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Abstract: Polycystic ovary syndrome (PCOS) is one of the most common gynecological endocrinopathies.
Evidence suggest that flavonoids have beneficial effects on endocrine and metabolic diseases, includ-
ing PCOS. However, high-quality clinical trials are lacking. We aimed to conduct a systematic review
and meta-analysis of experimental studies to determine the flavonoids’ effects in animal models of
PCOS. Three electronic databases including PubMed, Scopus, and Web of Science were systematically
searched from their inception to March 2022. The Systematic Review Center for Laboratory Animal
Experimentation’s risk of bias tool was used to assess methodological quality. The standardized
mean difference was calculated with 95% confidence intervals as the overall effects. R was used for all
statistical analyses. This study was registered in PROSPERO (registration number: CRD42022328355).
A total of eighteen studies, including 300 animals, met the inclusion criteria. Our analyses demon-
strated that, compared to control groups, flavonoid groups showed a significantly lower count of
atretic follicles and cystic follicles and the count of corpus luteum was higher. A significant reduction
in the luteinizing hormone (LH), LH/follicle-stimulating hormone (FSH), and free testosterone were
observed in intervention groups. Nevertheless, there was no significant difference in the effects of
flavonoids on the level of FSH, estradiol, and progesterone. Subgroup analyses indicated that the type
of flavonoid, dose, duration of administration, and PCOS induction drug were relevant factors that
influenced the effects of intervention. Current evidence supports the positive properties of flavonoids
on ovarian histomorphology and hormonal status in animal models of PCOS. These data call for
more randomized controlled trials and further experimental studies investigating the mechanism in
more depth.

Keywords: meta-analysis; flavonoids; ovarian histomorphology; hormonal status; polycystic
ovary syndrome

1. Introduction

Polycystic ovary syndrome (PCOS), one of the most common gynecological en-
docrinopathy, affecting approximately 8% to 18% women in the premenopausal period [1].
According to the Rotterdam conference [2], PCOS is mainly characterized by androgen
excess and ovarian dysfunction (oligo-anovulation or polycystic ovarian morphology). The
pathological mechanism of PCOS is generally associated with the hypothalamic–pituitary–
ovarian axis [3]. In PCOS, hypothalamic gonadotropin-releasing hormone (GnRH) pulses
are activated, and the release of the luteinizing hormone (LH) is enhanced relative to the
follicle stimulating hormone (FSH), which makes theca cells preferentially secrete more
androgens [4]. Hyperandrogenism affects follicular development via a complex mecha-
nism, such as insulin resistance and dyslipidemia. It is difficult to distinguish the causal
relationship between these pathological factors, as they jointly form a vicious cycle of ag-
gravating PCOS [5]. Additionally, various studies have indicated that systemic low-grade
inflammation and oxidative stress are associated with the development of PCOS [6,7].

Despite the substantial burden PCOS has caused, no drug has been approved specifi-
cally for it by the Food and Drug Administration nor the European Medicines Agency [8,9].
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Current medication treatments for PCOS, including letrozole, oral contraceptives, anti-
androgens, and clomiphene are suboptimal. The side effects of these drugs, including
clinical resistance and nausea, along with ovarian hyperstimulation syndrome, are prone
to occur with long-term treatments [10–12]. Non-invasive, symptom-oriented, and preven-
tative treatments are sorely needed.

The first-line therapy for PCOS patients with mild symptoms is lifestyle modification [13,14].
Dietary intervention is a promising strategy for the treatment of PCOS that has been widely
recognized [15,16]. Among the phytonutrients in dietary macronutrients, flavonoids have
attracted considerable attention for their potential antioxidant and free-radical scavenging
effects against metabolism and endocrine-related diseases [17,18]. The basic structure of
flavonoids includes the common C6C3C6 skeleton and consists of two phenyl rings and
one oxygenated heterocyclic ring (Figure S1) [19]. Based upon variations in the heterocyclic
ring, flavonoids can be divided into anthocyanidins, flavanols (flavan-3-ols or catechins),
flavanones, flavones, flavonols, and isoflavones [20]. Accumulating studies suggest that the
bioavailability of flavonoids is higher than previously thought [21]. In recent years, clinical
trials using specific flavonoids to manage PCOS have been carried out on a small scale.
Previous studies explored the efficacy of soy isoflavones in PCOS patients. The results
indicated that after the 12-week intervention of 50 mg/day soy isoflavones, markers of
insulin resistance, hormonal status, lipid profiles, and oxidative stress were partly alleviated
in women with PCOS [22]. Another study assessed the therapeutic effects of puerarin in
patients with PCOS. Compared with before the treatment, significantly improved levels of
sex hormone binding globulin and superoxide dismutase were observed [23]. A systematic
review including five experimental studies and three clinical trials showed the beneficial
effects of quercetin on ovarian histomorphology, hormone disorders, and dyslipidemia,
while no significant effect was reported for weight loss [24]. To date, there is still a lack of
rigorous clinical trials to investigate the efficacy of flavonoids on PCOS patients. Among
the published randomized controlled trials, a small number of biases related to health
status, genetic background, or methodology have been observed [24]. Reviews based on
preclinical studies may assist in offering solid evidence and informing future experimental
and clinical trials. Additionally, mice and rats are ideal animal models for PCOS because
they are sensitive to hormone stimulation and possess a stable estrous cycle [25].

