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SUMMARY

High-fat diet feeding leads to intestinal dysbiosis and
delayed colonic motility. Circulating lipopolysaccharide and
palmitate act together to activate Toll-like receptor 4, lead-
ing to enteric neuronal apoptosis. Prebiotic supplementation
reduces serum lipopolysaccharide and improves high-fat
diet–induced nitrergic myenteric neuron degeneration and
colonic transit delay.

BACKGROUND & AIMS: High-fat diet (HFD) feeding is associ-
ated with gastrointestinal motility disorders. We recently re-
ported delayed colonic motility in mice fed a HFD for 11 weeks.
In this study, we investigated the contributing role of gut
microbiota in HFD-induced gut dysmotility.

METHODS: Male C57BL/6 mice were fed a HFD (60% kcal fat)
or a regular/control diet (RD) (18% kcal fat) for 13 weeks.
Serum and fecal endotoxin levels were measured, and relative
amounts of specific gut bacteria in the feces were assessed by
real-time polymerase chain reaction. Intestinal transit was
measured by fluorescent-labeled marker and a bead expulsion
test. Enteric neurons were assessed by immunostaining. Oli-
gofructose (OFS) supplementation with RD or HFD for 5 weeks
also was studied. In vitro studies were performed using pri-
mary enteric neurons and an enteric neuronal cell line.

RESULTS: HFD-fed mice had reduced numbers of enteric
nitrergic neurons and showed delayed gastrointestinal transit
compared with RD-fed mice. HFD-fed mice had higher fecal Fir-
micutes and Escherichia coli and lower Bacteroidetes compared
with RD-fedmice. OFS supplementation protected against enteric
nitrergic neuron loss in HFD-fed mice, and improved intestinal
transit time. OFS supplementation resulted in a reduction in fecal
Firmicutes and Escherichia coli and serum endotoxin levels.
In vitro, palmitate activation of TLR4 induced enteric neuronal
apoptosis in a Phospho–c-Jun N-terminal kinase–dependent
pathway. This apoptosis was prevented by a c-Jun N-terminal
kinase inhibitor and in neurons from TLR4-/- mice.

CONCLUSIONS: Together our data suggest that intestinal dys-
biosis in HFD-fed mice contribute to the delayed intestinal
motility by inducing a TLR4-dependent neuronal loss. Manip-
ulation of gut microbiota with OFS improved intestinal motility
in HFD mice. (Cell Mol Gastroenterol Hepatol 2016;2:328–339;
http://dx.doi.org/10.1016/j.jcmgh.2015.12.008)

Keywords: Myenteric Neurons; Palmitate; Gut Microbiota; LPS;
TLR4; Colon Transit.

revious research has shown that high-fat diet (HFD)
Pintake can lead to gastrointestinal complications
such as constipation. Constipation can contribute signifi-
cantly to the US health care expenditure, with approxi-
mately 5.8 million ambulatory patient visits and a $235
million annual expenditure.1 Symptoms of constipation may
be secondary to disease of the colon (stricture, cancer, anal
fissure, proctitis), neurologic disorders (Parkinson’s, spinal
cord lesions), metabolic disturbances (diabetes mellitus,
hypothyroidism, hypercalcemia), or caused by disordered
colonic/pelvic floor function.2 Risk factors for constipation
include lower socioeconomic status, less physical activity,
medication, depression, and stressful life events.3 Excessive
dietary fat intake correlates with constipation and pro-
longed colonic transit times.4,5 Normal intestinal motility
involves coordinated functioning of the extrinsic innervation
of the intestine, the enteric nervous system, the longitudinal
and circular muscles, as well as the interstitial cells of Cajal.6

Diets rich in fat are associated with gastrointestinal motility
disorders.7,8 Rats fed a cafeteria diet rich in fat have been
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shown to have longer overall gastrointestinal transit time.9

We recently showed that mice fed a HFD have delayed in-
testinal motility associated with apoptosis of colonic enteric
neurons and mitochondrial damage.10

In addition, HFD also alters the gut microbiota,11 leading
to an increase in the Firmicutes to Bacteroidetes ratio, which
is associated with chronic metabolic endotoxemia.12 Altering
microbiota can lead to increased intestinal transit and elec-
trogenic activity in neurons.13 In a study involving women in
whom a prebiotic dairy product was administered, there was
reduced orocecal transit time owing to an increase in gut
Bifidobacterium14 and administration of Bifidobacterium
improved defecation frequency in human beings.15 Bifido-
bacterium can be increased in the gut by feeding dietary
oligofructose (OFS) in mice.16 In a study comparing patients
with irritable bowel syndrome with healthy controls, an in-
crease in the Firmicutes to Bacteroidetes ratio was
observed,17,18 potentially contributing to symptoms such as
constipation in irritable bowel syndrome patients.19,20

