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Cognitive decline is common with the progression of Parkinson’s disease (PD). Different candidate biomarkers are currently
studied for the risk of dementia in PD. Several studies have shown that quantitative EEG (QEEG) is a promising predictor of
PD-related cognitive decline. In this paper we briefly outline the basics of QEEG analysis and analyze the recent publications
addressing the predictive value of QEEG in the context of cognitive decline in PD. The MEDLINE database was searched for
relevant publications from January 01, 2005, to March 02, 2015. Twenty-four studies reported QEEG findings in various cognitive
states in PD. Spectral and connectivity markers of QEEG could help to discriminate between PD patients with different level of
cognitive decline. QEEG variables correlate with tools for cognitive assessment over time and are associated with significant hazard
ratios to predict PD-related dementia. QEEG analysis shows high test-retest reliability and avoids learning effects associated with
some neuropsychological testing; it is noninvasive and relatively easy to repeat.

1. Introduction

(1) Background. Cognitive decline is common with the
progression of Parkinson’s disease (PD) [1]. Several studies
have shown that the point prevalence of dementia in patients
with PD (PD-D) is about 30% and that the incidence rate of
dementia in PD is 4–6 times higher than in control subjects
[2–4].The cumulative prevalence of PD-D in patients surviv-
ingmore than ten years after diagnosis was estimated at more
than 75% [5]. Thus, prediction and early diagnosis of cogni-
tive decline in PD are a current challenge in neurosciences
as well as patient care and counselling. Various markers
have been studied for early identification of PD-D and
mild cognitive impairment related to PD (PD-MCI) [6–8].
Quantitative EEG (QEEG) has shown good potential in iden-
tification of cognitive deterioration in patients with PD [9].
QEEG is advancing fast, and various newmethods have been
introduced and applied in QEEG research. In this review, we
briefly discuss the basics of QEEG and recent publications
addressing its predictive value for detecting of PD-related
worsening of cognition.

(2) Methods of Literature Search. References for this review
were identified through search of the MEDLINE database
(Supplement 1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2016/9060649). The following
search strategy was used: ((((eeg) AND parkin∗))) AND
(“2005” [Date - Publication]: “2015” [Date - Publication]).
We identified 739 potentially eligible publications with this
search query on March 2, 2015. The titles and abstracts were
examined for selection criteria:

(a) full text available in English;
(b) original research studies;
(c) subjects of the study: patients with PD, who were

assessed by QEEG (spectral or/and connectivity anal-
ysis) and had not undergone deep brain stimulation;

(d) QEEG variables acquired through conventional EEG
machines or magnetoencephalography (MEG) in
resting state eyes-closed conditions in “ON” or/and
“OFF” levodopa medication condition;

(e) studies focusing on comparison between groups
of PD patients with different states of cognition
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(e.g., PD-D versus PD-MCI) or/and longitudinal
QEEG evaluations of cognition in patients with PD
or/and evaluations of correlation of QEEG variables
with tests and tools for cognitive assessment.

Sixty-one original research papers were identified after anal-
ysis of the titles and abstracts and subject to full text analysis.
After analysis of the full text, 23 original research publications
in peer-reviewed journals were selected for the final analysis.
Details summarizing the profiles of the included publications
are shown in Table 1. Profiles of the excluded papers are
shown in Supplement 2.

(3) Analysis of the Findings. These 23 selected studies were
performed by nine independent research groups. Indepen-
dence of the authorswas analyzed by reviewing the affiliations
of the first and the corresponding authors.

Full meta-analysis was not performed because of the fol-
lowing reasons: firstly, in spite of a common concept, applying
QEEG methods to investigate cognition of patients with PD,
these studies were too heterogeneous in terms of the applied
methods. The researchers use different methods of mathe-
matical processing of the EEG, different approaches (such
as spectral or connectivity analysis), and different settings.
Secondly, while there is a more or less common consensus
regarding diagnostic criteria of an advanced cognitive dete-
rioration, PD-dementia (PD-D), such a consensus regarding
diagnostic criteria for intermediate (between normal cogni-
tion and PD-D) cognitive disorder, mild cognitive impair-
ment (MCI), is still under discussion [10–12].

However, the effect sizes of the reported variables were
calculated in order to compare the relevant results. The
effect size is a statistical measure, reflecting how much two
standardized means are different between two populations
[13].The larger the effect size is, themore the two populations
are distinct in a studied parameter. Similarly, correlation coef-
ficients were analyzed by Fisher’s 𝑍 transformation [14]. In
this case, the larger the Fisher 𝑍 is, the stronger the correla-
tion is.

2. Background on QEEG

2.1. Basics of Quantitative Analysis of EEG. QEEG is a
mathematical processing of EEG data to extract relevant
information for subsequent analysis or comparison with
other kinds of data [15, 16]. In contrast to conventional EEG,
where electrical activity of the brain cells is visually analyzed,
QEEG provides derivative parameters, which are generated
from EEG “raw” data using computational methods. QEEG
includes several procedural steps (Figure 1). The first step
consists of EEG signal acquisition itself, performed with
the use of various EEG machines and electrode systems.
Alternatively, MEGmay be used. MEG is the recording of the
magnetic fields, generated by the ionic currents at the brain
cellular level; thus, both EEG andMEG are methodologically
similar and relevant in neuroscience [17]. The second step
includes preprocessing, eliminating the following artifacts:
muscle movements, sleepiness, eye blinks, heartbeat, and
other types of EEG “noise.” Preprocessing is performed by

selecting “clean” EEG segments for analysis. The last stage
is mathematical processing of the “clean” (artifact-free) EEG
signal to extract a parameter, which denotes best the process
of interest (e.g., cognitive decline). Various mathematical
approaches are used for the processing; they are generally
classified in linear and nonlinear techniques. Linear methods
are based on the concept that electric activity of the brain
is a stationary process [18]. Nonlinear methods are based on
the concept that EEG activity is a dynamic and irregular phe-
nomenon [19]. Each of these methods has its advantages and
disadvantages [20, 21].