Herein, we report on a systematic review and meta-analysis of data from studies
testing the efficacy of flavonoids on animal models of PCOS. The changes in ovarian histo-
morphology and hormonal status were included as observation parameters. In addition,
we evaluated whether the effects differ in terms of the type of flavonoid, dose, treatment
duration, and PCOS induction drug by subgroup analysis.

2. Methods

This systematic review was conducted in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis guidelines [26]. The protocol based on
SYRCLE’s tool for animal studies [27] was registered in PROSPERO (registration number:
CRD42022328355).

2.1. Search Strategy

We conducted a systematic search of PubMed, Web of Science, and Scopus from
inception to March 2022. The language of publications was limited to English. The specific
search items included (“anthocyanidins” OR “flavanols” OR “flavan-3-ols” OR “catechins”
OR “flavanones” OR “flavones” OR “flavonols” OR “isoflavones”) AND (“polycystic ovary
syndrome” OR “polycystic ovarian syndrome” OR “PCOS”) AND (“mice” OR “mouse”
OR “rat” OR “rats” OR “animal”). Additionally, a manual search was conducted to check
the relevant publications by two authors.
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2.2. Inclusion and Exclusion Criteria

Studies were considered eligible based on the following inclusion criteria: (1) The
participants were animal models of PCOS; (2) the intervention drugs were flavonoids
(pure flavonoids or flavonoids extracts) and the type of flavonoid and dose were clarified;
(3) the comparison was the PCOS induction group with no treatment; (4) the outcomes
included the effects of flavonoids on the development of PCOS, histomorphology, and
hormonal alternations in animal models, and the original trials should report one or more
following outcomes: the count of atretic follicles, the count of cystic follicles, the count of
corpus luteum, LH, FSH, LH/FSH, free testosterone (FT), estradiol, and progesterone; and
(5) studies used animal models and were published in English.

Two reviewers examined the titles and abstracts of retrieved studies. The exclusion
criteria were as follows: (1) Non-original full research articles; (2) clinical trials, in vitro
models, retrospective studies, case reports, and protocols; (3) interventions different from
flavonoids or without precise dose and duration of administration; and (4) the presence
of concomitant interventions in the PCOS group. Further, full texts were assessed by two
reviewers, and publications without relevant outcomes were excluded.

2.3. Dara Extraction

Two reviewers independently assessed the extraction of data from selected literature.
Any difference was resolved by discussion with the third reviewer. The following essential
details were summarized as the baseline characteristics of the studies: (1) Publication details
(author and year); (2) intervention performed (type of flavonoid, dose, route, and duration
of administration); (3) PCOS induction drug and methods; (4) animal used (species, strain,
age, and weight); (5) outcomes included.

All the data of outcome measures were continuous. We extracted data reporting the
sample size per group (N), mean values, and variance [standard deviation (SD) or standard
error of mean (SEM)]. SEM was converted to SD by using the formula (SD = SEM×

√
N ).

When treatment was administrated in multiple doses, the group using the highest dose
was recorded [28]. In case the outcomes were only presented graphically, the reviewers
used the ImageJ software to quantify the results.

2.4. Quality Assessment

Two reviewers independently assessed the internal validity of the included publica-
tions, referencing the SYCLE’s risk of bias tool for animal experiments [27]. This six-part
checklist of evaluation included: (1) Selection bias (sequence generation, baseline character-
istics, and allocation concealment); (2) performance bias (random housing and blinding of
trial caregivers); (3) detection bias (random outcome assessment and blinding of outcome
assessors); (4) attrition bias (incomplete outcome data); (5) reporting bias (selective out-
come reporting); and (6) other bias (assessment of PCOS model, temperature control, drug
production institutions, conflict of interest, et al.). Any discrepancy was discussed with the
third reviewer.

2.5. Statistical Analysis

R software (V4.1.3) was adopted for data analysis and visualization (package meta and
dmetar). All the outcome measures were continuous, and the standardized mean difference
(SMD) was calculated with 95% confidence intervals (CIs) as the overall effects. A random-
effect model was performed. Heterogeneity was assessed by the Q statistic and quantified
using the I2 results [29]. p < 0.05 was considered statistically significant. When I2 > 50%,
subgroup analyses were conducted to explore the sources of heterogeneity. The type of
flavonoid, dose, duration of administration, and PCOS induction drug were considered as
the potential subgroup basis. Sensitivity analyses were performed to confirm the robustness
of the results by removing one study and repeating the meta-analysis. Publication bias
was assessed with the trim-and-fill method, and the Egger’s bias test was performed if the
results contained at least ten studies.
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3. Results
3.1. Study Selection

Initially, we retrieved 327 studies through a comprehensive search, out of which
181 non-duplicate publications were filtered out. Based on the predetermined exclusion
criteria, 156 studies were removed. After the full text assessment, 7 studies were excluded,
and 18 eligible publications were included in this systematic review. A flowchart depicting
the process of selection is presented in Figure 1.
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3.2. Study Characteristics

