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Hepatocellular carcinoma (HCC) has emerged as a primary health problem and threat to
global mortality, especially in China. Since pyroptosis as a new field for HCC prognosis is
not well studied, it is important to open a specific prognostic model. In this study,
consensus clustering method for 42 pyroptosis-related genes to classify 374 HCC
patients in the TCGA database. After cox regression analysis of the differentially
expressed genes between the two clusters, LASSO-Cox analysis was then performed
to construct a pyroptosis-related prognostic model with 11 genes including MMP1,
KPNA2, LPCAT1, NEIL3, CDCA8, SLC2A1, PSRC1, CBX2, HAVCR1, G6PD, MEX3A.
The ICGC dataset was served as the validation cohort. Patients in the high-risk group had
significantly lower overall survival (OS) rates than those in the low-risk group (p < 0.05).
COX regression analysis showed that our model could be used as an independent
prognostic factor to predict prognosis of patients and was significantly correlated with
clinicopathological characteristics. Nomogram showing the stability of the model
predicting the 1, 3, 5 year survival probability of patients. In addition, based on the risk
model, ssGSEA analysis revealed significant differences in the level of immune cell
infiltration and activation of immune-related functional pathways between high and low-
risk groups, and patients with the high-risk score may benefit more from treatment with
immune checkpoint inhibitors. Furthermore, patients in the high-risk group were more tend
to develop chemoresistance. Overall, we identified a novel pyroptosis-related risk
signature for prognosis prediction in HCC patients and revealed the overall immune
response intensity of the tumor microenvironment. All these findings make the pyroptosis
signature shed light upon a latent therapeutic strategy aimed at the treatment and
prevention of cancers.
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INTRODUCTION

Hepatocellular carcinoma (HCC), accounting for
approximately 90% of all primary liver cancers, is one of
the most common and lethal malignancies in the world
(Bray et al., 2018). Since the symptoms and physiological
features of HCC are not easily detected at an early stage,
making it usually impossible for 80% of patients to be
treated by surgery at the time of diagnosis, the 5 year
survival rate of their patients is still less than 20% despite
great progress in current treatment strategies for HCC (Zongyi
and Xiaowu, 2020).

Pyroptosis is a novel programmed cell death triggered by
inflammatory bodies, which is characterized by the continuous
expansion of cells until cell membrane rupture, resulting in the
release of cellular contents and then causing a strong
inflammatory response (Zhang et al., 2018; Frank and Vince,
2019). The occurrence of pyroptosis depends on the
inflammatory caspase and GSDMs protein family. Simply put,
the activated caspase cleaves the GSDMs protein and releases its
N-terminal domain, which binds membrane lipids and punches
holes in the cell membrane, resulting in changes in cell osmotic
pressure, and then swells until the cell membrane ruptures (Ding
et al., 2016; Feng et al., 2018).

The mechanism and function of pyroptosis in the tumor
have been extensively studied, but its relationship with tumor
prognosis is not clear. This is because of the complex
interaction between pyroptosis and cancer, which leads to
pyroptosis as an inflammatory death that can not only
inhibit the progression of cancer but also promote tumor
growth by providing a suitable microenvironment for tumor
cells (Xia et al., 2019). Increasing studies have demonstrated
that pyroptosis can promote immune evasion of tumor cells by
disturbing the immune microenvironment. Luan et al. (Luan
and Ju, 2018) described that activated caspase-1 stimulate
pyroptosis and release pro-inflammatory cytokines, which
exert a role in promoting HCC. Additionally, NLRP3 can
induce pyroptosis and produce mature IL- 1β or IL- 18 to
impair the host immune response in gastric cancer
(Pachathundikandi et al., 2020). Therefore, further
investigation of the role of pyroptosis in HCC is needed to
provide new targets and biomarkers for individual treatment
and prognosis of HCC.

Classification of HCC patients by high-throughput sequencing
technology are a new method, which can accurately identify
cancer features and guide clinicians in appropriate treatment
strategies. It is therefore of outstanding interest to develop a
brand-new gene signature associated with pyroptosis to evaluate
the prognosis of individuals with HCC, especially the guidance of
targeted therapy.

In the present study, we clustered 374 patients with HCC
according to pyroptosis-related genes. On this basis, lasso-cox
regression analysis was used to establish a pyroptosis-related
risk signature, which represents an interesting new way to
explore the prognostic value of patients with HCC, reflecting
the immune microenvironment of the tumor and sensitivity to
chemotherapy.