2.2. Spectral Analysis. Spectral analysis is a linear technique
of EEG processing. It is a process by which a complex EEG
signal is decomposed into its component frequencies, and the
amplitude of oscillations at each frequency bin is calculated.
Since oscillations around zero (like an EEG trace) would
add up to 0, amplitudes are represented by their squares,
called power. The totality of powers at each frequency band
is called power spectrum and could be represented as a graph
(Figure 2). Thus, a power spectrum reflects “the amount of
activity” in frequency bands. The frequency bands are the
same as those used in conventional EEG, generally consisting
of delta (0.1–3.5Hz), theta (4–7.5Hz), alpha (8–13Hz), beta
(14–30Hz), and gamma (>30Hz) [22]. However, different
researchers may select slightly different frequency intervals
for their analyses. Additionally, the bands could be divided
into subbands, for example, alpha 1 (8–10Hz) and alpha 2 (10–
13Hz), for the purpose of a thorough analysis.

Spectral power can be absolute or relative.Absolute power
in a given frequency band, for example, in the alpha band,
corresponds to the integral of all power values as measured,
while relative power is the power in a given frequency band
divided by the sum of all power measurements of all fre-
quencies. Additionally, power could be global and regional.
Global power reflects the average power over thewhole cortex,
while regional power characterizes the power in certain cortex
regions. Mainly, 5 regions in each hemisphere are analyzed:
frontal, temporal, parietal, occipital, and central, giving a total
of 10 regions.

Additionally, some average parameters of EEG frequency
can be obtained in spectral analysis [23].Mean frequency (also
referred to as mean “power frequency” or “spectral center of
gravity”) is calculated as the sum of the product of the power
spectrum and the frequency divided by the total sum of the
power spectrum.Median frequency is the 50% quantile of the
power spectrum; in other words, it is the frequency at which
the power spectrum is divided into two regions with equal
amplitude. Finally, peak frequency is the frequency which
corresponds to the maximum of the power spectrum.

2.3. Functional Connectivity Analysis. The other type of
information obtained byQEEG (apart from spectral analysis)
is functional brain connectivity. Functional connectivity in
the context of neuronal activity may be briefly defined as a
coordinated interplay between specialized brain regions [24].
Cognitive functions (e.g., attention, memory) arise from
neuronal activity, which is distributed over the brain anatom-
ically and temporally, forming complex networks [25]. These
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Table 1: Profiles of the studies, which met the inclusion criteria.

Number Author(s) Type of the study/setting Analyzed parameter(s) Affiliation of the corresponding
author

Studies with EEG with 10-20 international system

1 Caviness et al. 2007
[35]

Comparison of 8 PD-D patients
versus 16 PD-MCI patients
versus 42 PD-NC patients

Relative spectral power Mayo Clinic, Scottsdale, USA

2 Bonanni et al. 2008
[36]

Observation of 36 LBD patients,
19 PD-D patients without
cognitive fluctuations, 16 PD-D
patients with cognitive
fluctuations, 17 AD patients, and
50 HC

Compressed spectral arrays
and relative spectral power

G. d’Annunzio University of
Chieti-Pescara, Pescara, Italy

3 Fonseca et al. 2009
[37]

Comparison of 7 PD-D patients
versus 10 PD-MCI patients versus
15 PD-NC patients versus 26 HC

Relative and absolute
amplitudes

Pontificia Universidade Catolica de
Campinas, Campinas, Brazil

4 Kamei et al. 2010 [38]

Comparison of PD patients with
executive dysfunction versus 25
PD patients without executive
dysfunction

Absolute spectral power Nihon University School of
Medicine, Tokyo, Japan

5 Babiloni et al. 2011
[39]

Comparison of 13 PD-D patients
versus 20 AD patients versus 20
HC

Spectral and source
analyses

Casa di Cura San Raffaele Cassino,
Italy

6 Klassen et al. 2011 [9] Observation of 106 PD-wD
patients Relative spectral power Mayo Clinic, Scottsdale, USA

7 Morita et al. 2011 [40]

Comparison of 100 PD patients:
43 with MMSE 28–30 versus 35
with MMSE 24–27 versus 22 with
MMSE <24

Absolute spectral power Nihon University School of
Medicine, Tokyo, Japan

8 Pugnetti et al. 2010
[41]

Comparison of 21 PD-wD
patients versus 7 PD-D patients
versus 10 LBD patients versus 14
HC

Global field
synchronization

Scientific Institute of S. Maria
Nascente, Milan, Italy

9 Fonseca et al. 2013
[42]

Comparison of 12 PD-D patients
versus 31 PD-wD patients versus
38 AD patients versus 37 HC

Absolute spectral power
and coherence

Pontificia Universidade Catolica de
Campinas, Campinas, Brazil

10 Gu et al. 2016 [43] Observation of 9 PD-D patients
and 17 PD-MCI patients

Relative and absolute
spectral power

Nanfang Hospital, Guangzhou,
China

11 Caviness et al. 2015
[44]

Observation of 71 PD-wD
patients Relative spectral power Mayo Clinic, Scottsdale, USA

12 Fonseca et al. 2015
[45]

Comparison of 31 PD-wD
patients versus 28 AD patients
versus 27 HC

Absolute spectral power
and coherence

Pontificia Universidade Catolica de
Campinas, Campinas, Brazil

Studies with EEG with 256 channels

13 Bousleiman et al. 2014
[46]

Comparison of 12 PD-NC
patients versus 41 PD-MCI
patients

Relative spectral power Hospital of the University of Basel,
Basel, Switzerland

14 Zimmermann et al.
2014 [47] Analysis of 48 PD-wD patients Median background

frequency
Hospital of the University of Basel,
Basel, Switzerland

Studies with 151-channel whole-head MEG

15 Bosboom et al. 2006
[48]

Comparison of 13 PD-D patients
versus 13 PD-wD patients versus
13 HC

Relative spectral power VU University Medical Center,
Amsterdam, the Netherlands

16 Stoffers et al. 2007
[49]

Comparison of 70 PD-wD
patients versus 21 HC Relative spectral power VU University Medical Center,

Amsterdam, the Netherlands

17 Stoffers et al. 2008
[50]

Comparison of 70 PD-wD
patients versus 21 HC Synchronization likelihood VU University Medical Center,

Amsterdam, the Netherlands



4 Parkinson’s Disease

Table 1: Continued.