A total of 18 articles [30–47] investigated 7 types of flavonoids on PCOS animal models.
All the included studies were conducted between 2015 and 2022. Only 2 studies used mice,
and rats were used in the remaining 16. In 10 out of these 16 studies, Sprague Dawley
rats were incorporated, and Wistar rats were performed in the remaining 6 publications.
The flavonoids administration dose varied greatly, with it ranging from 20 mg/kg/day
to 200 mg/kg/day. The duration of administration ranged from two weeks to six weeks.
The PCOS models were induced by letrozole (in seven studies), dehydroepiandrosterone
(DHEA) (in six studies), estradiol valerate (in two studies), testosterone propionate (TP)
(in one study), testosterone enanthate (TE) (in one study), and insulin combined with
human chorionic gonadotropin (hCG) (in one study). With regard to the outcomes of
interest to us in the 18 studies, 5 comparisons for the count of atretic follicles, 8 compar-
isons for the count of cystic follicles, and 9 comparisons for the count of corpus luteum
were the primary outcome measurements. LH (in 11 comparisons), FSH (in 11 compar-
isons), LH/FSH (in 8 comparisons), free testosterone (FT) (in 16 comparisons), estradiol
(in 12 comparisons), and progesterone (in 9 comparisons) were assessed as the secondary
outcome measurements. The detailed characteristics were summarized in Table 1.
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Table 1. Characteristics of 18 included studies.

Author, Year Type of
Flavonoids

Flavonoid
Subclass Route Dose Duration PCOS

Induction Drug PCOS Induction Method Species Strain Outcomes

Bulsara, J.,
2022 [30] Soy isoflavone Isoflavones oral 100 mg/kg/d 2 weeks Letrozole

Letrozole p.o. at 1 mg/kg
dissolved in 0.5% CMC daily
for 21 days.

Rat SD 6© 7© 8© 9©

Mahmoud,
A.A., 2022 [38] Quercetin Flavonols oral 25 mg/kg/d 4 weeks DHEA DHEA at 60 mg/kg per 1 mL

sesame oil for 41 days. Rat Wistar 1© 2© 3© 4© 5© 6© 7© 8©

Moshfegh, F.,
2022 [41] Anthocyanin Anthocyanins injection 80 mg/kg/d 2 weeks TE TE s.c. in the back of the neck

(1 mg/kg) for 4 weeks. Mouse NMRI 2© 3© 4© 5© 7© 9©

Peng, F.X.,
2022 [47] Apigenin Flavones oral 20 mg/kg/d 3 weeks DHEA DHEA s.c. (60 mg/kg) in

sesame oil for 20 days. Rat SD 1© 2© 3© 7© 9©

Liyanage, G.S.,
2021 [31] Soy isoflavone Isoflavones oral 50 mg/kg/d 3 weeks Letrozole

Letrozole p.o. at 0.5 mg/kg
(dissolved in 1% CMC) for
21 days.

Rat SD 2© 3© 4© 5© 7© 8©

Ma, X.H.,
2021 [32] Soy isoflavone Isoflavones oral 100 mg/kg/d 4 weeks Letrozole Letrozole at 1 mg/kg for

21 consecutive days. Rat SD 4© 5© 6© 7© 8©

Zheng, S.Y.,
2021 [39] Quercetin Flavonols gavage 100 mg/kg/d 4 weeks DHEA

DHEA s.c. at 6 mg/100 g
dissolved in sesame oil for
20 days.

Rat SD 2© 3© 4© 5© 6© 7© 8©

Mihanfar, A.,
2021 [40] Quercetin Flavonols gavage 100 mg/kg/d 4 weeks Letrozole

Letrozole (1 mg/kg) dissolved
in CMC 0.5% for
21 consecutive days.

Rat Wistar 7© 8© 9©

Manzar, N.,
2020 [33] Soy isoflavone Isoflavones gavage 200 mg/kg/d 4 weeks EV EV injection at 4 mg/rat for

30 days. Rat Wistar 4© 5© 7© 8© 9©

Hong, G.,
2020 [35] Catechin Flavanones oral 100 mg/kg/d 4 weeks Insulin+hCG

Insulin s.c. started at 0.5
IU/day, increased by 0.5 IU
per day, stopped in 6.0 IU/day,
and 6.0 IU/day hCG s.c. twice
a day

Mouse C57BL/6 4© 5© 6© 8©

Wang, W.,
2019 [42] Baicalin Flavones injection 50 mg/kg/d 4 weeks DHEA

DHEA s.c. at 0.2 mL
(6 mg/100 g) dissolved in
sesame oil for 20 days.

Rat Wistar 4© 5© 7© 8© 9©

Yu, J.,
2019 [43] Baicalin Flavones oral 20 mg/kg/d 4 weeks DHEA

DHEA s.c. at 0.2 mL
(6 mg/100 g) dissolved in
sesame oil for 20 days.

Rat Wistar 4© 5© 6© 7© 8©

Darabi, P.,
2019 [46] Apigenin Flavones gavage 40 mg/kg/d 3 weeks EV EV i.m. (4 mg/kg) dissolved in

0.2 mL sesame oil for 10 days. Rat Wistar 1© 2© 3© 4© 5© 6© 7© 8© 9©
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Table 1. Cont.