Gut microbial products signal through the pathogen
recognition Toll-like receptor (TLR) family. In the murine
enteric nervous system, TLR4 expression is maximal in the
distal colon21 and TLR3, 4, and 7 have been shown to be
expressed in myenteric neurons and glia cells.22 TLRs have
been implicated in neuronal apoptosis,23 and excess TLR4
activation by lipopolysaccharide (LPS) activates proin-
flammatory pathways and cytokine release within enteric
neurons.24,25AHFDcan lead to increasedTLR4expressionand
signaling.26 Moreover, saturated fatty acids such as palmitate,
a major fatty acid in HFD, can activate TLR4 signaling,27,28 and
hyperlipidemia leads to TLR4-dependent renal damages.29

The effects of HFD and LPS together on the enteric
nervous system is not known. Because a HFD increases
circulating LPS and can impact TLR4 signaling in the gut we
hypothesized that the enteric neuronal alteration induced
by the HFD feeding is dependent on TLR4 activation. Thus,
we examined the changes in gut microbiota in HFD-fed mice
and the effects of OFS supplementation on myenteric neu-
rons and gastrointestinal motility. In addition, we examined
in vitro the effect of excess saturated fatty acids on TLR4
expression in enteric neurons and investigated the subse-
quent enteric neuronal damage.
Materials and Methods
Animals

Eight-week-old male C57BL/6J mice obtained from
Jackson Laboratories (Bar Harbor, ME) were fed a HFD
(60% calories from fat, Teklad Diet 06414) or regular/
control diet [RD] (18% calories from fat) for 13 weeks.
The HFD was purchased from Harlan Laboratories, Inc
(Madison, WI). Mice were divided into 4 groups and fed
for another 5 weeks with or without OFS supplementation
in the drinking water (0.125 g/mL).30 OFS (Orafti P95)
was purchased from Beneo (Mannheim, Germany).
Throughout the experiment, mice were monitored for
body weight and stool indices. All animal studies were
approved by the Institutional Animal Care and Use Com-
mittee at Emory University.
Reagents
The following reagents were obtained: human embryonic

kidney (HEK)-Blue-mTLR4 cells (Invivogen, San Diego, CA),
Quanti-Blue medium (Invivogen), Escherichia coli LPS (Sigma,
St. Louis, MO), Histogene laser capture microdissection
(LCM) staining kit and Picopure RNA isolation kit (Arcturus;
Life Technologies Corporation, Carlsbad, CA), Sensiscript RT
kit, QIAamp DNA Stool Mini Kit, and QuantiFast SYBR Green
Polymerase Chain Reaction (PCR) Kit (Qiagen, Valencia, CA),
and stress-activated protein kinase/c-Jun N-terminal kinase
(JNK) inhibitor (SP600125; Sigma Aldrich, St. Louis, MO). All
other reagents were obtained from Sigma.

Antibodies and Primers
The following antibodies were obtained: neuronal nitric

oxide synthase (nNOS) and peripherin (Millipore, Billerica,
MA), Phospho-c-Jun N-terminal kinase, and cleaved caspase-3
(Cell Signaling Technology, Danvers, MA), b-actin (Sigma), and
Alexa Fluor secondary antibodies (Life Technologies Corp,
Waltham, MA). All oligonucleotide primers were purchased
from Integrated DNA Technologies (IDT, Coralville, IA).

Measurement of LPS in Serum
The concentration of LPS in mouse serum was detected

by using the Limulus Ameobocyte Lysate assay according to
the instructions provided by the manufacturer (Lonza,
Walkersville, MD). The endotoxin concentration of the serum
samples was measured by plotting endotoxin standard graph
(0.1–1.0 EU/mL), using standards provided in the kit.

Fecal LPS Load Quantification
Fecal LPS was quantified using HEK-Blue-mTLR4 cells.