Number Author(s) Type of the study/setting Analyzed parameter(s) Affiliation of the corresponding
author

18 Bosboom et al. 2009
[27]

Comparison of 13 PD-D patients
versus 13 PD-wD patients Synchronization likelihood VU University Medical Center,

Amsterdam, the Netherlands

19 Ponsen et al. 2013 [51] Comparison of 13 PD-D patients
versus 13 PD-wD patients

Relative spectral power and
phase lag index

VU University Medical Center,
Amsterdam, the Netherlands

20 Olde Dubbelink et al.
2013 [52]

Observation of 49 PD-wD
patients and 14 HC Relative spectral power VU University Medical Center,

Amsterdam, the Netherlands

21 Olde Dubbelink et al.
2013 [53]

Observation of 43 PD-wD
patients and 14 HC Phase lag index VU University Medical Center,

Amsterdam, the Netherlands

22 Olde Dubbelink et al.
2014 [33]

Observation of 43 PD-wD
patients and 14 HC

Weighted graph and
minimum spanning tree

VU University Medical Center,
Amsterdam, the Netherlands

23 Olde Dubbelink et al.
2014 [54] Observation; 63 PD-wD patients Relative spectral power VU University Medical Center,

Amsterdam, the Netherlands
AD: Alzheimer’s disease; DLB: dementia with Lewy bodies; HC: healthy controls; PD-D: Parkinson’s disease with dementia; PD-MCI: Parkinson’s disease with
mild cognitive impairment; PD-NC: Parkinson’s disease with normal cognition; PD-wD: Parkinson’s disease without dementia.

Spectral analysis,
connectivity analysis

Postprocessing

Filtering,
selecting epochs,
removing artifacts,

PreprocessingObtaining EEG

Fp2-F4

Fp2-F8

Fp1-F7

F4-C4

F8-T4

F7-T3

F2-C2
C2-P2

T4-T6
T6-O2

T3-T5
T5-O1

C4-P4
P4-O2

Fp1-F3
F3-C3
C3-P3
P3-O1

and so forth

(a)

Connectivity measures

Single connection estimation

Whole network estimation

(i) Absolute power
(ii) Relative power
(iii) Power ratio
(iv) Peak frequency
(v) Median frequency

(i) Coherence
(ii) Synchronization likelihood
(iii) Phase lag index
(iv) Global field synchronization

(i) Weighted graph
(ii) Minimum spanning tree

Spectral measures

(v) And so forth

(iii) And so forth

(vi) And so forth

(b)

Figure 1: Outlines of the QEEG process. (a) Main steps of the processing; (b) spectral and functional connectivity measures.
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Figure 2: Power spectra of a healthy person (a), a patient with PD-MCI (b), and a patient with PD-D (c); band power: 8–13Hz. Images
computed from our own EEG data using TAPEEG toolbox.

networks function on the basis of anatomical connections
(white matter tracts connecting brain regions), functional
connections (temporal correlations between brain regions,
even anatomically unconnected), and effective connections
(causal influences between networks) [26]. Thus, functional
connectivity analysis is a measure, which enables quantifying
the level of the functional connections between brain regions.

As discussed by Bosboom et al. (2009), when performing
connectivity analyses, we assume that two dynamically active
neural networks are designated “A” and “B” [27]. Time series
“𝑎
𝑖
” and “𝑏

𝑖
”, using EEG signals from both networks, are

recorded.Themain purpose is to analyze the functional rela-
tion between “A” and “B” from “𝑎

𝑖
” and “𝑏

𝑖
” and to quantify

the level of this relation.This quantification is performedwith
both linear and nonlinear methods.

Linear approaches in connectivity analysis assume that
the more “𝑎

𝑖
” and “𝑏

𝑖
” correspond to each other, the stronger

the relation between “A” and “B” is. In this way, for instance,
the coherence is calculated as an estimate of a function of
frequency between two signals [28]. In contrast to coherence,
where the stability of the phase relation between two signals
is assessed and taken as an indicator of synchronization
between the brain regions, the global field synchronization
(GFS) makes no assumption about the spatial location of the
activity [29, 30]. GFS is calculated as a function of all
frequency bands.
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However, there can be a functional relation between the
structures “A” and “B” even if time series “𝑎

𝑖
” and “𝑏

𝑖
” do not

correspond to each other; in this case nonlinear methods of
analysis are applied. One of thesemethods is synchronization
analysis, which implies that “the state of A is a function of the
state of B” [31]. Synchronization likelihood (SL) is an estimate
of synchronization, which reflects dynamic interactions of
the chaotically active coupled networks. SL denotes how
strongly a signal channel at a given time is synchronized
to other channels. Another estimate of synchronization is
phase lag index (PLI). PLI is calculated from the asymmetry
of the distribution of instantaneous signal phase differences
between two brain regions and has the advantage of being free
of effects of volume conduction as opposed to the methods
mentioned before [31]. In other words, PLI reflects the degree
of synchronization between couples of signals.