Author, Year Type of
Flavonoids

Flavonoid
Subclass Route Dose Duration PCOS

Induction Drug PCOS Induction Method Species Strain Outcomes

Jahan, S.,
2018 [36] Quercetin Flavonols gavage 30 mg/kg/d 3 weeks Letrozole

Letrozole administered at 1
mg/kg dissolved in 0.5% CMC
for 21 days.

Rat SD 1© 2© 3© 7© 8© 9©

Rajan, R.K.,
2017 [34] Soy isoflavone Isoflavones oral 100 mg/kg/d 2 weeks Letrozole Letrozole p.o. at 1 mg/kg for

21 days. Rat SD 7© 8©

Hu, T.,
2017 [45] Rutin Flavonols gavage 100 mg/kg/d 3 weeks DHEA

DHEA s.c. (6 mg/100g)
dissolved in 0.2 mL of PBS for
20 consecutive days.

Rat SD 4© 5© 6©

Jahan, S.,
2016 [44] Rutin Flavonols oral 150 mg/kg/d 2 weeks Letrozole

Letrozole p.o (1 mg/kg)
dissolved in 0.5% CMC for
21 days.

Rat SD 1© 2© 3© 7© 8© 9©

Shah, K.N.,
2015 [37] Quercetin Flavonols oral 150 mg/kg/d 6 weeks TP TP s.c. (10 mg/kg) dissolved in

olive oil daily for 6 weeks. Rat SD 3© 7©

Abbreviation: CMC: carboxymethyl cellulose, DHEA: dehydroepiandrosterone, EV: estradiol valerate, hCG: human chorionic gonadotropin, i.m.: intramuscular injection, p.o.: peros, s.c.: subcutaneous injection, SD:
Sprague Dawley, TE: testosterone enanthate, TP: testosterone propionate. Outcomes: 1© number of atretic follicles, 2© number of cystic follicles, 3© number of corpus luteum, 4© LH, 5© FSH, 6© LH/FSH, 7© free testosterone,
8© estradiol, 9© progesterone.
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3.3. Study Quality

The methodological quality assessment is shown in Figure 2, and the detailed informa-
tion of each study is provided in Figure S2. None of the studies mentioned the following
aspects: Allocation concealment, the blinding of trial caregivers, random housing, and
random outcome assessment. The selection bias and detection bias of most studies were
unclear (77.8% and 88.9%, respectively). A total of 16 studies showed a low risk of attrition
bias (88.9%), and 15 studies showed a low risk of reporting bias (83.3%). The evaluation
of PCOS model establishment, comorbidity, temperature control, and drug production
institutions were considered in other bias. Three studies showed a high risk of other bias
(16.7%), nine studies showed a low risk of other bias (50%), and the remaining six were
unclear (33.3%). Although the general quality of the publications was not satisfactory, no
literature was excluded for its quality.
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3.4. Primary Outcomes
3.4.1. Count of Atretic Follicles

Five comparisons measured the influence of flavonoids on the count of atretic follicles.
The pooled effects showed that the administration of flavonoids was associated with a
significant difference compared with the control group (SMD = −1.73, 95%CI: −2.30 to
−1.16). There was no significant heterogeneity among these studies (I2 = 0%, p = 0.86)
(Figure 3).
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Figure 3. Forest plot of flavonoids for the count of atretic follicles [36,38,44,46,47].

3.4.2. Count of Cystic Follicles

Eight comparisons reported the count of cystic follicles. The pooled results showed that
the administration of flavonoids was associated with a significant difference compared with
the control group (SMD = −3.36, 95%CI: −5.36 to −1.36). Heterogeneity was considerable
(I2 = 87%, p < 0.01) (Figure 4).
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3.4.3. Count of Corpus Luteum

Nine comparisons reported the count of corpus luteum. The pooled results showed
that the administration of flavonoids was associated with a significant difference compared
with the control group (SMD = 2.41, 95%CI: 1.12 to 3.70). Heterogeneity was considerable
(I2 = 83%, p < 0.01) (Figure 5).
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Figure 5. Forest plot of flavonoids for the count of corpus luteum [31,36–39,41,44,46,47].

3.5. Secondary Outcomes
3.5.1. LH

Twelve comparisons reported LH. The pooled effects show the administration of
flavonoids was associated with a significant difference compared with the control group
(SMD =−2.92, 95%CI:−4.02 to−1.82). Heterogeneity was considerable (I2 = 85%, p < 0.01)
(Figure 6).
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3.5.2. FSH

Eleven comparisons reported FSH. The pooled effects showed that there was no
significant difference in the effects of flavonoids on the level of FSH (SMD = 0.39, 95%CI:
−1.02 to 1.81). Heterogeneity was considerable (I2 = 88%, p < 0.01) (Figure S3).