Feces suspension was prepared in phosphate-buffered saline
(PBS) to a final concentration of 100 mg/mL and homoge-
nized for 10 seconds using a Mini-Beadbeater-24 (without
beads to avoid bacteria lysis). Samples then were centrifuged
for 2 minutes at 8000 g. The supernatant was serially
diluted, and applied to HEK-mTLR4 mammalian cells. Puri-
fied E coli LPS was used as a positive control and for prep-
aration of the standard curve. After a 24-hour stimulation,
cell culture supernatant was applied to Quanti-Blue medium,
and alkaline phosphatase activity was measured at 620 nm
after 30 minutes as previously described.31

PCR Microarray
PCR arrays were performed using the PAMM-018ZA

mouse TLR Signaling Pathway RT2 Profiler PCR Array
(Qiagen). This array profiles the expression of 84 genes
coding for members of the TLR signaling family (Tlr1–9);
TLR adaptor and effector proteins; signaling pathways
downstream of TLR activation (nuclear factor-kB, JNK/p38,
interferon regulatory factor, and Janus kinase/signal trans-
ducers and activators of transcription signaling pathways);
molecules associated with bacterial, viral, fungal, and
parasitic-specific responses; and those associated with the
regulation of adaptive immunity. Briefly, colonic myenteric
ganglia from 3 control mice and 3 HFD-fed mice were
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captured by laser capture microdissection as previously
described.32 PCR arrays were performed according to the
recommended procedure using complementary DNA pre-
pared as previously described32 from total RNA isolated
from the captured myenteric ganglia using the Picopure
RNA isolation kit and pooled by treatment group.

Quantitative PCR
Bacterial total DNA (genomic DNA) was isolated from RD

and HFD mice stool using the QIAamp DNA Stool Mini Kit.
Quantitative PCR was performed using the following oligo-
nucleotide primers: Bacteroidetes (forward) 5’-GAAG
GTCCCCCACATTG-3’ and Bacteroidetes (reverse) 5’-CGCKA
CTTGGCTGGTTCAG-3’; E coli (forward) 5’-CATGCCGCGTG
TATGAAGAA-3’ and E coli (reverse) 5’-CGGGTAACGTCAAT
GAGCAAA-3’; Bifidobacteria (forward) 5’-CGGGTGAGTAAT
GCGTGACC-3’ and Bifidobacteria (reverse) 5’-TGATAGGAC
GCGACCCCA-3’; Firmicutes (forward) 5’-GGAGYATGTGGTTT
AATTCGAAGCA-3’ and Firmicutes (reverse) 5’-AGCTGACG
ACAACCATGCAC-3’; total bacteria (forward) 5’-ACTCCTACG
GGAGGCAG-3’ and total bacteria (reverse) 5’-GTATTACCG
CGGCTGCTG-3’.

Two thirds of each reaction was analyzed on a 1.5%
agarose gel stainedwith ethidium bromide, and the amplified
products were visualized by ultraviolet trans-illumination.

Quantification of Bacterial Load in Stool by
Quantitative Real-Time PCR

Bacterial total DNA (genomic DNA) was isolated from RD
and HFD mice stool, treated with or without OFS, using the
QIAamp DNA Stool Mini Kit. For real-time PCR, amplifica-
tions were detected using the QuantiFast SYBR Green PCR
Kit in reactions performed as previously described.33 Total
bacteria was used as an endogenous control to normalize
the target gene expression.

Whole-Mount Tissue Staining
Longitudinal muscle strips with intact myenteric ganglia,

from the proximal colon of RD and HFD mice treated with or
without OFS, were dissected carefully from the remaining
colonic tissue and fixed in 4% paraformaldehyde as previ-
ously published10,32; blocked for 1 hour in PBS containing
0.3% Triton X-100 (BioRad, Hercules, CA) and 5% normal
donkey serum; and incubated with rabbit peripherin (1:500),
or rabbit nNOS (1:200) antibodies in PBS containing 1.5%
normal donkey serum, 0.3% Triton X-100, and 0.01% so-
dium azide, for 72 hours at room temperature. Secondary
detection was performed by incubation with anti-rabbit IgG
(1:200) conjugated to Alexa Fluor 594 antibody. Five fields
per mouse colon were evaluated randomly for statistics.

Total Gastrointestinal Transit Time
Mice were gavaged with 0.1 mL of a semiliquid solution

containing 5% Evans blue in 0.9% NaCl with 0.5% methyl
cellulose, and the time for expulsion of the first blue pellet
was determined. This test was performed in the last week of
the experiment.
Small Intestinal Transit Time
Small intestinal transit was determined by assessing the

distribution of 70-kilodalton fluorescein isothiocyanate
(FITC)-conjugated dextran in the intestines of mice as
described previously.34 Transit was analyzed using the in-
testinal geometric center of the distribution of FITC-
conjugated dextran throughout the intestine, and was
calculated as previously described.35

Colonic Transit Time
A 3-mm glass bead was placed 2 cm proximal to the anal

opening using a plastic Pasteur pipette lightly lubricated
with lubricating jelly. Distal colonic transit time was
assessed by measuring the amount of time between bead
placement and expulsion of the bead. The test was per-
formed in the last week of the diet.