After characterization of single connections, the next
level of connectivity analysis consists in description of the
whole network, applying graph theory method. In this
method functional connections between brain structures are
described as graphs (networks) [32]. These graphs consist of
vertices (nodes) and corresponding sets of edges (connec-
tions). There are different approaches to assess the obtained
graph, for example, weighted graph analysis and minimum
spanning tree. The two fundamental measures of weighted
graph are clustering coefficient (CC) and path length (PL).
Olde Dubbelink et al. (2014) describe CC as an estimate of
“the likelihood that neighbors of a vertex are also connected to
each other, and characterizes the tendency to form local clus-
ters” [33]. In other words CC describes local “connectedness.”
The same authors described PL as a “measure for global
integration of the network. It is defined as the harmonic mean
between all possible vertex pairs in the network, where the
shortest path between two vertices is defined as the path with
the largest total weight.” Thus PL describes global “connect-
edness.”

Graphs may be very complex and large, forming a variety
of nodes and paths. A subgraph can be developed which con-
nects all nodes through the shortest paths without forming
cycles; such subgraph is referred to as minimum spanning
tree of a weighted graph [34]. The following measures are
used for minimum spanning tree estimation: leaf number
(the number of nodes with only one edge), eccentricity of a
node (the length of the longest connection from this node
to any other node), betweenness centrality of a node (the
fraction of all connections in the tree that include, but do not
stop at, that node), and tree hierarchy (a quotient of the leaf
number to the product of twice the number of edges to the
highest betweenness centrality of any node in the tree).These
measures estimate the complexity of connections in the topo-
graphical brain network [34]. There are other various types
of connectivity analysis, but we briefly described only those,
which will be referred to further in the text of this review.

3. Reliability of the QEEG Analysis

3.1. Individual Variability. According to Näpflin et al. (2007)
interindividual variability of absolute power of the tradi-
tional frequency bands in healthy humans is large, while

intraindividually the power spectrum remains stable over a
period of 12 to 40 months in healthy individuals [61].

However, interpretation of a change in relative power in
an individual is ambiguous and requires knowledge of more
information than a change in absolute power. For example,
a decrease of the relative alpha power can be due to either
a decrease of absolute alpha power but also to an increase
of the absolute power in one or more of the other frequency
bands without any change in the absolute alpha power or to a
combination of both. In cross-sectional comparisons of small
groups of individuals, alterations in relative power are more
easily detected than changes in absolute power, while absolute
power is a good measure for longitudinal, intraindividual
changes or cross-sectional comparisons of very large popu-
lations. Derived indices were proposed as a possible solution
for the problem that exists in relative power relationship
between frequency bands: spectral ratio (sum of alpha and
beta powers divided by the sum of delta and theta powers)
[40] or alpha/theta ratio [43].

3.2. Test-Retest Effect. According to consecutive reports EEG
frequency parameters are stable over time. Gasser et al. (1985)
were amongst the first to address the issue of test-retest relia-
bility of EEG parameters [62]. They reported that alpha elec-
trical activity of the brain cortex showed the best reliability
and delta and beta activity had the worst reliability. Dustman
et al. (1999) investigated the variability of absolute and relative
powers in five frequency bands, delta, theta, alpha, beta, and
gamma, over the interval of 6 months in a sample of 222
males aged from 4 to 90 years [63]. Age-related dependence
of the parameters was identified, but the frequency markers,
especially power in the alpha band, showed a satisfactory
reliability over time. Later, Näpflin et al. (2007), in the above-
mentioned study, replicated these results in healthy adults
[61].

Additionally, the EEG frequency markers are not influ-
enced by cognitive activity. Grandy et al. (2013) investigated
the modifiability of the alpha frequency of healthy subjects
before and after a series sessions of cognitive tasks [64].
Cognitive tasks had no significant effects on the resting state
peak alpha frequency 7.5–12.5Hz.

3.3. Influence of Dopamine-Replacement Therapy on QEEG
Parameters. The effects of levodopa and dopaminergic med-
ication on the EEG activity of the patients yielded ambiguous
results: while some researchers reported that patients in a
medicated and a nonmedicated state revealed no influence of
dopamine-replacement therapy on frequency characteristics
[49, 65], various other studies reported that levodopa treat-
ment of PD induces an increase in alpha and beta bands and
a decrease of theta and delta bands. These latter changes are
referred to as “activation” of EEG [66].

George et al. (2013) analyzed the EEG power spectra
and connectivity in nondemented PD patients in ON- and
OFF-medication state, in both resting state and during a
cognitive task [67]. These results were compared to those of
a group of healthy controls. No significant changes in powers
were identified in relation to medication. Despite that fact,
the authors showed that dopaminergic medication reduced
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the pathological synchronization in the beta band in the
resting state and induced task-related increase of beta power.
These findings were consistent with the previous reports
[50, 68]. According to other researchers levodopa treatment
has influence on functional brain connectivity assessed by
MEG and these changes were mostly identified in beta fre-
quency range [69]. Therefore, studies of beta activity require
adjustments according to dopaminergic stimulation while
data with alpha and theta activity is probably largely indepen-
dent from dopaminergic influence.

4. Spectral Characteristics of
Cognitive States in PD

4.1. Global Power Spectra. Seventeen studies focused on
spectral features of cognitive states in PD. Six of these 17
studies focused on the capacity of discrimination between
better and worse states of cognition in PD (e.g., group of
patients with PD-MCI versus group with PD patients with
normal cognition (PD-NC) or group with PD-MCI versus
group with PD-D) [35, 36, 42, 43, 46, 48] (Table 2). Global
delta and theta powers (these variables were increased in PD-
D patients) and peak background frequency (decreased in
PD-D patients) had the largest effect sizes to discriminate
PD-NC versus PD-D. Global delta power (increased in PD-
D patients), peak background frequency, and global alpha
power (decreased in PD-D patients) had the largest effect
sizes to distinguish PD-MCI versus PD-D. Additionally, beta
peak frequency was significantly increased (𝑝 < 0.01), and
global alpha power and alpha/theta ratio were significantly
decreased (𝑝 < 0.01 and 𝑝 < 0.01) in PD-D versus PD-MCI
in one report (although original data was not available) [43].
Global alpha power, peak background frequency (decreased
in PD-MCI patients), and global theta power (increased in
PD-MCI patients) had the largest effect sizes to discriminate
PD-NC versus PD-MCI.