3.5.3. LH/FSH

Eight comparisons reported LH/FSH. The pooled effects showed that the admin-
istration of flavonoids was associated with a significant difference compared with the
control group (SMD = −3.01, 95%CI: −4.81 to −1.20). Heterogeneity was considerable
(I2 = 77%, p < 0.01) (Figure 7).
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3.5.4. FT

Sixteen comparisons reported FT. The pooled effects showed that the administra-
tion of flavonoids was associated with a significant difference compared with the con-
trol group (SMD = −3.54, 95%CI: −5.10 to −1.99). Heterogeneity was considerable
(I2 = 86%, p < 0.01) (Figure 8).
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3.5.5. Estradiol

Fifteen comparisons reported estradiol. The pooled effects showed that there was no
significant difference in the effects of flavonoids on the level of estradiol (SMD = 1.42, −0.47
to 3.32). Heterogeneity was considerable (I2 = 91%, p < 0.01) (Figure S4).
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3.5.6. Progesterone

Eight comparisons reported progesterone. The pooled effects showed that there was no
significant difference in the effects of flavonoids on the level of progesterone (SMD = 0.46.
−3.49 to 4.41). Heterogeneity was considerable (I2 = 94%, p < 0.01) (Figure S5).

3.6. Subgroup Analysis

The pooled estimates for studies in the meta-analysis of the count of cystic follicles,
the count of corpus luteum, LH, LH/FSH, and FT exhibited substantial heterogeneity.
Subgroup analyses used to explore the sources of heterogeneity were identified with four
covariates (type of flavonoid, dose, duration of administration, and PCOS induction drug).
The flavonoids dose was divided into three groups: low (≤50 mg/kg/day), medium
(>50 mg/kg/day and ≤100 mg/kg/day), and high (>100 mg/kg/day). Additionally,
the duration of administration was divided into three groups: short (≤2 weeks), medium
(>2 weeks and ≤4 weeks), and long (>4 weeks).

For the count of cystic follicles, we found that the type of flavonoid may be the possible
source of heterogeneity (p < 0.01). Only the study where animals administrated with soy
isoflavone showed no significant difference in the effects of flavonoids (SMD = 0.12, 95%CI:
−0.86 to 1.10). We did not find any statistical difference in subgroups based on dose, dura-
tion of administration, and PCOS induction drug. Considering each subgroup separately,
we found the count of cystic follicles did not decrease significantly in studies using letrozole
as the induction drug (SMD = −3.57, 95%CI: −9.21 to 2.07) (Table 2 and Figure S6). For
the count of corpus luteum, we found that the sources of heterogeneity may be the type of
flavonoid (p = 0.03) and PCOS induction drug (p = 0.02). No significant difference was
shown in studies whereas animals administrated with soy isoflavone (SMD = 0.82, 95%CI:
−0.22 to 1.85) or anthocyanin (SMD = 0.87, 95%CI: −0.06 to 1.61). Similar results were
obtained in studies whose PCOS induction drug was TE (SMD = 0.78, 95%CI: −0.06 to 1.61)
or TP (SMD = 0.30, 95%CI: −0.51 to 1.11) (Table 3 and Figure S7).

Table 2. Subgroup analysis of flavonoids effect on count of cystic follicles.

Subgroups N Effect Sizes 95%CI P-Heterogeneity

Type of flavonoid <0.01 *
Soy isoflavone 1 0.12 −0.86 1.1
Quercetin 3 −5.07 −9.7 −0.44
Anthocyanin 1 −2.25 −3.31 −1.19
Rutin 1 −1.98 −3.64 −0.33
Apigenin 2 −4.68 −9.16 −0.2
Dose 0.49
Low 5 −3.79 −7.23 −0.35
Medium 2 −3.56 −6.36 −0.76
High 1 −1.98 −3.64 −0.33
Duration of administration 0.24
Short 2 −2.17 −3.07 −1.28
Medium 6 −3.95 −6.76 −1.14
PCOS induction drug 0.68
DHEA 3 −4.36 −7.73 −0.99
TE 1 −2.25 −3.31 −1.19
EV 1 −2.55 −3.96 −1.14
Letrozole 3 −3.57 −9.21 2.07

N: number of studies included, EV: estradiol valerate, TE: testosterone enanthate, * p < 0.05.
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Table 3. Subgroup analysis of flavonoids effect on count of corpus luteum.

Subgroups N Effect Sizes 95%CI P-Heterogeneity

Type of flavonoid 0.03 *
Soy isoflavone 1 0.82 −0.22 1.85
Quercetin 4 3.4 0.33 6.47
Anthocyanin 1 0.78 −0.06 1.61
Rutin 1 3.34 1.12 5.57
Apigenin 2 2.34 1.18 3.5
Dose 0.79
Low 5 2.19 1.24 3.14
Medium 2 4.33 −2.9 11.57
High 2 1.64 −1.32 4.6
Duration of administration 0.53
Short 2 1.85 −0.63 4.32
Medium 5 3.16 0.97 5.36
Long 2 1.41 −0.95 3.77
PCOS induction drug 0.02 *
DHEA 3 4.41 1.17 7.64
TE 1 0.78 −0.06 1.61
TP 1 0.3 −0.51 1.11
EV 1 1.81 0.6 3.03
Letrozole 3 2.29 0.51 4.07

N: number of studies included, EV: estradiol valerate, TE: testosterone enanthate, TP: testosterone propionate,
* p < 0.05.