Neuronal Cell Preparation
The intestines of embryos from embryonic day 13.5

pregnant wild-type (WT) and TLR4-/- mice were used for the
enteric neuronal preparation as described previously, with
slight modification of the protocol as mentioned.36

Immortal Postnatal Enteric Neuronal Cell
Line Culture

The immortal postnatal enteric neuronal (IM-PEN) cell
line37 was seeded onto 6-well plates with modified N2
medium containing glial cell line-derived neurotrophic fac-
tor (100 ng/mL), 10% fetal bovine serum, and 20 U/mL of
recombinant mouse interferon-g, and were cultured in a
humidified tissue culture incubator containing 10% CO2 at
permissive temperature, 33�C. After 48 hours the medium
was changed to Neurobasal-A medium containing B-27
serum-free supplement, 1 mmol/L glutamine, 1% fetal
bovine serum, GDNF (100 ng/mL), and the plates were
transferred to an atmosphere of 5% CO2 at 39�C. Palmitate
was used in 0.5–1 mmol/L concentrations, which is within
the physiologically increased limits observed in human be-
ings and animals, and can induce insulin resistance and
hyperlipidemia-associated complications.38 Palmitate was
dissolved in isopropanol to obtain a stock concentration of
100 mmol/L. The required volume of the stock was added
to the medium for 24-hour incubations. For SAPK/JNK in-
hibitor experiments cells were preincubated with 20 mmol/
L SP600125 for 2 hours before addition of palmitate.

Quantitative Reverse-Transcription PCR
IM-PEN cells were cultured for 24 hours in Neurobasal-A

medium in the presence or absence of palmitic acid (0.5 and
1 mmol/L) in 6-well plates. Total RNA was isolated using
the RNeasy Mini Kit (Qiagen) and was used to synthesize
first-strand complementary DNA using the Sensiscript RT
Kit and RT2 SYBR Green ROX qPCR Mastermix (Qiagen)
according to the recommended procedure; reverse-
transcription PCR was performed using the following
oligonucleotide primers: peripherin (forward) 5’-ACAACCTG
GTGCTCTTCCGTA-3’ and peripherin (reverse) 5’-TCTGGC



Figure 1. High-fat diet feeding alters gut microbiota and results in endotoxemia in mice. (A) Body weights of mice fed a
HFD or RD for up to 12 weeks and (B) fasting blood glucose level after 12 weeks. (C) PCR analyses of gut microbiota in stool
from HFD- and RD-fed mice stool showing the relative amount of Bacteroidetes, Firmicutes, E coli, and Bifidobacteria.
(D) Serum endotoxin levels and (E) stool LPS levels in RD- and HFD-fed mice. Results are means ± SEM; n ¼ 12 per group.
*P < .05, **P < .01, and ***P < .001.
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TTCACTGTTGCCTCT-3’; TLR4 (forward) 5’-TCAGCTTTGGT
CAGTTGGCTCT-3’ and TLR4 (reverse) 5’-AGACCCATGAAG
TTGGCACTCA-3’; glyceraldehyde-3-phosphate dehydroge-
nase (forward) 5’-CCAGTATGATTCTACCCACGGCAA-3’ and
glyceraldehyde-3-phosphate dehydrogenase (reverse)
5’-ACAGTCTTCTGAGTGGCAGTGATG-3’.

LCM
Myenteric ganglia were dissected by LCM, as previously

described,34 and RNA were isolated from the ganglia using
standard isolation techniques as previously described.10
Western Blot
Western blot analysis was performed according to

standard methods as previously described.39 Cell lysates
obtained from IM-PEN cells treated with or without palmi-
tate (0.5–1 mmol/L) for 24 hours were used to probe for P-
JNK, and cleaved caspase-3 with respective specific anti-
bodies by Western blot analysis. b-actin was used as a
loading control. A semiquantitative measurement of the
band intensity was performed using the Scion Image com-
puter software program (Bethesda, MD) and expressed as a
ratio of band intensity with respect to the loading control.