Patients with PD-D were compared to PD patients with-
out dementia in two studies [42, 48]. The latter group might
include both PD-NC and PD-MCI.However, global delta and
theta powers (increased in PD-D patients) had the largest
effect sizes. In one study, two groups of patients with PD-D,
with cognitive fluctuations (CF) and without CF, were com-
pared by the analysis of the compressed spectral arrays (CSA)
[36]. CF are described as disorders of consciousness ranging
from reduced arousal to stupor; CF indicate a worse state of
dementia [56]. CSA is a method of epoch-to-epoch QEEG
representation for each derivation, CSA provide information
on various QEEG parameters like spectral powers, dominant
frequency (DF), mean frequency where the maximal power
is represented in the sum of all epochs, DF variability (DFV)
across all analyzed epochs, and other parameters. Global
alpha and prealpha (5.6–7.9Hz) powers had the largest effect
sizes: alpha was decreased and “prealpha” was increased in
patients with PD-D and CF.

4.2. Topographic Distribution of Power Spectra. Topographic
distribution of spectral powers was addressed in 7 studies
[36–38, 40, 46, 48, 51]. Theta and alpha powers in temporal
and parietal regions bilaterally had the largest effect sizes to

distinguish between PD-NC and PD-D patients.Theta power
was increased and alpha power decreased in PD-D patients.
Spectral ratio (sum of alpha and beta powers divided by the
sum of delta and theta powers) in frontal regions and delta
and alpha powers in posterior derivations had the largest
effect sizes to distinguish between PD-MCI and PD-D. Delta
power was increased and alpha power and spectral ratio were
decreased in PD-D patients.Theta and beta powers and spec-
tral ratio in posterior derivations had the largest effect sizes
to distinguish between PD-NC and PD-MCI. Theta power
was increased and alpha power was decreased in PD-MCI
patients. In one study PD patients with executive dysfunction
were compared to PD patients without executive dysfunction
[38].The largest effect size had spectral ratio in frontal deriva-
tions; spectral ratio was decreased in patients with executive
dysfunction. Additionally, in one study PD-D patients were
compared with PD without dementia [48]. The largest effect
sizes had alpha and delta powers in temporal, parietal,
and occipital regions and beta and delta powers in central
regions, and beta, alpha, and delta powers in frontal regions.
Delta power was increased, and alpha and beta powers were
decreased in PD-D patients. Finally, prealpha, DF, and DFV
in frontal, temporal, and parietooccipital derivations had the
largest effect size for distinguishing PD-D patients without
CF fromPD-Dpatients with CF [36]. Prealpha andDFVwere
increased and DF was decreased in patients with PD-D and
CF.

4.3. Correlation of Power Spectra with Cognitive Assessment
Tools. Correlation of spectral powers with different cognitive
assessment tools and tests was analyzed in 7 studies [35, 39,
40, 45, 47, 48, 50]. The details are presented in Table 3. The
mostly used tool for cognitive assessment in these studies was
theMMSE. Positive Fisher’s𝑍was observed for Mini-Mental
State Examination (MMSE) and spectral ratios at all scalp
locations, relative power in the range 8–13Hz (alpha), and
peak background frequency, while negative Fisher’s 𝑍 was
observed for MMSE and relative power in the range 0–4Hz
(delta). Negative Fisher’s𝑍was observed for Cambridge Cog-
nitive Examination (CAMCOG) and relative power in the
range 4–8Hz (theta) in bilateral occipital and right temporal
regions. Additionally, in one study, correlation of median
frequency with cognitive domains was investigated [47].
Significant correlations were observed for “episodic and long
termmemory domain,” followed by “overall cognitive score,”
“fluency domain,” “attention domain,” and “executive func-
tions domain.” In one study no correlation of absolute power
spectra with neuropsychiatric inventory was reported in
nondemented PD patients [45].

Additionally, longitudinal correlation of frequency results
with cognitive states in PD using tools for cognitive assess-
ment was assessed in 3 studies [36, 44, 52]. In the first study
[36], correlation with Frontal Assessment Battery scores was
investigated: negative Fisher’s 𝑍 was observed for power in
the range 8–12Hz (alpha) and positive Fisher’s 𝑍 for powers
in the range 4–8Hz (theta), over 2 years [36]. In another study
[52], various tools for cognitive assessment correlated with
power spectra over 7 years of observation: negative Fisher’s𝑍
was observed: for global relative powers (GRP) in the range
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Table 2: EEG and MEG spectral markers which significantly discriminated between cognitive states in PD.

Author(s)
Diagnostic groups
of patients with PD
(𝑁)

Mean age
(years)

Evaluative tests:
cognitive
pathology (criteria)

Parameter(s) showed significant
difference between the groups
with PD

Effect size (95% CI)

Bosboom et al.
2006a [48]

PD-D (13)
PD-wD (13)

74.4
71.7

Dementia
(DSM-IV)

GRP delta (0.5–4Hz) and GRP
theta (4–8Hz)

PD-wD versus PD-D
1.47 (0.60, 2.34)

GRP alpha (8–13Hz) and GRP
beta (13–30Hz)

PD-wD versus PD-D
−1.47 (−2.34, −0.60)

GRP gamma (30–48Hz) PD-wD versus PD-D
−1.47 (−2.34, −0.60)

Caviness et al.
2007 [35]

PD-D (8)
PD-MCI (16)
PD-NC (42)

78.0
80.4
74.6

Dementia
(DSM-IV);
MCI (Petersen
2004 [55])

GRP delta (1.5–3.9Hz)

PD-NC versus PD-MCI
0.11 (−0.47, 0.68)
PD-MCI versus PD-D
1.27 (0.35, 2.19)
PD-NC versus PD-D
1.46 (0.67, 2.29)

GRP theta (4–7.9Hz)

PD-NC versus PD-MCI
0.75 (0.16, 1.34)
PD-MCI versus PD-D
0.38 (−0.46, 1.24)
PD-NC versus PD-D
1.37 (0.57, 2.17)

GRP alpha (8–12.9Hz)

PD-MCI versus PD-D
−0.86 (−1.75, 0.01)
PD-NC versus PD-D
−1.01 (−1.79, −0.22)

GRP beta 1 (13–19.9Hz)

PD-NC versus PD-MCI
−0.63 (−1.21, 0.04)
PD-MCI versus PD-D
−0.70 (−1.57, 0.17)
PD-NC versus PD-D
−1.16 (−1.95, −0.37)

GRP beta 2 (20–30Hz).