Meanwhile, we explored the sources of heterogeneity in hormonal status studies. We
found that dose (p < 0.01), duration of administration (p = 0.03), and PCOS induction
drug (p = 0.03) were the factors that interfered with the effect of flavonoids on LH
levels in the PCOS model. The pooled estimates showed significant differences between a
high dose (SMD = −5.17, 95%CI: −6.54 to −3.80), a medium dose (SMD = −2.52, 95%CI:
−3.13 to −1.90), and a low dose (SMD = −2.40, 95%CI: −4.63 to −0.17). We did not find
statistical differences between studies where animals were administrated with various
types of flavonoids (Table 4 and Figure S8). For LH/FSH, no significant differences were
observed through subgroups of type of flavonoid (p = 0.3), dose (p = 0.08), duration of
administration (p = 0.17), and PCOS induction drug (p = 0.4) (Table 5 and Figure S9).
For FT, we found that the type of flavonoid may be the source of heterogeneity (p = 0.03).
No significant difference was shown in studies where animals administrated were with
rutin (SMD = −0.56, 95%CI: −1.84 to 0.71) or baicalin (SMD = −5.3, 95%CI: −14.06 to 3.46)
(Table 6 and Figure S10).

Table 4. Subgroup analysis of flavonoids effect on LH.

Subgroups N Effect Sizes 95%CI P-Heterogeneity

Type of flavonoid 0.65
Soy isoflavone 3 −2.51 −6.07 1.05
Quercetin 3 −3.39 −4.71 −2.07
Anthocyanin 1 −2.06 −3.08 −1.04
Rutin 1 −3.76 −6.18 −1.34
Apigenin 1 −3.44 −5.12 −1.77
Baicalin 2 −3.54 −9.34 2.25
Catechin 1 −2.52 −3.75 −1.29
Dose <0.01 *
Low 5 −2.4 −4.63 −0.17
Medium 5 −2.52 −3.13 −1.9
High 2 −5.17 −6.54 −3.8



Nutrients 2022, 14, 4128 12 of 19

Table 4. Cont.

Subgroups N Effect Sizes 95%CI P-Heterogeneity

Duration of administration 0.03 *
Short 1 −2.06 −3.08 −1.04
Medium 10 −2.85 −4.13 −1.58
Long 1 −4.75 −6.41 −3.08
PCOS induction drug 0.03 *
DHEA 5 −3.13 −4.99 −1.27
TE 1 −2.06 −3.08 −1.04
TP 1 −4.75 −6.41 −3.08
EV 2 −4.61 −7.16 −2.05
Insulin + hCG 1 −2.52 −3.75 −1.29
Letrozole 2 −0.83 −3.15 1.49

N: number of studies included, EV: estradiol valerate, hCG: human chorionic gonadotropin, TE: testosterone
enanthate, TP: testosterone propionate, * p < 0.05.

Table 5. Subgroup analysis of flavonoids effect on LH/FSH.

Subgroups N Effect Sizes 95%CI P-Heterogeneity

Type of flavonoid 0.3
Soy isoflavone 2 −2.59 −5.09 −0.09
Quercetin 2 −6 −15.38 3.38
Rutin 1 −4.64 −7.49 −1.79
Apigenin 1 −1.24 −2.33 −0.14
Baicalin 1 −1.73 −2.59 −0.88
Catechin 1 −1.92 −3.01 −0.82
Dose 0.08
Low 3 −1.51 −2.1 −0.92
Medium 5 −4.31 −7.34 −1.28
Duration of administration 0.17
Short 1 −1.54 −2.89 −0.18
Medium 7 −3.31 −5.46 −1.16
PCOS induction drug 0.4
DHEA 4 −4.38 −8.47 −0.29
EV 1 −1.24 −2.33 −0.14
Insulin + hCG 1 −1.92 −3.01 −0.82
Letrozole 2 −2.59 −5.09 −0.09

N: number of studies included, EV: estradiol valerate, hCG: human chorionic gonadotropin.

Table 6. Subgroup analysis of flavonoids effect on free testosterone.

Subgroups N Effect Sizes 95%CI P-Heterogeneity

Type of flavonoid 0.03 *
Soy isoflavone 5 −5.57 −10.17 −0.98
Quercetin 5 −3.33 −4.70 −1.97
Anthocyanin 1 −2.25 −3.31 −1.19
Rutin 1 −0.56 −1.84 0.71
Apigenin 2 −1.56 −2.35 −0.76
Baicalin 2 −5.3 −14.06 3.46
Dose 0.66
Low 6 −2.7 −4.84 −0.56
Medium 7 −3.65 −5.97 −1.33
High 3 −5.26 −11.04 0.53
Duration of administration 0.44
Short 4 −4.35 −8.1 −2.51
Medium 11 −3.28 −5.19 −1.36
Long 1 −4.97 −6.69 −3.24
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Table 6. Cont.

Subgroups N Effect Sizes 95%CI P-Heterogeneity

PCOS induction drug 0.12
DHEA 5 −3.18 −5.91 −0.46
TE 1 −2.25 −3.31 −1.19
TP 1 −4.97 −6.69 −3.24
EV 2 −6.06 −15.42 3.31
Letrozole 7 −3.37 −5.93 −0.81

N: number of studies included, EV: estradiol valerate, TE: testosterone enanthate, TP: testosterone propionate,
* p < 0.05.