MATERIALS AND METHODS

Data Acquisition
RNA sequencing data and corresponding clinical information of
374 HCC patients were downloaded from the TCGA database
(http://cancergenome.nih.gov/) as a train set. Similarly, 231 HCC
patients were obtained from ICGC (LIRI-JP) (https://dcc.icgc.
org/) as a validation set. Patients with no survival information will
be excluded from the cohort.

Differentially Expressed Pyroptosis-Related
Genes
We extracted 52 pyroptosis-related genes from previously
published literature for the follow-up study, as shown in
Supplemental Table S1. The “limma” algorithm in R software
was performed to obtain the differentially expressed genes
(DEGs) according to the screening criteria (p-value<0.05).

The STRING database (https://string-db.org/) was used to
build a protein-protein interaction network (PPI) on DEGs and R
software was carried out to analyze the inter-regulatory
relationships between DEGs (cutoff � 0.4).

Consensus Clustering
Consensus Clustering was performed to confirm different
pyroptosis-related subtypes associated with pyroptosis
regulators expression via the k-means clustering. The
appropriate number of stable HCC clusters was calculated
using a clustering algorithm in the “ConsensusClusterPlus”
package. 1,000 iterations were performed to ensure the
accuracy of the final classification. We screened the DEGs for
subsequent analysis based on the samples in the different
classifications obtained from the previous clustering analysis.
|log2FC| >1 and adjusted p-value <0.05 were considered
statistically significant.

Construction and Validation of the
Pyroptosis-Related Prognostic Signature
First, DEGs were subjected to univariate cox analysis to obtain
genes associated with prognosis in patients with HCC
(p-value<0.00001). The obtained prognosis-related genes were
then used for Lasso-Cox analysis using the “glmnet” package with
10-fold cross-validation to prevent overfitting of the model, thus
obtaining the genes and their coefficients for model construction.
The formula for the risk score is as follows:

Risk Score � ∑N

i�1(Expi × Coei)

Where N � 11, Expi indicates the expression value of eleven genes,
and Coei represents the coefficient of the corresponding gene.
Patients were classified into high-risk and low-risk groups based
on the calculated median risk score, and overall survival (OS) of
patients with HCC between two groups was performed by
Kaplan-Meier analysis using the “survival” and “survminer”
packages. PCA analysis reduces the dimensionality of
multivariate data to two or three principal components, which
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can be visualized graphically with minimal information loss. PCA
analysis based on 11 genes signature was carried out by the
“Rtsne” package. Univariate cox analysis was carried out to
discern latent prognostic factors, and risk score determined by
multivariate cox analysis could be used as independent prognostic
factor for HCC patients. The ability of the risk model to predict
prognosis in HCC patients was assessed using receiver operating
characteristic curves (ROC) generated by the “SurvivalROC”
package.

Construction of a Prognostic Nomogram
We created a predictive nomogram based on risk score and
clinicopathological characteristics to predict the OS probability
of patients with HCC at 1, 3, and 5 years. Calibration plots were
used to verify the accuracy of the prediction performance of the
prognostic nomogram.

Genetic Alterations and Functional
Analyses
The Liver Hepatocellular Carcinoma (TCGA, Firehose
Legacy) dataset which contained 379 patients were selected
for alteration analysis of 11 genes from the cBioPortal (www.
cbioportal.org). mRNA expression z-scores (RNA Seq V2
RSEM) were obtained using a z-score threshold of ± 2.0. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis based on DEGs were performed
by employing “clusterProfiler” package. GSEA was
conducted to examine a marked difference in the gene set
between the low- and high-risk groups in the enrichment of
the MSigDB cluster (c2. cp.kegg.v7.4. symbols.gmt). In
addition, the activation of various immune cells subsets
and immune-related pathways in high- and low-risk
groups was examined by utilizing single-sample gene set
enrichment analysis (ssGSEA). Expression levels of 47
immune checkpoints were evaluated in high and low-risk
groups.

Drug Sensitivity Assessment
The sensitivity of patients with HCC in high- and low-risk groups
to four common chemotherapy agents was assessed via the
Genomics of Drug Sensitivity in Cancer database (https://
www.cancerrxgene.org/). Half maximal inhibitory
concentration (IC50) was calculated by using “pRRophetic”
package.

Statistical Analysis
All strategy analysis is processed through R software (version
4.0.5). The categorical variables were analyzed using pearson’s
chi-square test. Kaplan-Meier analysis and log-rank test were
conducted to evaluate the statistical significance in OS
between patients in high- and low-risk groups. Univariate
and multivariate Cox regression analyses were applied to
assess independent prognostic factors. Mann-Whitney test
was used to evaluate the ssGSEA score for immune cell
infiltration and immune pathway activation in the two risk
groups.