PD-NC versus PD-MCI
−0.57 (−1.15, 0.02)
PD-MCI versus PD-D
−0.81 (−1.69, 0.07)
PD-NC versus PD-D
−1.21 (−2.00, −0.41)

Peak frequency at locations P3,
P4, and Oz

PD-NC versus PD-MCI
−0.90 (−1.51, −0.31)
PD-MCI versus PD-D
−0.99 (−1.88, −0.10)
PD-NC versus PD-D
−1.88 (−2.54, −1.20)

Bonanni et al.
2008b [36]

PD-DnF (19)
PD-DF (16) 70.0c

PD-D (history of
PD preceded
dementia for at
least 24 months);
cognitive
fluctuations (CAF,
Walker et al. 2000
[56])

GRP theta (4.0–5.5Hz) PD-DnF versus PD-DF
2.82 (1.88, 3.75)

GRP prealpha (5.6–7.9Hz) PD-DnF versus PD-DF
5.26 (3.86, 6.67)

GRP alpha (8.0–12.0Hz) PD-DnF versus PD-DF
−8.40 (−10.47, −6.32)

Mean frequency PD-DnF versus PD-DF
−0.93 (−1.64, −0.24)

DF in parietooccipital
derivations

PD-DnF versus PD-DF
−1.18 (−1.90, −0.46)

DFV in parietooccipital
derivations

PD-DnF versus PD-DF
1.19 (0.47, 1.91)
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Table 2: Continued.

Author(s)
Diagnostic groups
of patients with PD
(𝑁)

Mean age
(years)

Evaluative tests:
cognitive
pathology (criteria)

Parameter(s) showed significant
difference between the groups
with PD

Effect size (95% CI)

Fonseca et al.
2013 [42]

PD-D (12)
PD-wD (31)

70.3
68.1

Dementia (Dubois
et al. 2007 [57])

Mean absolute power delta
(0.8–3.9Hz)

PD-wD versus PD-D
0.85 (0.16, 1.54)

Mean absolute power theta
(4.29–7.8Hz)

PD-wD versus PD-D
1.23 (0.52, 1.94)

Bousleiman et
al. 2014 [46]

PD-MCI (41)
PD-NC (12) 67.2c MCI (Litvan et al.

2012 [58]). GRP alpha 1 (8–10Hz) PD-NC versus PD-MCI
−0.82 (−0.131, −0.001)

Gu et al. 2016a,b
[43]

PD-D (9)
PD-MCI (17)

56.7d

62.1d

Dementia
(DSM-IV);
MCI (Petersen
2004 [55])

Beta (13–30Hz) peak frequency PD-MCI versus PD-D
1.10 (0.27, 1.92)

GRP alpha (8–13Hz) PD-MCI versus PD-D
−1.10 (−1.92, −0.27)

alpha/theta ratio: alpha (8–13Hz)
divided by theta (4–7Hz)

PD-MCI versus PD-D
−1.10 (−1.92, −0.27)

aOriginal data not available, effect size and confidence intervals estimated using 𝑝 value conversion.
bThe study is longitudinal; only assessment on admission is shown in this table.
cAge for groups of the patients is not available; age of the combined sample is shown.
dMean age not available, mean age calculated from median and range (Hozo et al. 2005 [59]).
CAF: Clinical Assessment of Fluctuations; DF: dominant frequency; DFV: dominant frequency variability; DSM-IV: Diagnostic and Statistical Manual of
Mental Disorders IV; GRP: global relative power; MCI: mild cognitive impairment; PD: Parkinson’s disease; PD-NC: Parkinson’s disease without cognitive
impairment; PD-MCI: Parkinson’s disease with mild cognitive impairment; PD-D: Parkinson’s disease with dementia; PD-wD: Parkinson’s disease without
dementia; PD-DnF: Parkinson’s disease with dementia without cognitive fluctuations; PD-DF: Parkinson’s disease with dementia with cognitive fluctuations.

0.5–4Hz (delta) and CAMCOG and Spatial Span Test (SSP);
for GRP in the range 4–8Hz (theta) and CAMCOG, Pattern
Recognition Memory (PRM), Semantic Fluency Test, and
Spatial Span Test; for GRP in the range 8–10Hz (alpha 1)
and SpatialWorkingMemory (SWM). Positive Fisher’s𝑍was
observed: for powers in the range 8–13Hz (alpha 1 and alpha
2) and 30–48Hz (gamma) and CAMCOG, PRM, and SSP;
for powers in the range 4–8Hz (theta) and SWM [45]. In the
third study [44], correlationwith power in the range 2.5–4Hz
(delta) was investigated: negative Fisher’s 𝑍 was observed
for MMSE, Rey Auditory Verbal Learning, Controlled Oral
Word Association Test and Stroop, while positive Fisher’s 𝑍
was observed for Clinical Dementia Rating Sum of Boxes and
Functional Assessment Staging Tool.

4.4. Hazard of Conversion to PD-D. The relation of power
spectra to conversion to PD-D was examined in 3 studies
[9, 43, 54]. The details are presented in Table 4. Hazard ratios
of conversion to PD-Dwere analyzed in 2 studies.The hazard
ratio of conversion to PD-D was significantly higher for
patients with background EEG frequency below the median
value of the entire sample at baseline [9] and the theta power
above the median value of the entire sample at baseline
[54]. In one study, patients with PD-MCI who converted
to PD-D over two years had increased beta peak frequency
and decreased alpha relative power and alpha/theta ratio at
baseline [43].