3.7. Sensitivity Analysis

For the count of atretic follicles, the count of cystic follicles, the count of corpus luteum,
LH, LH/FSH, and FT, a sensitivity analysis was performed to confirm and account for the
stability of the positive results by the leave-one-out test. Overall, the pooled effects did
not change significantly in these six cases, which suggested the results remained robust
(Figure 9).
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3.8. Publication Bias

The Egger’s bias test showed that, except for the count of atretic follicles (p = 0.66),
substantial publication bias was detected for the remaining outcomes (p < 0.01, both)
(Figure S11). A trim-and-fill evaluation was then conducted, and substantial asymmetry is
indicated in Figure S12. Generally speaking, the publication bias of the results should not
be ignored.

4. Discussion

Flavonoids are widely distributed plant secondary metabolites which are found in
various fruit, vegetables, and herbal medicines. They play important roles in human
health through the consumption of plant-derived foods by scavenging free radicals and
inhibiting metal-ion chelators for their powerful antioxidant properties [48]. Flavonoids
are also associated with the modulation of the immune system, despite that they represent
ancillary ingredients with immunomodulatory properties that require more evidence [49].
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Nevertheless, accumulating evidence demonstrates that flavonoids can inhibit regulatory
enzymes and transcription factors involved in inflammation [50,51]. On account of their
diverse bioavailability, flavonoids have been applied to prevent degenerative diseases, such
as diabetes, cardiovascular complications, cancer, and hypoglycemia [52,53]. Addition-
ally, significant applications of flavonoids have been unveiled in reproductive endocrine
diseases, such as menopausal syndrome and endometriosis [54,55]. PCOS is an inflam-
matory, systematic, and autoimmune endocrinopathy [56]. In PCOS patients, systematic
low-grade inflammation compromises multiple aspects of fertility and is associated with
hyperandrogenism and insulin resistance [57]. Therefore, we speculate that flavonoids can
ameliorate symptoms of PCOS. Our results demonstrate the efficacy of flavonoids on PCOS
animal models.

The ovarian follicles of PCOS patients are manifested with a thickened theca cell
layer and cyst formation. Most studies purport that histological changes such as follicular
atresia are the cause of PCOS infertility [58]. Inconsistent with previous PCOS-related
meta-analysis which were based on clinical trials, histopathological changes were taken
as the primary outcomes in our study. The convenient collection and observation of
ovarian tissue is a major advantage of preclinical studies over clinical trials. Although
the results of histomorphology were statistically positive, substantial heterogeneity was
detected regarding the count of cystic follicles and the count of corpus luteum. Results
from the subgroup analyses suggest that only one study which used soy isoflavone did
not show a statistic reduction of the count of cystic follicles. In this study, the treatments
were divided into three groups: the soy isoflavone group, the resistant starch group, and
the soy isoflavone combined with resistant starch group, which individually showed a
significant reduction in cyst formation [31]. We only included the soy isoflavone group as
the intervention method, which may have led to the heterogeneity. Similar results were
obtained in measurements of the count of corpus luteum. In the letrozole-induced rats, a
larger number of cystic follicles and a smaller number of corpus luteum were observed.
Abnormalities in terms of follicle development occurred not only in the later, antral stages
of follicles which are gonadotrophin dependent but also in the very earliest stages of
folliculogenesis [59]. The changes were related to LH and FSH disorders and a lack of
interplay between granulosa cells [60]. Soy isoflavones modulated hormone levels by
binding to estrogen receptors, and the property may be enhanced by butyric acid, which
was elevated by resistant starch intake [61]. Additionally, the studies which applied TE and
TP as PCOS induction drugs did not show significant improvements in terms of the corpus
luteum count. A systematic review of PCOS animal models demonstrated that hormonal
interventions using androgens promote the most consistent features of PCOS morphological
phenotypes [62]. Contrary to our expectations, the dose and duration of treatments were
irrelevant to the efficacy of flavonoids, which revealed that the morphological changes of
PCOS models are relatively fixed.

In addition, most of the included studies indicated a role for flavonoids in modulating
hormonal status. The increased levels of LH/FSH and testosterone were due to the im-
paired hypothalamic–pituitary axis [63]. LH is a central actor in theca cell dysregulation,
which follows ovarian hyperandrogenism. Previous studies demonstrated that estrogen
stimulated by LH is beneficial to the maturation of oocyte cytoplasm and membrane, which
revealed the importance of LH [64]. Additionally, in the middle and later stage of follicle
development, granulosa cells begin to express luteinizing hormone receptor (LHCGR), and
LH reaches the peak [65]. Meanwhile, LH and FSH cooperate to stimulate ovulation and
promote granulosa cell luteinization [66]. Meanwhile, in PCOS patients, the expression
of LHCGR is premature in granulosa cells [67]. Continuous estrogen enhances the sensi-
tivity of the pituitary gland to GnRH secreted by the hypothalamus, which increases the
frequency and amplitude of GnRH pulse secretion and increases the level of LH. Because
the negative feedback of hormones on FSH is greater than that on LH, the ratio of LH to
FSH is higher [68,69]. Our meta-analysis revealed the downregulation of LH, LH/FSH,
and FT with the administration of flavonoids. The dose, duration of administration, and
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PCOS induction drug were the main sources of heterogeneity in LH reduction. As we
expected, with higher dose of flavonoids, there were lower levels of LH. Only the studies
which applied letrozole as the induction drug did not show significant a reduction in LH.
As for FT, the effects were not statistically different in studies using baicalin or rutin as
the treatments. However, we did not find the sources of heterogeneity in the LH/FSH
studies. Considering each study separately, we found the studies which used a medium
dose showed better a reduction in terms of LH/FSH than those which used a low dose.