Figure 2. OFS-induced changes in gut microbiota leads to reversal of HF-diet induced enteric neuronal loss. (A) Gut
microbiota in stool from mice fed HFD or RD supplemented with or without OFS. (B) Endotoxin levels in serum from mice fed
HFD or RD supplemented with or without OFS. (C) Representative photographs of proximal colon whole mount stained for
peripherin and nNOS and histograms of neuronal counts. The number of stained neurons was determined per unit area. Scale
bars: 50 mm. Results are means ± SEM; n ¼ 6. *P < .05, **P < .01, and ***P < .001.
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In Vitro Neuronal Apoptosis
Apoptosis was measured in cultured primary enteric

neurons after 24 hours of incubation with palmitate (0.5
mmol/L) and/or LPS (1 mg/mL) by quantifying cleaved
caspase-3–positive primary neurons from WT and TLR4-/-

mice (2-day-old pups). Approximately 100 neurons were
scored for each condition.
Statistical Analysis
Statistics were performed with the Student t test or with

1-way analysis of variance (GraphPad software; GraphPad,
Inc, La Jolla, CA). A P value of .05 or less was considered
statistically significant.

All authors had access to the study data and reviewed
and approved the final manuscript.



Figure 3. OFS supplementation leads to reversal of HFD-
induced intestinal dysmotility. Assessment of gastrointes-
tinal motility in mice fed a RD or HFD for 13 weeks and an
additional 5 weeks with the diet supplemented with or without
OFS. (A) Dye transit time after oral gavage with Evans blue
dye/methyl cellulose solution, (B) bead expulsion time, and
(C) mean geometric center of small intestine in mice fed a RD
or HFD for 13 weeks and an additional 5 weeks with the diet
supplemented with or without OFS. Results are means ±
SEM; n ¼ 6. *P < .05, **P < .01, and ***P < .001.
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Results
High-Fat Diet Alters Gut Microbiota and Results
in Endotoxemia

HFD-fed mice gained significantly more weight
compared with the RD group (P < .001) (Figure 1A), and
had higher fasting blood glucose levels (P < .001)
(Figure 1B). A HFD has been reported to alter microbiota
composition, specifically reducing the proportion of Bac-
teroidetes and increasing the proportion of Firmicutes. To
investigate if this held true in our colony of mice, we
measured the relative amounts of these phyla by real-time
polymerase chain reaction (qPCR). We observed that the
HFD mice had a statistically significant reduction in Bac-
teroidetes (P < .001) and a significant increase in Firmi-
cutes, Bifidobacteria, and E coli (P < .001) relative to mice
fed a RD (Figure 1C), indicating the diet altered the micro-
biota as expected. As reported in Figure 1D, the endotoxin
level in serum was higher in HFD-fed mice (P < .05), which
correlated with increased stool endotoxin level (P < .01)
(Figure 1E) compared with RD-fed mice.

OFS Supplementation Leads to Changes in Gut
Microbiota and Ameliorates HFD-Induced Enteric
Neuronal Changes

Because HFD was associated with altered gut microbiota
including increased gram-negative bacteria E coli and
increased endotoxemia, we investigated the role of pre-
biotics on gut microbiota composition, endotoxemia,
gastrointestinal motility, and enteric neurons. Mice fed a RD
or HFD were supplemented with or without OFS for 5
weeks. OFS supplementation caused a robust increase in
Bifidobacteria (P < .001), with a significant decrease in
Firmicutes and E coli level (P < .01) in HFD-fed mice
(Figure 2A). As seen in Figure 2B, OFS decreased the level of
endotoxemia in HFD-fed mice. We next investigated the
impact of HFD and OFS supplementation on myenteric
neurons. HFD mice showed a reduced number of enteric
neurons after 18 weeks of feeding that was associated with
a loss of nitrergic neurons. As seen in Figure 2C, supple-
mentation with OFS for 5 weeks was sufficient to restore the
HFD-induced neuronal loss (P < .05).

