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A B S T R A C T   

Cadmium (Cd) is a malleable element with odorless, tasteless characteristics that occurs naturally in the earth’s 
crust, underground water, and soil. The most common reasons for the anthropological release of Cd to the 
environment include industrial metal mining, smelting, battery manufacturing, fertilizer production, and ciga-
rette smoking. Cadmium-containing products may enter the environment as soluble salts, vapor, or particle forms 
that accumulate in food, soil, water, and air. Several epidemiological studies have highlighted the association 
between Cd exposure and adverse health outcomes, especially renal toxicity, and the impact of Cd exposure on 
the development and progression of carcinogenesis. Also highlighted is the evidence for early-life and even 
maternal exposure to Cd leading to devastating health outcomes, especially the risk of cancer development in 
adulthood. Several mechanisms have been proposed to explain how Cd mediates carcinogenic transformation, 
including epigenetic alteration, DNA methylation, histone posttranslational modification, dysregulated non- 
coding RNA, DNA damage in the form of DNA mutation, strand breaks, and chromosomal abnormalities with 
double-strand break representing the most common DNA form of damage. Cd induces an indirect genotoxic effect 
by reducing p53′s DNA binding activity, eventually impairing DNA repair, inducing downregulation in the 
expression of DNA repair genes, which might result in carcinogenic transformation, enhancing lipid peroxidation 
or evasion of antioxidant interference such as catalase, superoxide dismutase, and glutathione. Moreover, Cd 
mediates apoptosis evasion, autophagy activation, and survival mechanisms. In this review, we decipher the role 
of Cd mediating carcinogenic transformation in different models and highlight the interaction between various 
mechanisms. We also discuss diagnostic markers, therapeutic interventions, and future perspectives.   

1. Introduction 

Cadmium (Cd) is a silvery-white, malleable element with odorless, 
tasteless characteristics. It occurs naturally in the earth’s crust, air, un-
derground water, and soil (Monika et al., 2022; Wang et al., 2023). It is a 
non-essential toxic metal that exists as a divalent cation. It forms a 
complex with several organic and inorganic anions, including various 
chemical compounds commonly used in industry (Rafati Rahimzadeh 
et al., 2017). During the industrial renaissance in the 19th century, Cd 
was anthropogenically released to the environment in high 

concentration as an industrial byproduct or as a waste product that 
highly impacts human health, such as metal mining, alloys, smelting, 
welding, electroplating, Ni-Cd batteries manufacturing, cement 
manufacturing, cigarette smoke, fertilizer production, electronic wastes, 
waste incineration, and fuel combustion, which comprise the primary 
sources of anthropogenic cadmium emissions into the environment and 
represent a high risk for those areas (Afolayan, 2018; An et al., 2017; 
Batzer, 1983; Fishbein, 1981; Horng et al., 2002). Cadmium-containing 
products may enter the environment as soluble salts, vapor, or particle 
forms that accumulate in soil, water, and food (Bergkvist et al., 2005; 
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Piol et al., 2006; Qi et al., 2018; Rafati Rahimzadeh et al., 2017; Shaari 
et al., 2022). 

Humans are exposed to Cd in vastly different capacities. For non- 
smokers, industrial byproducts, waste products, or food ingestion are 
the primary sources of Cd contamination. Cd is a non-biodegradable 
metal with a long biological half-life that can be released into the 
environment more quickly and accumulate in the soil–plant system. 
Bioaccumulation increases the likelihood of incorporating cadmium into 
the food chain and poses dangerous health risks for humans and animals. 
It has long-duration endurance and is difficult to remove from the 
environment. Globally, several plant-based foods such as rice, tomato, 
potatoes, leafy vegetables, root vegetables, legumes, and nuts contribute 
to high Cd diet intake. In addition, seafood, such as fish, oysters, lobster, 
prawns, and crab, contributed to a high Cd diet in exposed populations 
(Gueguen et al., 2011; Kim et al., 2018; Lordan & Zabetakis, 2022; Wang 
et al., 2021a). A significant source of Cd contamination is tobacco 
smoking. Humans are primarily exposed to cadmium outside of the 
workplace through inhalation, while non-smokers are mainly exposed to 
contaminated food (Kim et al., 2018; Wang et al., 2021a). Smokers 
frequently have much higher levels of cadmium in their bodies. Cad-
mium oxide from tobacco smoking is deposited in the respiratory system 
and can be distributed to the circulation, resulting in high levels of 
cadmium (Ganguly et al., 2018; Tarhonska et al., 2022). The most 
common sources of Cd exposure are illustrated in Fig. 1. 