RESULTS

Identification of Pyroptosis-Related DEGs
in Normal and HCC Tissues
We first extracted 52 pyroptosis-related genes from the TCGA
database and then performed differential expression analysis on
them in normal and tumor tissues. The results of the heatmap
demonstrated that 42 pyroptosis-related genes were identified as
DEGs, of which 3 pyroptosis-related genes were downregulated in
the tumor, while the remaining 39 genes were upregulated
(Figure 1A). To better understand the mode of interaction
between these pyroptosis-related DEGs, protein-protein
interaction (PPI) analysis of DEGs was conducted with the
highest confidence score (0.9) using Homo sapiens dataset,
and PPI network retained 31 hub DEGs with complex
regulatory relationships (Figure 1B). Furthermore, we
calculated the correlation coefficients between genes based on
the screening criterion (cutoff >0.4), and the results showed that
most of these DEGs were positively regulated, except for
CHMP2A and SCAF11, which were negatively regulated
(Figure 1C). We preliminarily conclude that most of these
pyroptosis-related differentially expressed hub genes affect
tumor development and progression by means of positive
regulation between each other.

Identification of HCC Classification Based
on 42 Pyroptosis-Related DEGs
Based on the expression of 42 pyroptosis-related DEGs together
with patient survival information, we identified 2 clusters with
unsupervised clustering methods in the TCGA cohort, containing
210 samples in cluster 1 and 160 samples in cluster 2 (Figure 2A).
The result of the survival analysis demonstrated that the OS time
of patients in cluster two was significantly poorer than that of
cluster 1 (Figure 2B). To further explore the differences between
the two clusters, we first screened and obtained the 2,291 DEGs of
the two clusters according to the screening criteria (logFC>1,
fdr<0.05). DEGs expression profiles and clinicopathologic
characters comprising age, grade, stage, gender, and survival
status were presented on the heatmap, and we found that the
expression of most DEGs and the number of patients with high
clinicopathological grade were significantly higher in cluster 2
(Figures 2C,D).

GO and KEGG Analyses
To further determine the potential function of DEGs between the
two clusters, GO and KEGG analysis were conducted in R
software. GO analysis was grouped into three parts: biological
process (BP), cellular component (CC) and molecular function
(MF). As displayed in Figure 3A, the results of the GO analysis
revealed that these DEGs were abundantly enriched in various
important immune responses, such as complement activation, B
cell-mediated immunity, positive regulation of lymphocyte
activation, humoral immune response mediated by circulating
immunoglobulin, phagocytosis, immune response-activating
signal transduction and immune receptor activity. Further,
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FIGURE 1 | Analysis of the differential expression of pyroptosis-related genes in tumor and normal tissues and their inter-regulatory effects. (A) The heatmap
showed the expression levels of 42 pyroptosis-related genes in tumor and normal tissues, where red indicates high expression and blue indicates low expression. *p <
0.05, **p < 0.01, and ***p < 0.001. (B) Protein–Protein Interaction interactions among hub pyroptosis-related DEGs. (C) The correlation network among pyroptosis-
related DEGs, where red indicates positive regulation and blue indicates negative regulation. A darker color of the line between genes indicates a more significant
correlation.
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KEGG enrichment highlighted the role of Cytokine-cytokine
receptor interaction, Chemokine signaling pathway, Cell cycle,
Cell cycle, Th1 and Th2 cell differentiation, Drug metabolism,
Primary immunodeficiency pathways, and so on (Figure 3B).

Development of a Pyroptosis Risk Signature
in TCGA Cohort
Considering the two-sided effect of pyroptosis on tumors, we
further explored the prognostic value of pyroptosis risk signature.
Univariate Cox regression analysis was performed to obtain
43 prognosis-related genes in the TCGA cohort, and the
results showed that all genes were high-risk genes in the HCC

(HR > 1, Figure 4A). To shrink the range of candidate genes for
building prognostic model, a Lasso Cox regression was applied to
the training cohort. Eleven genes including MMP1, KPNA2,
LPCAT1, NEIL3, CDCA8, SLC2A1, PSRC1, CBX2, HAVCR1,
G6PD, MEX3A, and their coefficients were eventually
maintained, and the optimum λ value was determined via the
minimum parameter (Figures 4B,C). The formula for calculating
the risk score is determined as follows:

Risk Score � (0.082 ×MMP1) + (0.096 × KPNA2)
+(0.052 × LPCAT1) + (0.173 × NEIL3) + (0.001 × CDCA8)
+(0.019 × SLC2A1) + (0.036 × PSRC1) + (0.232 × CBX2)
+(0.204 ×HAVCR1) + (0.028 × G6PD) + (0.193 ×MEX3A).