OFS Supplementation Leads to Reversal of HFD-
Induced Intestinal Dysmotility

Based on our observation that OFS supplementation
reversed the effects of HFD feeding on enteric neuronal
damage, we next examined the effect of OFS on HFD-
induced delayed intestinal motility. HFD resulted in a
longer total intestinal transit time measured by Evans blue
gavage compared with RD (P < .001) (Figure 3A). Distal
colonic motility as measured by the bead expulsion time
was longer in the HFD group, indicating slower colonic
propulsion compared with RD (P < .01) (Figure 3B). OFS
supplementation improved the intestinal motility as
assessed by Evans blue gavage and the bead expulsion time
(P < .01). Relative distribution of FITC-conjugated dextran
fluorescence to examine small intestinal transit also was
found to be delayed in HFD mice, as noted by a significantly
lower intestinal geometric center (P < .05) (Figure 3C), and
supplementation with OFS was sufficient to restore normal
small-intestine transit (P < .05).
HFD Induced Increased Expression of TLR4 and
its Downstream Targets in Enteric Ganglia

We next determined if a diet high in fat could cause an
alteration in TLR4 expression. Expression of TLR4 and its



Figure 4. HFD feeding increases the expression of TLR4
and its downstream target genes in myenteric ganglia. (A)
List of highly up-regulated genes in myenteric ganglia iso-
lated by laser capture microdissection from the proximal
colon of mice fed RD or HFD for 13 weeks (n ¼ 3). (B) Effect of
palmitate on peripherin, and TLR4 gene expression in the IM-
PEN cell line as assessed by real-time PCR. Results are
means ± SEM; n ¼ 3. **P < .01.

Figure 5. Palmitate induces the phosphorylation of JNK
and cleavage of caspase-3 in enteric neurons in vitro.
Western blot analysis of (A) JNK phosphorylation and (B)
caspase-3 cleavage in IM-PEN neuronal cells cultured in
medium supplemented with various concentrations of palmi-
tate in the absence or presence of the JNK inhibitor SP600125.
Plotted are means ± SEM; n ¼ 3. *P < .05, **P < .01.
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downstream targets was determined in LCM-isolated RNA
from myenteric ganglia in conjunction with a PCR micro-
array analysis focusing on TLR4 and its target genes. As
seen in Figure 4A, there was an increase in the expression of
TLR4 and genes involved in the TLR4 signaling (mitogen-
activated protein kinase, Peli1) in myenteric ganglia of HFD-
fed mice compared with RD-fed mice. Because HFD are rich
in saturated fats, we next examined the contribution of
palmitate on this alteration of TLR4 signaling. We observed
in vitro that 24-hour incubation with increasing
concentration of palmitate enhanced the TLR4 expression in
the IM-PEN cell line concurrently with a decrease of
peripherin expression, suggesting enteric neuronal cell loss
(Figure 4B).

Role of the TLR4 and SAPK/JNK Signaling
Pathway in Palmitate-Induced
Neuronal Apoptosis

To understand the mechanism of palmitate-induced
enteric neuronal apoptosis, we evaluated the role of the
JNK signaling pathway using Western blot analysis. We
examined the activation of JNK in the IM-PEN cell line
cultured in the presence and absence of palmitate and a
specific inhibitor of the SAPK/JNK signaling pathway,
namely SP600125, which blocks the activity of JNK1, JNK2,



Figure 6. Effect of palmi-
tate on the survival of
primary enteric neuronal
cells fromWT and TLR4-/-

mice. (A) Representative
photographs of WT or
TLR4-/- primary enteric
neuronal cells cultured in
the presence of vehicle,
LPS (1 mg/mL), or palmitate
(0.5 mmol/L), and stained
for PGP9.5 (green) and
cleaved-caspase-3 (red).
(B) Plot of cleaved cas-
pase-3–positive neuronal
cell counts. Plotted are
means ± SEM; n ¼ 6–8.
*P < .05, ***P < .001. Palm,
palmitate; Veh, vehicle.
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and JNK3. Western blot analysis showed that palmitate in-
cubation resulted in the activation of JNK as seen by a dose-
dependent increase in phosphorylation of JNK (Figure 5A).
In the presence of this inhibitor in the culture medium,
palmitate-induced enteric neuronal JNK phosphorylation
was prevented (Figure 5A). In these experiments, an in-
crease of cleaved caspase-3 cleavage was observed with 0.5
and 1 mmol/L palmitate (Figure 5B), and this was pre-
vented by the JNK inhibitor. To understand the role of
palmitate in enteric neuronal loss, we evaluated apoptosis
after 24-hour incubation with 0.5 mmol/L palmitate or 1 mg
LPS in neurons from WT or TLR4-/- mice. In WT neurons,
both LPS and palmitate significantly increased the propor-
tion of neurons expressing cleaved caspase-3 (Figure 6A and
B). Palmitate increased the cleaved caspase-3 expression in
TLR4-/- neurons, but this increased expression was signifi-
cantly less than that in WT neurons. Altogether, those data
show that TLR4 activation in response to HFD feeding, both
through endotoxemia and palmitate, leads to apoptosis in
enteric neurons and subsequent delayed intestinal motility.
Discussion
Our results show that delayed intestinal motility in HFD-

