 2018). In
addition, in the adult female mosquito, mosquito specific miR-
1890 targets JH-controlled chymotrypsin-like SP, JHA15 that
involve in the regulation of blood digestion, ovary development
and egg deposition (Lucas et al., 2015).

In T. castaneum, developmental defects and lethality are
observed after knocking down Dcr-1 and Ago-1, and in silico
prediction showed that putative JH receptor Met and JH-
inducible transcription factor Kr-h1 were targeted by 11 miRNAs
and 14 miRNAs respectively (Wu et al., 2017).

In L. migratoria, Ago-1-dependent miRNAs are involved in
oogenesis (Song et al., 2013), with let-7 and miR-278 caused
decrease of yolk protein precursors results in defects of ovarian
development and oocyte maturation through Kr-h1 (Song et al.,
2018), and application of miR-2/13/71 agomiR leads to inhibition
of oocyte maturation and ovarian growth whilst the expression
level of this miRNA cluster could be decreased to achieve
vitellogenesis and oogenesis (Song et al., 2019).

In B. germanica, expression of Dicer-1 whose depletion
causes sterile females, is negatively related to JH levels,
indicating the important roles of miRNAs and interaction
between miRNAs and JH in oogenesis (Tanaka and Piulachs,
2012). Specifically, treatment with miR-2-inhibitor on last instar
resulted metamorphic defects, and treatment with miR-2 mimic
on the Dicer-1-depleted juvenile can complete metamorphosis
from nymph to adults (Lozano et al., 2015).

In order to strengthen ability of adaptation, brown
planthoppers, Nilaparvata lugens, shows polyphenism with two

phenotypes, long-winged and short-winged morphs. miR-34,
whose expression level can be upregulated or downregulated
by JH and 20E, respectively, can target insulin receptor-1 to be
involved in the modulation of wing polyphenism (Ye et al., 2019).

In H. armigera, 20E and JH are involved in the control of
climbing behaviors of single nucleopolyhedrovirus (HaSNPV)
infected larvae. Methoprene treatment decreases expression of
Br-C Z2 and increases expression of these miRNAs miR-8 and
miR-429 which could target Br-C Z2 (Zhang S. et al., 2018),
implying the miRNA-mediated crosstalk between 20E and JH.

In Drosophila, miRNA bantam has been found to interact
with JHAMT both in silico, in vitro, and in vivo (Qu et al.,
2017). The overexpression of microRNA bantam in the brain
decreases expression levels of JHAMT.; The knockdown of
bantam increases the expression level of JHAMT (Qu et al.,
2017; Figure 9). Hormonal measurement in bantam mutants
demonstrates decreased sesquiterpenoid levels and male genital
defects. bantam mutant phenotypes can be rescued by exogenous
sesquiterpenoid application (Qu et al., 2017). In other arthropods
including other insects, crustaceans, myriapod and chelicerate,
the roles of bantam and other miRNAs on JHAMT and Met
have also been tested both in silico and in vitro, revealing a
conserved system of miRNAs in regulation of sesquiterpenoids
established in the arthropod ancestor (Qu et al., 2017; Table 2).
A list summarizing the latest knowledge on miRNA regulation of
sesquiterpenoid pathway genes are shown in Table 2.
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