5. Brain Functional Connectivity and
Cognitive States in PD

Seven studies focused on functional connectivity features
of cognitive states in PD [27, 33, 41, 42, 50–52]. Global

field synchronization (GBS) was addressed in one study and
coherence in another one. Patientswith PD-Dwere compared
with PD patients without dementia in both studies. PD-
D patients had significantly higher GBS in theta frequency
range (𝑝 < 0.02) and lower GBS in the alpha 1 range
(𝑝 < 0.02) [41]; higher frontal interhemispheric (F3-F4)
and higher frontooccipital intrahemispheric (F3-O1; F4-O2)
coherence in the beta frequency band was observed in
another study [42].

In two studies SL was investigated. In one study cor-
relation of connectivity markers with cognitive tests in PD
patients without dementia and with varying disease duration
was investigated [50]. Higher level of perseveration executive
task in patients with recently diagnosed PD (in the last 6
months before participation in the study) was associated
with increased interhemispheric SL in alpha 1 band. In an
exploratory study by Bosboom et al. (2009) PD-D patients
were compared to nondemented PD patients [27]. Patients
with PD-D had lower interhemispheric SL between temporal
regions (frequency ranges: 0.5–4Hz, 4–8Hz and 8–10Hz)
and parietal regions (30–48Hz); lower intrahemispheric SL
between frontal and temporal and frontal and parietal regions
in the left hemisphere (8–13Hz) and frontal and temporal
regions in the right hemisphere (8–13Hz and 13–30Hz).
At the same time, higher intrahemispheric SL was found
between occipital and temporal and occipital and parietal
regions in the left hemisphere (13–30Hz) and between
parietal and occipital regions in the right hemisphere (8–
10Hz).

Phase lag index (PLI) was investigated in two studies. A
comparison of PD-D patients with nondemented PD patients
showed weaker PLI in frontotemporal (0.5–4Hz) and
parietotemporooccipital (8–13Hz) couplings in demented
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Table 3: Markers which significantly correlated with various cognitive assessment tools in PD.

Author(s) Age,
mean 𝑁 Correlation Fisher’s 𝑍 (95% CI)

Bosboom et al. 2006
[48]

71.7 13 PD-wD patients
Left occipital theta (4–8Hz) versus CAMCOG −0.70 (−1.32, 0.08)
Right occipital theta (4–8Hz) versus CAMCOG −0.67 (−1.29, 0.05)
Right temporal theta (4–8Hz) −0.68 (−1.30, 0.06)

Caviness et al. 2007
[35]

76.4 66 PD-wD patients
GRP delta (1.5–3.9Hz) versus MMSE −0.51 (−0.76, −0.26)
GRP alpha (8–12.9Hz) versus MMSE 0.34 (0.10, 0.59)
Peak background frequency versus MMSE 0.42 (0.18, 0.67)

Stoffers et al. 2008
[50] 59.4 18 de novo PD

patients

Relative low alpha (8–10Hz) versus redundancy of
the second order (Vienna perseveration) in bilateral
central and parietal regions

−0.11 (−0.19, −0.01)

Morita et al. 2011 [40] 67.6 100 PD patients

Spectral ratio (SRa) at Fp location (electrode
positions Fp1 and Fp2) versus MMSE 0.30 (0.10, 0.50)

SR at F location (electrode positions F3, F4, F7, and
F8) versus MMSE 0.32 (0.12, 0.52)

SR at C location (electrode positions C3 and C4)
versus MMSE 0.28 (0.08, 0.48)

SR at P location (electrode positions P3 and P4)
versus MMSE 0.32 (0.12, 0.52)

SR at T location (electrode positions T3, T4, T5, and
T6) versus MMSE 0.32 (0.12, 0.52)

SR at O location (electrode positions O1 and O2)
versus MMSE 0.35 (0.16, 0.55)

Babiloni et al. 2011
[39] 72.0 13 PD-D

patients

Relative alpha1 (8–10.5Hz) in parietal regions
(Brodmann areas 5, 7, 30, 39, 40, and 43) versus
MMSE

0.35 (−0.27, 0.97)

Relative alpha1 (8–10.5Hz) in occipital regions
(Brodmann areas 5, 7, 30, 39, 40, and 43) versus
MMSE

0.44 (−0.18, 1.05)

Fonseca et al. 2015
[45] 68.8 31 PD-wD

patients

Absolute powers: delta (0.8–3.9Hz), theta
(4.29–7.8Hz), alpha (8.2–12.5Hz), and beta
(12.9–36.3Hz) versus neuropsychiatric inventory

No significant
correlation with any
marker

Zimmermann et al.
2014 [47] 67.6 48 PD-wD patients

Median frequency versus episodic and long term
memory cognitive domain (CDb) 0.60 (0.31, 0.90)

Median frequency versus overall cognitive scorec 0.51 (0.22, 0.80)
Median frequency versus fluency CD 0.41 (0.12, 0.70)
Median frequency versus attention CD 0.39 (0.10, 0.68)
Median frequency versus executive functions CD 0.35 (0.06, 0.65)

Original data not available in the publications. Fisher’s 𝑍 calculated from correlation coefficient and sample size (Lipsey and Wilson, 2001 [60]).
aSum of absolute power values for alpha (8.20–12.89Hz) and beta (13.28–30.8Hz); waves divided by the sum of absolute power values for delta (1.17–3.91Hz)
and theta (4.3–7.81Hz).
bParameter, which includes a set of cognitive tests from a specific cognitive category, for example. memory and attention.
cParameter, which includes an average of 26 cognitive tests from all cognitive domains.
CAMCOG:CambridgeCognition Examination;GRP: global relative power;MMSE:Mini-Mental State Examination; PD-D: Parkinson’s diseasewith dementia;
PD-wD: Parkinson’s disease without dementia.

patients [51]. In this study, general region-to-region connec-
tivity was stronger in theta band and weaker in delta, alpha,
and beta bands in PD-D. A longitudinal observation of ini-
tially nondemented PD patients showed correlation of wors-
ening of CAMCOG performance with a decrease of PLI in
frontal and temporal regions in frequency range 8–10Hz [53].
Finally, a graph theory analysis of longitudinal connectivity
changes of nondemented PD patients was performed in one
study [33]. Worsening of cognitive performance over time

correlatedwith increase in eccentricity in the frequency range
8–10Hz and decrease of clustering coefficient and path length
in the frequency range 4–8Hz.