FIGURE 2 | Identification of HCC classification based on pyroptosis-related DEGs. (A) 370 patients with HCC were divided into two clusters by the consensus
clustering matrix (K � 2). (B) Kaplan-Meier OS analysis of HCC patients in two clusters. (C) Heatmap displaying the expression of DEGs in classification and the
relationship between clinicopathologic characters and classification. “Fustat” represents the survival status, where “0” indicates that the patient is still alive and “1”
indicates that the patient has died. ***p < 0.001. (D) The number of patients with different clinicopathological grades in two clusters.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 13 | Article 8014195

Ding et al. Pyroptosis-Related Model for Hepatocellular Carcinoma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Moreover, we evaluated the genetic alterations of 11 genes in
the TCGA database through the cBioPortal website. The results
showed that the mutation frequencies of genes includingMEX3A,
CBX2, KPNA2, and LPCAT1 were 21%, 15%, 13%, and 10%
respectively, with amplification being the most common
alteration feature (Figure 4D). Additionally, there was a
significant correlation between all 11 genes (Figure 4E). Then,
we divided the patients into high- and low-risk groups based on
the median risk score. Meanwhile, our study suggested that risk
score was increased accompanying higher patient risk level and
patients in the high-risk group had higher mortality and shorter
survival times (Figures 4F,G). PCA analysis reduces the
dimensionality of multivariate data and thus visualizes it
graphically. Our results showed that patients in different risk
groups were divided into two clusters following PCA analysis
(Figure 4H). Besides, Kaplan-Meier analysis indicated that
patients with high-risk score were significantly associated with
poor prognosis (Figure 4I). The received operating characteristic
(ROC) curve was performed to assess the accuracy and feasibility
of pyroptosis risk signature to predict survival, and the results
revealed that the area under the ROC curve (AUC) was 0.785 at
1 year, 0.710 at 3 years, and 0.671 at 5 years, respectively,
displaying a favorable predictive value (Figure 4J).

Validation of a Pyroptosis Risk Signature in
an External Cohort
To better verify the predictive power of our risk signature, 231
patients with HCC from the ICGC database were used to create a
validation cohort. As shown in Figure 5A, 11 genes were also
found to be well correlated with each other in the ICGC database.
Then, these cases were classified into low- and high-risk groups
(Figure 5B). As with the training group, the number of deaths in
the high-risk group was significantly higher compared to the low-
risk group (Figure 5C). The PCA analyses demonstrated
discernible dimensions between the two groups (Figure 5D).
Consistently, Kaplan-Meier analysis showed that patients in the
high-risk group had significantly worse survival times than those

in the low-risk group (Figure 5E). In addition, the AUCs of 1, 3,
and 5 year clinical outcomes were separately 0.750, 0.772, and
0.503, suggesting a good predictive efficacy (Figure 5F). It should
be noted that the lack of data on patients with survival beyond
5 years in the low-risk group resulted in the AUCs at 5 years close
to 0.5. Collectively, the results obtained from the validation
cohort presented a satisfactory performance for the predictive
capability of the risk signature.

Independent Prognostic Value of the
Pyroptosis Risk Signature
Univariate and multivariable cox regression analyses were
applied to analyze whether risk score could be used as an
independent prognostic factor to predict prognosis. Univariate
cox analysis revealed that high-risk score was markedly associated
with poor prognosis (p < 0.001, HR � 3.055, 95%CI:
2.301–4.055). Other variables associated with worse prognosis
consisted of tumor stage and T stage. Multivariable cox
demonstrated that higher risk score was independently
correlated with poorer survival, indicating that it could be
served as an independent prognostic factor for HCC (p <
0.001, HR � 2.737, 95%CI: 2.036–3.681) (Figure 6A). These
results were validated via the ICGC cohort, which completely
echoed the above results (p < 0.001, HR � 1.133, 95%CI:
1.072–1.198) (Figure 6B).

In addition, 11 gene expression profiles and clinicopathologic
features from the TCGA cohort were presented in the heatmap
Figure 6C and Table 1, and we found that the expression of 11
genes was significantly higher in the high-risk group and that
tumor stage, grade, and patient survival status showed significant
differences between the high- and low-risk groups (p < 0.01).