Cadmium toxicity includes nephrotoxicity, cardiovascular toxicity, 

genotoxicity, neurotoxicity, hepatotoxicity, bone toxicity, and carcino-
genicity (Nagaraju et al., 2022; Smereczanski & Brzoska, 2023; Sulay-
man Aboulqassim et al., 2023; Tyagi et al., 2023; Zeng et al., 2021; Zhou 
et al., 2023). The effect of Cd toxicity on different organs is covered in 
detail elsewhere (Charkiewicz et al., 2023; Genchi et al., 2020). Several 
epidemiological studies link cadmium exposure and various types of 
cancer, such as breast cancer (BC), lung cancer, liver cancer, prostate 
cancer (PCa), endometrial cancer, pancreatic cancer, kidney cancer, 
gastric cancer (GC), head and neck cancers, and ovarian cancer (Eriksen 
et al., 2014; Filippini et al., 2020; Lin et al., 2018; Luckett et al., 2012; 
McElroy et al., 2017; Men et al., 2021; Rapisarda et al., 2018; Rezapour 
et al., 2021; Verougstraete et al., 2003). The preponderance of evidence 
supports the role of Cd in promoting cell transformation and induction of 
cancer. The latest International Agency for Research on Cancer (IARC)/ 
WHO includes only three cancers for which there is limited evidence 
(kidney and prostate) or sufficient evidence (lung) for human carcino-
genicity. While the precise mechanisms underlying cadmium-induced 
carcinogenesis remain unclear, DNA damage, oxidative stress, resis-
tance to apoptosis, and epigenetic variation may contribute significantly 
to carcinogenesis (Bernard, 2008). This review discusses in depth the 
role of Cd mediating carcinogenic transformation and emphasizes the 
intricate interaction between mechanisms that might play a vital role in 
the transformation process. We also highlight the possible role of pre-
natal cadmium exposure in carcinogenesis, different methods for 
detecting Cd exposure, novel surrogate markers, therapeutic 

Fig. 1. Depicts various sources with high potential risk for exposure to Cd. Among them, smoking, rice, vegetables, and underground water represent the most 
common sources of Cd exposure. Created with BioRender.com (Accessed on 8 December 2023). 
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intervention, recent research trends, and future perspectives. 

2. Search strategy and study selection criteria 

In this review, we performed a comprehensive search of the litera-
ture using various combinations of the following search terms: (cad-
mium[TIAB] OR Cd[TIAB] OR cadmium compounds[TIAB] OR 
cadmium chloride[TIAB] OR cadmium sulfate[TIAB] OR cadmium sul-
fide[TIAB] OR methyl cadmium[TIAB] OR dimethyl cadmium[TIAB] 
OR diethyl cadmium[TIAB]) AND (carcinogenesis [TIAB] OR tumori-
genesis [TIAB] OR oncogenesis [TIAB] OR tumor[TIAB] OR cancer 
[TIAB]) and combined the search with each set of the following search 
strategies: (epigenetic [TIAB] OR “DNA methylation”[MeSH Terms] OR 
“histone modification”[MeSH Terms] OR “noncoding RNA”[MeSH 
Terms] OR “ long noncoding RNA”[MeSH Terms] OR “circular RNA”[-
MeSH Terms] OR microRNAs [MeSH Terms]) OR (“DNA damages” 
[MeSH Terms] OR P53[TIAB] OR “oxidative stress”[MeSH Terms] OR 
ROS[ TIAB]) OR “PI3K/Akt signaling pathway”[ TIAB] OR “MAPK 
cascade”[ TIAB] OR “β-catenin pathway”[ TIAB]) OR (apoptosis [MeSH 
Terms] OR “apoptosis resistance”[TIAB] OR “evading apoptosis”[TIAB] 
OR autophagy [MeSH Terms] OR “defective autophagy”[ TIAB]) OR 
(biomarkers [MeSH Terms] OR “ long noncoding RNA”[MeSH Terms] 
OR “microRNA”[ TIAB] OR “circular RNA”[MeSH Terms] OR “novel 
biomarkers”[ TIAB]) using the PubMed, Google Scholar, Connected 
Papers databases. We only included articles written in English. We 
included all mechanistic research during screening and data extraction 
to achieve our narrative review goal. 

3. Epidemiological evidence of association between Cd exposure 
and risk of cancer development 

A plethora of epidemiological studies have emphasized the associa-
tion between Cd exposure and adverse health outcomes, especially 
cancer, and the impacts of Cd exposure on the development and pro-
gression of carcinogenesis. Breast cancer is the most diagnosed cancer in 
women and the second leading cause of cancer death among women in 
the United States (US) (Siegel et al., 2023). Several in vitro and in vivo 
studies have discussed the estrogenic effect of Cd. They concluded it 
could mimic estrogen, subsequently activate estrogen receptors, and 
induce cell proliferation and migration in BC (Aquino et al., 2012; Silva 
et al., 2012; Zang et al., 2009). Nevertheless, the controversial results 
from epidemiological studies in humans reflect the multifaceted nature 
of the interaction between Cd and many targets in the cell, making it 
difficult to determine how Cd exhibits its carcinogenic effect. Several 
studies uncovered a significant association between Cd exposure and the 
risk of BC development in various ethnic groups (Julin et al., 2012a); 
Nagata et al., 2013; Strumylaite et al., 2019). Furthermore, the study 
highlights the association between high urinary Cd (U-Cd) and 
mammographic density in premenopausal women supports the role of 
Cd in BC (Adams et al., 2011). High testosterone levels in Cd-exposed 
women have also been associated with an increased risk of BC devel-
opment (Ali et al., 2014; Nagata et al., 2005). Those findings were 
supported by various meta-analyses suggesting that Cd exposure might 
be related to an increased risk of BC development (Filippini et al., 2020; 
Florez-Garcia et al., 2023; Larsson et al., 2015; Lin et al., 2016). 
Conversely, several studies also emphasized no association between 
airborne or dietary sources of Cd exposure and the development of BC 
(Adams et al., 2014; Eriksen et al., 2014; Erratum, 2020). In addition, 
Adams et al. also did not find an association between U-Cd and BC 
(Adams et al., 2016). 