fed mice for 13 weeks is associated with an increased serum
endotoxin level and a decreased proportion of myenteric
nitrergic neurons in the proximal colon. Moreover, the
restoration of the microbiota by OFS contributed to an
improvement in gastrointestinal motility and enteric
neuronal integrity. Finally, we showed that treatment with
palmitate increased TLR4 expression and reduced neuronal
survival in cell culture in a JNK-dependent pathway.
Together our data suggest that HFD-induced intestinal
dysbiosis contributes to the delayed intestinal motility by
altering the colonic myenteric plexus.

High-fat feeding induces intestinal dysmotility in human
beings and animal models,40 in particular slow intestinal
propulsive activity.41 We reported recently that mice fed a
HFD (60% calories from fat) for 12 weeks showed delayed
gastrointestinal transit associated with a reduced number of
nitrergic neurons in the proximal colon.10 These results
were confirmed in the present study in which mice fed a
diet with the same fat content had a slower small intestinal
transit, illustrated by a reduced mean geometric center, and
also a reduced colonic transit associated with a smaller
proportion of colonic nitrergic myenteric neurons. Deficits
in myenteric NOS neurons may be associated with failure of
colonic propulsion as seen in Hirschsprung’s and Chagas’
diseases,42 but also in a Parkinson’s disease model in which
it was associated with a reduced fecal output.43 Therefore,
we hypothesize in this study that the loss of nitrergic
myenteric neurons represents the major cause of the colonic
motility leading to constipation in HFD-fed animals,
although other neuronal alteration cannot be excluded and
will be the topic of future studies. This loss of nitrergic
myenteric neurons appears to be a common feature asso-
ciated with long-term, high-fat feeding. Stenkamp-Strahm
et al44 described similar loss in the duodenum of mice
presenting with symptoms of diabetes after the ingestion of
a HFD (72% kcal fat) for 8 weeks, but it also was described
in the colon of mice fed a moderately HFD (35% fat content)
for 8 and 17 weeks.45 Similar alterations were observed in
the colon of mice fed with a low-fat diet (21% fat, 2%
cholesterol) for 33 weeks, which showed hepatic steatosis
but no signs of diabetes.46 Several hypotheses have been
proposed to explain the underlying factors for HFD leading
to myenteric neurodegeneration including oxidative stress
and changes in the microbiota.

It has been shown that a HFD markedly affects the
composition of the intestinal microbiota.47 This diet-induced
dysbiosis leads to endotoxemia (ie, increased plasma LPS
levels) and can contribute to diabetes development.48

Therefore, we hypothesized that the alteration of the gut
microbiota induced by chronic high-fat consumption may be



Figure 7. A proposed model by which enhanced TLR4
activation leads to myenteric neuronal apoptosis in HFD-
fed mice. We propose that a HFD can lead to increased
circulating LPS levels, resulting from gut microbiota dysbiosis
and activation of TLR4 signaling. In addition, palmitate in HFD
can lead to increased TLR4 expression. Together LPS and
palmitate lead to enhanced TLR4 signaling, which in turn
leads to enhanced mitogen-activated protein kinase (JNK1)
signaling and apoptosis of myenteric neurons, and conse-
quent delayed intestinal motility.

336 Anitha et al Cellular and Molecular Gastroenterology and Hepatology Vol. 2, No. 3
responsible for nitrergic myenteric neuropathy. We first
characterized the fecal proportions of Bacteroidetes and
Firmicutes that are known to be altered in obesity.49 In our
study, mice on a HFD for 13 weeks showed an increased
Firmicutes to Bacteriodetes ratio, associated with an
increased concentration of gram-negative bacteria (as E coli)
in the stool. This intestinal dysbiosis led to increased fecal
and also plasma LPS levels, which contributes to myenteric
neuropathy as observed in cultured neurons.50

To understand the role of the gut microbiota in this
alteration, HFD mice were supplemented with OFS for 5
weeks. Cani et al16 showed that long-term OFS supple-
mentation (10% of ingested food) increases the proportion
of bifidobacteria and reduces endotoxemia. OFS supple-
mentation in our study re-established the ratio of Firmicutes
to Bacteroides and reduced plasma LPS after 5 weeks.
Although the OFS supplementation in RD led to subtle
changes in microbial composition, this was not associated
with a significant change in neuronal numbers or intestinal
motility. We found that the damaging effect of HFD on
enteric neurons was reversed in the OFS-supplemented
mice, raising the question of the origin of the new periph-
erin and nNOS-positive cells. Stem cells, glia, or existing
neurons could be the source of these new cells and char-
acterization of this myenteric neuronal renewal will be the
topic of future studies in our laboratory.