Construction and Validation of the
Prognostic Nomogram
To predict the prognosis of patients more intuitively, a
nomogram was created to predict the probability of OS at 1,

FIGURE 3 | Enrichment analysis of the differentially expressed genes. (A) GO analysis. (B) KEGG analysis.
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3, 5 years (Figure 7A). Variables including age, stage, and risk
score were enrolled in the nomogram, and the total score
obtained by summing up all of the scores corresponding to
each variable was used to calculate the survival probability of
each individual. In addition, as seen in Figures 7B–D, the

calibration plots indicated a favorable agreement of the
prognostic nomogram between the actual and predicted
probabilities. Overall, our data suggested that the nomogram
had high confidence in predicting patient survival at 1, 3, 5 years
and hold promise for improved clinical application.

FIGURE 4 | Construction of a pyroptosis risk signature in the TCGA cohort. (A) Univariate Cox regression analysis to find prognosis-related genes. (B) The Cross-
Validation fit curve calculated by lasso regressionmethod. (C) LASSO coefficient profiles of 11 potential prognostic genes. (D)Genetic alterations of 11 prognostic genes
in HCC by cBioPortal database. (E) Spearman correlation analysis of eleven genes in the TCGA cohort. (F) The distribution and median value of the risk scores. (G)
Patient survival status distribution in the high- and low-risk groups. (H) PCA plot analysis. (I) Kaplan-Meier overall survival curves for patients assigned to high- and
low-risk groups based on the risk score. (J) ROC curve showing the prognostic value of pyroptosis risk scores on the 1-, 3-, and 5 years survival rate.
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GSEA Identifies Pyroptosis-Related
Signaling Pathways
To understand the molecular mechanisms that may be involved
in HCC and find new potential therapeutic targets, we applied
GSEA to compare the high and low-risk groups. The signaling
pathways enriched in the high-risk group were associated with
processes that promote tumor development, such as cell cycle,
DNA replication, p53 signaling pathway, MTOR signaling
pathway, pathways in cancer, VEGF signaling pathway, TGF-β
signaling pathway, and WNT signaling pathway (Figure 8A).

Pyroptosis-Related Risk Signature Was
Significantly Associated With Tumor
Immune Microenvironment
To further explore the effect of pyroptosis signature on the
immune microenvironment, ssGSEA was applied to analyze
the level of immune cell infiltration and activation of immune-
related functional pathways in high- and low-risk groups. We
found that patients with high-risk score had significantly higher
proportions of immune cells including aDCs, Macrophages, Tfh,
Treg, but significantly lower proportions of B cells, Mast cells, NK
cells (Figure 9A). In addition, there were statistically significant
differences in the score of immune-related functions, except for

the Cytolytic activity, Inflammation promoting, and
Parainflammation in the high- and low-risk groups
(Figure 9B). Regarding ssGSEA analysis in the ICGC cohort,
the results for the level of immune cell infiltration were generally
consistent with the TCGA cohort (Figure 9C), but only three
immune-related functions (e.g., MHC class I, Type-I IFN
response, and Type-II IFN response) showed significant
differences (Figure 9D).

On the basis of previous study that immune checkpoints play
an essential role in tumor immune escape, we examined the
expression of these molecules between high- and low-risk groups.
We found that patients with high-risk score were characterized by
high expression of most immune checkpoints (i.e., PDCD1,
CTLA-4, HAVCR2, LAG-3, and et al.) (Figures 9E,F). These
results suggest that patients with high risk are more likely to form
an immunosuppressive tumor microenvironment by
upregulating the expression of these molecules. Moreover, the
heatmap showed that pyroptosis-related genes were generally
upregulated in HCC patients with high-risk score (Figure 9G).

High Risk Score Tended to Chemotherapy
Resistance
Chemotherapy resistance is a common phenomenon in the
treatment of advanced tumors, and it is also an

FIGURE 5 | Validation of a pyroptosis risk signature in the ICGC cohort. (A) Spearman correlation analysis of eleven genes in the ICGC cohort. (B) The distribution
andmedian value of the risk scores. (C) Patient survival status distribution in the high- and low-risk groups. (D) PCA plot analysis. (E) Kaplan-Meier overall survival curves
for patients assigned to high- and low-risk groups based on the risk score. (F) ROC curve showing the prognostic value of pyroptosis risk scores on the 1-, 3-, and
5 years survival rate.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 13 | Article 8014198

Ding et al. Pyroptosis-Related Model for Hepatocellular Carcinoma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 6 | Prognostic value of the pyroptosis risk signature in HCC. (A,B)Univariate andmultivariate Cox analyses evaluating the independent prognostic value of
the pyroptosis signature in terms of OS in HCC patients in TCGA and ICGC cohorts. (C) Heatmap showing the relationship between clinicopathological characteristics
and different risk groups. **p < 0.01, and ***p < 0.001.
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insurmountable difficulty at present. In the present study, we
investigated the IC50 values of four common chemotherapy
agents for HCC including Sorafenib, Cisplatin, Docetaxel, and
Rapamycin in high- and low-risk groups. Our results showed that
the IC50 values for the four chemotherapy agents were
significantly higher in the high-risk group, indicating that
patients with high-risk score were more prone to develop
chemoresistance (Figure 10A).