6. Conclusions

The results of this review support the idea that spectral and
connectivity markers have a significant impact in discrimi-
nating PD patients with different levels of cognitive decline,
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Table 4: Prediction of progression to dementia in Parkinson’s disease with spectral EEG markers.

Author(s)
Number of subjects,
duration of observation
after baseline EEG/MEG

Incidence of PD-D Significant QEEG risk
factor(s)

Klassen et al. 2011 [9] 𝑁 = 106 PD-wD patients,
0.3 to 8.8 (mean 3.3) years

Incidence within 5 years by
Kaplan-Meier method was
34%

Hazard ratios: background
rhythm frequency <
median (8.5) was 13.0; theta
power >median (19.0) was
3.0

Gu et al. 2016 [43] 𝑁 = 17 PD-MCI and 9
PD-D patients, 2 years

35% (6 PD-MCI patients
progressed to PD-D
patients)

Increase of the beta peak
frequency and decrease of
alpha relative power and
alpha/theta ratio correlated
with progression to PD-D;
PPV of the combined
marker was 62, and PLR
was 4.4

Olde Dubbelink et al. 2014 [54] 𝑁 = 63 PD-wD patients, 7
years 30% (19 patients)

Hazard ratios: beta power <
median (27.96) was 5.21;
peak frequency <median
(8.39) was 3.97; theta power
>median (22.85) was 2.82

PD-D: Parkinson’s disease with dementia; PD-MCI: Parkinson’s disease with mild cognitive impairment; PD-wD: Parkinson’s disease without dementia; PPV:
positive predictive value; PLR: positive likelihood ratio.

regardless of the variety of approaches to calculate these
markers. To summarize, a slowing of EEG frequencies corre-
lates with a decline of cognition. Accordingly, an increase of
spectral powers in the “slow” frequency bands <8Hz (delta
and theta) and a decrease in the “fast” frequency bands
>8Hz (alpha, beta, and, less significantly, gamma) are spectral
markers of PD-related cognitive decline. Topographically,
occipital, parietal, and temporal regions show the higher
significance.

Additionally, the above-mentioned spectral markers
showed significant hazard ratio in predicting conversion of
nondemented PD patients to PD-D. Patients with spectral
powers in “fast” waves below and in “slow” waves above the
median values have significantly higher risk of developing
PD-D within 2 to 7 years.

The connectivity patterns of the PD patients with cogni-
tive impairment show changes in the same frequency ranges,
where spectral markers of cognitive decline are identified:
mostly in theta (4–8Hz), alpha 1 (8–10Hz), and beta (13–
30Hz) ranges. The connectivity patterns of PD patients
with cognitive decline changed in frontal, temporal, parietal,
and occipital regions. However, the number of connectivity
studies focusing on cognitive states of PD patients is still very
small; by the same token the studies had different setting and
various connectivity markers were investigated. A common
trend of cognitive decline in PD seems to be a decrease of
connectivity in parietotemporooccipital regions.

In sum, changes in spectral powers, delta and theta, have
the highest significance to discriminate between PD-D and
dementia-free patients with PD, while changes in spectral
powers, theta and alpha, have the highest significance to sep-
arate MCI from normal cognition in PD. Findings regarding
discrimination between MCI and dementia in PD are less

consistent within reports, though delta and beta powers
showed good discriminative capacity.With regard to connec-
tivity measures, PLI has the highest significance to discrimi-
nate between PD-D and nondemented patients with PD.

Importantly, changes of spectral QEEG markers precede
the clinical manifestation of cognitive decline in PD, as
was shown in longitudinal studies. Thus, these markers may
become a valuable aid for timely selection of patients prone
to pharmacological and nonpharmacological interventions of
prevention at a very early stage of PD and thereby potentially
improve clinical results.

Prospective studies with larger cohorts investigating
topographical scalp distribution of QEEG changes as well as
connectivity and its association with cognitive decline in PD
are warranted.These studies will result in biomarkers that are
likely to contribute to individualized counselling and treat-
ment of patients.

7. Limitations of This Review

This review has several limitations. First, there is no com-
mon opinion regarding which certain markers can be used
to predict cognitive decline in PD. By virtue of various
fast developing methods and approaches, different research
groups investigate different methods: spectral markers, con-
nectivitymarkers, or their combination. In these conditions a
thorough comparison of QEEGmarkers remains a challenge.
However, future methods might further improve the validity
of QEEG biomarkers of cognitive decline in PD.

Second, criteria for the diagnosis of PD-MCI are changing
over time [12, 55]. In some studies a simple cognitive screen-
ing is performed using Mini-Mental State Examination tool;
in other cases a full cognitive assessment is performed with
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many cognitive tests. Since 2012 the Movement Disorders
Society Task Force guidelines set a common criteria for PD-
MCI [58]; however, the Diagnostic and Statistical Manual of
Mental Disorders fifth edition has replaced the term MCI by
“neurocognitive impairment” in 2013 [70].

In sum, while differentiation between patients with PD
with an intact cognitive state and patientswith PD-D could be
performedmore or less clearly usingQEEGmarkers, identifi-
cation of the borderline level of cognition is relatively difficult.
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