Among the studies included, PCOS induction drugs were divided into androgens
(TP, TE, and DHEA), estrogens, aromatase inhibitors (letrozole), and insulin combined
with hCG. Androgen induction may promote continuous high blood-free testosterone
and a pathologic elevation in FSH that induces cystic formation [70,71]. High estrogen
stimulation leads to the degeneration of hypothalamic neurons and the compensatory
hyperplasia of the pituitary gland, which increases the sensitivity of the pituitary gland
to GnRH. The level of LH increases and the secretion of FSH is inhibited, resulting in
the typical characteristics of PCOS [72]. Letrozole, as a nonsteroidal aromatase inhibitor,
restrains the conversion of androgen to estrogen, leading to androgen accumulation [73].
Insulin combined with hCG may destroy the normal pulse secretion mode of endogenous
LH and is characterized by hyperandrogenism and insulin resistance [74]. As PCOS is a
highly heterogeneous disease, a model that fully simulates the characteristics of PCOS does
not exist. The appropriate modeling methods should be applied according to the aim of
the study.

To date, there have been only a small number of meta-analyses of PCOS in animal
models. This might be explained by doubts about the substantial heterogeneity caused by
the diversity of modeling methods and applied drugs. In order to better take advantage of
the systematic review of preclinical studies and explain the changes induced by flavonoids
on different parameters of PCOS, it is important to consider the molecular mechanisms
by which flavonoids may produce effects. The literature reports that soy isoflavones were
demonstrated to enhance the antioxidant capacity of rats and inhibit the activation of
the nuclear factor-kappa beta (NF-κB) signaling pathway, hence reducing inflammatory
cytokines [32]. Similar results were reported in studies using catechins as treatments, with
NF-κB-mediated inflammation and matrix metallopeptidase 2 and matrix metallopeptidase
9-mediated damage being ameliorated. Additionally, the signal transducer and activator
of transcription 3 signaling was inhibited [35]. Quercetin, a flavonol, was reported to
decrease the expression of the CYP17A1 gene by inhibiting phosphatidylinositol 3-kinase
(PI3K), leading to the regulation of ovarian steroidogenesis [37]. Furthermore, another
study suggested that quercetin has an apoptosis-inhibiting effect through increasing B-cell
lymphoma-2 (Bcl2) and decreasing the Bcl2-Associated X (BAX) to Bcl2 ratio [38]. The
ability to restore the maturation of oocyte and regulate energy homeostasis was emphasized
after the administration of quercetin [39,40]. The literature reports that the upregulation of
adenosine 5′-monophosphate-activated kinase and activation of PI3K signaling contributed
to the beneficial effect of baicalin on PCOS [42]. Another publication revealed that GATA1
is one of the key genes affected by baicalin. PCOS models reversed the hyperandrogenic
status after baicalin treatments [43]. Rutin has metformin-like properties which play an
important role in reducing reactive oxygen species and boosting the antioxidant status [44].
The potential molecular mechanisms of various flavonoid effects on PCOS are illustrated in
Figure S13.

Our study also has many limitations. First, the language of publications was limited in
English, so databases in other languages were excluded. The gray literature and negative
results were also relatively lacking. Second, few studies measured pregnancy outcomes,
which means the effect of flavonoids on infertility in animal models could not be assessed.
Furthermore, metabolic disorders and insulin resistance were not evaluated. Third, al-
though some aspects of heterogeneity were explained by different experimental designs,
the remaining heterogeneity and publication bias should be valued. Finally, considering
the great difference between species, the ovulation characteristics of humans and rodents
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should be considered. When our results are referenced by clinical protocols, the standard
dose conversion should be conducted.

5. Conclusions

To the best of our knowledge, this is the first study aimed at systematically reviewing
the efficacy that flavonoids have on the pathology of PCOS, especially on ovarian histomor-
phology and hormonal status. It also analyzed how different types of flavonoids influenced
various phenotypes in animal models induced by different drugs. Specifically, the count of
atretic follicles, the count of cystic follicles, LH, LH/FSH, and FT reduced, and the count of
corpus luteum increased in the groups where animals were administrated with flavonoids.
There was no statistical difference in comparisons of FSH, estradiol, and progesterone.
Furthermore, appropriate PCOS modeling methods meeting various mechanisms should
be taken into consideration. With regard to the substantial heterogeneity and publication
bias, the results must be interpreted with prudence.

Supplementary Materials: The following are available online: https://www.mdpi.com/article/10
.3390/nu14194128/s1, Figure S1: Basic chemical structure of flavonoids. Figure S2: Evaluation of
quality for each study. Figure S3: Forest plot of flavonoids for FSH. Figure S4: Forest plot of flavonoids
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