DISCUSSION

HCC remains one of the most lethal malignancies, with the
second-highest mortality rate of all cancers worldwide
(Mattiuzzi and Lippi, 2020). An increasing number of studies
have confirmed the important role of pyroptosis in tumors, and
the findings of the relationship between pyroptosis and tumors
are not entirely consistent, indicating the heterogeneity of tumors
and the complexity of the immune microenvironment.
Pyroptosis can not only impair the progression of the tumor
but also create a microenvironment suitable for tumor cell growth
and thus contribute to tumor development (Xia et al., 2019). In
recent years, many models have been constructed based on data
mining of gene expression profiles and clinical outcomes of
HCC(Liu et al., 2020b; Hong et al., 2020). However, the
perception about the diagnostic and prognostic value of
pyroptosis for HCC is still insufficient.

In the present study, we performed consensus clustering to
identify two clusters based on 42 pyroptosis-related DEGs, which

showed significant survival differences in clusters one and 2. The
DEGs between the two clusters were then explored, and the
results showed enrichment in terms of functions associated with
immune response. To further investigate the prognostic value of
pyroptosis on HCC, DEGs were analyzed using univariate Cox
and LASSO Cox regression analysis to construct an 11-gene risk
signature. GSEA analysis revealed that patients in the high-risk
group were associated with activation of oncogenic pathways.
When exploring the state of the immune microenvironment,
there was a significant difference in the level of immune cell
infiltration and immune-related pathway activation in patients
with high and low-risk score, and the expression of immune
checkpoints was significantly higher in the high-risk group. Drug
sensitivity analysis indicated worse chemotherapy outcomes in
high-risk groups. The results of this study highlight the potential
research value of pyroptosis in HCC.

Here, our pyroptosis risk signature was constructed from 11
risk molecules, including MMP1, KPNA2, LPCAT1, NEIL3,
CDCA8, SLC2A1, PSRC1, CBX2, HAVCR1, G6PD, MEX3A,
of which KPNA2, LPCAT1, CBX2, MEX3A had higher
mutation frequencies in patients with HCC. Previous reports
indicate that KPNA2 contributed to the inflammatory processes
in tumors (Cai et al., 2016) and was also involved in the
carcinogenesis of various malignancies such as melanoma
(Yang et al., 2020b), HCC (Zan et al., 2019), colon cancer
(Takada et al., 2016), and so forth, and high expression of
KPNA2 was associated with poor outcomes of patients. Mao
et al. (2019) identified that interfering with the expression of
CBX2 inhibits HCC cell proliferation and increases apoptosis. Liu

TABLE 1 | Detailed distribution of the number of patients with different clinicopathological characteristics in low- and high-risk groups.

Covariates Cluster Total Low-risk High-risk P value

fustat alive 240 (64.86%) 136 (73.51%) 104 (56.22%) 7.00E-04
fustat dead 130 (35.14%) 49 (26.49%) 81 (43.78%)
Age ≤65 232 (62.7%) 110 (59.46%) 122 (65.95%) 0.237
Age >65 138 (37.3%) 75 (40.54%) 63 (34.05%)
Gender FEMALE 121 (32.7%) 55 (29.73%) 66 (35.68%) 0.2678
Gender MALE 249 (67.3%) 130 (70.27%) 119 (64.32%)
Grade G1 55 (14.86%) 41 (22.16%) 14 (7.57%) 0
Grade G2 177 (47.84%) 97 (52.43%) 80 (43.24%)
Grade G3 121 (32.7%) 44 (23.78%) 77 (41.62%)
Grade G4 12 (3.24%) 1 (0.54%) 11 (5.95%)
Grade unknow 5 (1.35%) 2 (1.08%) 3 (1.62%)
Stage Stage I 171 (46.22%) 101 (54.59%) 70 (37.84%) 0.0035
Stage Stage II 85 (22.97%) 35 (18.92%) 50 (27.03%)
Stage Stage III 85 (22.97%) 32 (17.3%) 53 (28.65%)
Stage Stage IV 5 (1.35%) 3 (1.62%) 2 (1.08%)
Stage unknow 24 (6.49%) 14 (7.57%) 10 (5.41%)
T T1 181 (48.92%) 109 (58.92%) 72 (38.92%) 8.00E-04
T T2 93 (25.14%) 36 (19.46%) 57 (30.81%)
T T3 80 (21.62%) 33 (17.84%) 47 (25.41%)
T T4 13 (3.51%) 4 (2.16%) 9 (4.86%)
T unknow 3 (0.81%) 3 (1.62%) 0 (0%)
M M0 266 (71.89%) 130 (70.27%) 136 (73.51%) 1
M M1 4 (1.08%) 2 (1.08%) 2 (1.08%)
M unknow 100 (27.03%) 53 (28.65%) 47 (25.41%)
N N0 252 (68.11%) 122 (65.95%) 130 (70.27%) 0.6704
N N1 4 (1.08%) 1 (0.54%) 3 (1.62%)
N unknow 114 (30.81%) 62 (33.51%) 52 (28.11%)