To examine the mechanism of HFD-induced neuronal
loss we focused on the role of saturated fatty acids such as
palmitate, which can activate TLR4,28 in conjunction with
increased LPS. In vitro, both induce apoptosis in cultured
myenteric neurons.50,51 Moreover, palmitate increases TLR4
expression in pancreatic carcinoma cell lines.52 The same
study also observed a similar increase of TLR4 messenger
RNA of pancreatic islets in mice fed for 24 weeks with a HFD
(31.5% fat content). Therefore, we investigated in cultured
enteric neurons the role of palmitate in the regulation of
TLR4 expression. Our results showed that incubation with
palmitate (in similar concentrations used by Voss et al51)
reduces enteric neuronal survival as seen by reduced
peripherin expression, and also increases TLR4 messenger
RNA. Our study also confirmed that TLR4 activation,
illustrated by the increase of JNK-1 phosphorylation
(mitogen-activated protein kinase involved in the TLR4
pathway53), is required for apoptosis in enteric neurons
incubated with palmitate because the specific deletion of
this receptor ameliorated the increase of cleaved caspase-3
in the neurons. The activation of TLR4 downstream path-
ways appears to be critical in the palmitate-induced
neuronal apoptosis because in vitro treatment with palmi-
tate induced activation of JNK-1 by causing increased
phosphorylation of JNK-1, which was associated with
increased neuronal apoptosis. Addition of SP600125, which
blocks the activity of JNK1, JNK2, and JNK3, helped to pre-
vent palmitate-induced enteric neuronal apoptosis. It has
been shown that TLR4 activation of JNK1/2 leads to
neuronal death in primary cultures of rat cortical neurons.54

Our data highlight a potential pivotal role for P-JNK in
enteric neuronal apoptosis in response to TLR4 activation.
Future studies will be required to define whether
other alternative intracellular pathways can be involved
in this neuronal cellular loss, such as the TLR4-
phosphatidylinositol 3-kinase/protein kinase B (PKB)
pathway that recently was described in hippocampal
neuronal apoptosis.55 In addition, our study has shown
that the proinflammatory cytokine IL6 expression also was
increased in myenteric ganglia from HFD mice, confirming
the role of TLR4 in LPS-induced neuronal inflammation.25

We propose that the excess of HFD, containing palmitate,
may chronically enhance the neuronal TLR4 signaling in the
colonic myenteric plexus. Palmitate and LPS may act
together on myenteric neurons, resulting in apoptosis that
leads to motility disorders. We previously published that a
lack of TLR4 expression leads to a reduction in nitrergic
neurons.32 In the present study we showed that excess
TLR4 stimulation leads to neuronal apoptosis. It is already
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known that optimal TLR4 signaling is essential for nitrergic
neuronal development and survival in the enteric nervous
system, in particular in the colon where its expression is
enhanced.21,22 The endotoxemia associated with a high-fat
diet could initiate myenteric inducible NOS activation,
known to increase in neurons after the systemic adminis-
tration of LPS,56 and can induce an overproduction of NO in
nitrergic neurons, leading to oxidative stress and
apoptosis.42,57 This will be the focus of our future studies as
we continue to understand the mechanisms of a HFD-
induced nitrergic enteric neuronal degeneration and
delayed colonic transit. One possibility is that the loss of
nitrergic myenteric neurons leading to a reduction of the
inhibitory tone can contribute to a hypercontractility,
abnormal peristalsis, and subsequent constipation.

In conclusion, intestinal dysbiosis contributes to
gastrointestinal motility disorders in HFD-fed mice through
LPS-induced activation of TLR4 and JNK signaling pathways.
Our findings suggest a novel mechanism of HFD and
hyperlipidemia-induced enteric neuronal damage in a TLR4-
dependent manner (Figure 7). This mechanism includes
altered microbiota, increased endotoxemia, and subsequent
enteric neuronal damage. This damage can be prevented by
OFS and involves the TLR4 signaling pathways. This study
can help identify novel targets for the treatment of gastro-
intestinal motility disorders.
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