Bold values represent statistically significant.
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et al. (2020a) emphasized the important research value of the
miR-205-LPCAT1 axis in regulating the progression of various
tumors. MEX3A was overexpressed in HCC tissue and was also
identified as an independent prognostic factor for HCC patients
(Yang et al., 2020a). MMP1, a member of the zinc-dependent
endopeptidase family, has been proved to be associated with
proliferation and metastasis in various cancers (Kessenbrock
et al., 2010). Zhou et al. (2017) proposed that NEIL3
maintains genome stability during the S/G2 phase by targeting
repair of oxidative damage at telomeres. Interestingly, recent
studies indicate that NEIL3 contributes to repairing oxidative
telomere damage at mitosis, which is crucial for fighting
senescence in HCC cells (Zhao et al., 2021). Knockdown of
CDCA8 inhibits HCC cell progression by restoring ATF3
tumor suppressor and inactivating AKT/beta-Catenin signaling
(Jeon et al., 2021). SLC2A1 was the gene encoding glucose
transporter 1 (Glut-1). GLUT1/SLC2A1, a uniporter that was
expressed by various carcinomas, may participate in malignant
neoplasm glycometabolism and was associated with the prognosis

of gliomas patients (Komaki et al., 2019). Overexpression of
PSRC1 promotes the expression of genes related to cell
proliferation (Meroni et al., 2021). Ye et al. (2018). identified a
potential mechanism of TIM-1(HAVCR1)+Breg cell-mediated
immune evasion in HCC. G6PD was also up-regulated in HCC as
well as promoting cell invasion and migration (Lu et al., 2018).

It is generally accepted that there is a close interaction
between tumors and the complex immune system, and various
cancer immunotherapies have been designed to identify and
eliminate tumor cells. Natural killer (NK) cells are an essential
component of anti-tumor immunity, which can not only
directly kill tumor cells, but also affect the anti-tumor
behavior of other immune cells (Yuen et al., 2016).
Granzyme B in NK cells possessed the same cleavage site as
caspase-3, which can cleave GSDME to induce pyroptosis
(Zhang et al., 2020). Previous studies have observed that
GSDME-induced pyroptosis to suppress tumors was
disappeared in mice lacking NK cells and CD8+ T cells,
suggesting that this inhibitory effect is reliable on these two

FIGURE 7 | Construction and Validation of the Prognostic Nomogram. (A) Prognostic nomogram for predicting OS probability of patients at 1, 3, 5 years. (B–D)
Calibration curves of nomograms for predicting 1, 3, and 5 year survival probability in TCGA cohort.
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immune effector cells in the immune system (Zhang et al.,
2020). Our results show that the infiltration of NK cells in the
high-risk group was significantly reduced. Although CD8+

T cells were not significantly different, the absence of NK
cells may affect tumor cells being induced to pyroptosis.

Besides, increasing studies observed that tumor-associated
macrophages were associated with tumor-promoting
inflammation and may favor tumor initiation and
progression (Mantovani et al., 2017; Ngambenjawong et al.,
2017). Meanwhile, high-level intratumoral Tregs designed a
generalized immunosuppressive tumor microenvironment
and protected tumor cells from the host’s immune
surveillance (Nishikawa and Koyama, 2021). Previous study
proposed that the presence of B cells in tumors was associated
with a better prognosis for patients receiving immunotherapy,
and they speculate that B cells may support CD8+T cells to
effectively fight tumor cells (Cabrita et al., 2020; Petitprez et al.,
2020). Our data illustrated that the infiltration levels of
macrophages and regulatory T cells (Tregs) were
upregulated for HCC patients with high-risk score, while
B cells were downregulated.

Notably, our study found that aDCs were significantly
higher in the high-risk group. It has been shown that
dendritic cells are the most important cell type for initiating
cancer T-cell responses (Hildner et al., 2008; Binnewies et al.,
2019), which is a particular advantage for patients with high-
risk score. In addition, we found that the type I and II IFN
response were decreased in the high-risk group, which was
validated in the cohort. Type I interferons (Type I IFNs) are
involved in the process of cancer immunoediting, which can
not only inhibit the recruitment and activation of Tregs
(Hashimoto et al., 2014; Hirata et al., 2019), but also the

depletion of Type I IFNs affects the intensity of NK cells in
anti-tumor immune responses (Rautela et al., 2015). Type II
IFN (IFNγ) treatment can cause cell cycle arrest and inhibit the
growth of pancreatic cancer cells by triggering caspase-1- and
IRF1-dependent apoptosis (Detjen et al., 2001). These findings
suggested that type I and II IFN response may be involved in
the pyroptosis-mediated immunosuppression.

Apart from the complex role of pyroptosis in tumors, it has
a double-edged sword-like effect in the tumor immune
microenvironment. Reck et al. (2019) reported that PD-L1
inhibitor combined with radiotherapy or chemotherapy
triggers pyroptosis-induced inflammation within the tumor
microenvironment to kill tumor cells. Additionally, Chui et al.
(2019) proposed that DPP8/9 inhibitors could cleave NLRP1b
to release the C-terminus, thereby triggering caspase-1-
induced pyroptosis. Interestingly, our data illustrated that
most of the immune checkpoints (PD-L1, PDCD1, TIM3,
CTLA4, LAG3, and et al.) were upregulated at the high-risk
group, as were the pyroptosis related-genes, indicating that
patients with high-risk score may be able to achieve desired
therapeutic outcomes when treated with immune checkpoint
inhibitors.

Moreover, GSEA analysis indicated that a variety of
pathways (e.g., cell cycle, TGF-β signaling pathway,
pathways in cancer, and so on) involving the development
and progression of tumors were activated in the high-risk
group. It is widely accepted that dysregulation of the cell cycle
was considered an important marker of tumors (Dominguez-
Brauer et al., 2015). Haque et al. (Haque and Morris, 2017)
found that TGF-β disturbed the stabilization of the immune
system by inhibiting the activation of NK cells and reducing
cytokine production. Meanwhile, the results of drug prediction

FIGURE 8 |GSEA enrichment between low- and high-risk groups. (A)GSEA analysis showing that genes were enriched for the characteristics of malignant tumor
in the high-risk group.
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FIGURE 9 | The immune status difference between high- and low-risk HCC patients. (A–D) Comparison of immune cell abundance and immune pathway
activation in high- and low-risk groups in the TCGA and ICGC cohort. (E,F) Immune checkpoint expression in high- and low-risk groups in the TCGA and ICGC cohort.
(G) Heatmap showing expression of the pyroptosis-related genes in the high- and low-risk groups.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 13 | Article 80141913

Ding et al. Pyroptosis-Related Model for Hepatocellular Carcinoma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


showed that high-risk patients were less sensitive to HCC
chemotherapy drugs, including Sorafenib and others.
Sorafenib is indicated as a first-line treatment option for
patients with unresectable or metastatic advanced HCC.
Therefore, future research should be directed at
exploring the mechanisms between pyroptosis and drug
resistance.

Of course, some limitations of this study have to be
considered. First, we need more multicenter and
prospective clinical cohorts to validate the predictive value
of 11-gene pyroptosis signature for HCC survival in the
future. Second, the activated signaling pathways in the
high-risk group should be validated in vivo and in vitro
experiments. Additionally, the relationship between
pyroptosis signature and the overall intensity of immune
responses within the HCC microenvironment should be
further investigated.

CONCLUSION

In this study, we successfully established and validated a 11-
gene risk signature that could serve as an independent
prognostic factor for HCC patients. High-risk patients have
a worse prognosis and also multiple carcinogenesis-related
pathways were activated in high-risk group. Analysis of the
tumor immune microenvironment revealed that some
immune effector cell infiltration was reduced in the high-
risk group, while immunosuppressive cell infiltration was
increased, and patients with high-risk score were more
prone to receive treatment with immune checkpoint
inhibitors. Because of the large variation between patients,
our model can guide clinicians to provide support for
individualized treatment of patients. Overall, the potential
of pyroptosis for oncology treatment will become a promising
and noteworthy area in cancer research.

FIGURE 10 | Chemotherapeutic response in the high-risk and low-risk groups. (A) Box plot visualizing the IC50 of Sorafenib, Cisplatin, Docetaxel, and Rapamycin
between low- and high-risk HCC patients.
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