PCa is the second most common cause of cancer death among men 
and the most diagnosed cancer in men in the US (Pernar et al., 2018). 
Airborne or dietary exposure to Cd was strongly correlated to PCa 
development or aggressive cancer at the time of diagnosis (Julin et al., 
2012b; Vijayakumar et al., 2021). Furthermore, higher levels of U-Cd 
are associated with a higher risk of PC incidence (Bede-Ojimadu et al., 

2023). A result from one meta-analysis substantiated the association 
between Cd exposure and PCa development (Zhang et al., 2016). In 
contrast, another meta-analysis showed no association between Cd 
exposure and the risk of PCa development (Chen et al., 2016a). 

McElroy et al. (McElroy et al., 2017) uncovered that higher U-Cd 
levels were positively associated with an increased risk of developing 
endometrial cancer in Midwestern U.S. women, with a plausible estro-
genic effect of Cd underlying the process of carcinogenesis. Those 
findings were supported by results from a study conducted by Akesson 
et al. showing an association between dietary Cd exposure and risk of 
developing endometrial cancer in women (Akesson et al., 2008). Inter-
estingly, another study by Eriksen and colleagues also uncovered an 
association between Cd exposure and risk of endometrial cancer (Erik-
sen et al., 2014). Conversely, the results from one study exploring the 
role of dietary Cd exposure and the risk of endometrial cancer were 
inconclusive (Adams et al., 2014). 

For nasopharyngeal carcinoma (NPC), Peng and colleagues explored 
the effects of chronic Cd exposure on the malignant progression in a 
Chinese patient cohort and the link between elevated levels of Cd and 
increased risk of developing NPC. They also correlated Cd exposure with 
the clinical stage and lymph node metastasis (Peng et al., 2015). 

Several lines of evidence support the premise that Cd exposure may 
also increase the risk of pancreatic cancer (Adams et al., 2012; Buha 
et al., 2017; Chen et al., 2015; Garcia-Esquinas et al., 2014; Kriegel et al., 
2006; Li et al., 2011; Sawada et al., 2012), lung cancer (Adams et al., 
2012; Chen et al., 2016b; Garcia-Esquinas et al., 2014; Nawrot et al., 
2015), renal cancer (Song et al., 2015), GC (Kim et al., 2019; Lin et al., 
2018), Non-Hodgkin lymphoma, and leukemia (Adams et al., 2012). 
While a study by Eriksen et al. supports the association between the risk 
of developing ovarian cancer and exposure to Cd (Eriksen et al., 2014), 
contradictory results from different ethnic groups show no association 
observed (Adams et al., 2014; Julin et al., 2011). A large body of evi-
dence supports the association between Cd exposure and the risk of 
developing various cancers despite the controversial results from some 
studies, mainly from either airborne or dietary sources, as shown in 
Table 1. 

3.1. Early life exposures and cancer development risk 

Early-life exposure to Cd could lead to devastating outcomes. 
Epidemiological studies emphasize the overly complex and far-reaching 
adverse effects that Cd exposure has on health outcomes, especially on 
children. Several epidemiological studies link Cd exposures and the risk 
of cancer in children (Absalon & Slesak, 2010; Infante-Rivard et al., 
2001; Sherief et al., 2015). Placental Cd accumulation results in several 
adverse health outcomes, including low birthweight, preterm birth, and 
small head circumference. Despite the inconsistent results, maternal Cd 
exposure can affect the newborn infant’s health, and this adverse effect 
might continue until adulthood (Young & Cai, 2020). In addition, many 
studies have related early life exposure to Cd during gestation and first 
years of life to impairment of growth (Gardner et al., 2013; Malin Igra 
et al., 2023), delay of pubertal development and menarche (Malin Igra 
et al., 2023; Reynolds et al., 2020), impaired kidney function (Rodri-
guez-Lopez et al., 2020; Skroder et al., 2015), and blood pressure (Young 
& Cai, 2020). 

The role of Cd early life exposure on cancer development remains 
obscure. Examining the consequence of early-life Cd exposure in mice 
shows that prenatal to early postnatal Cd exposure increases the risk of 
liver cancer (Men et al., 2021). In addition, maternal exposure to Cd 
during pregnancy affected mammary tumorigenesis in female offspring 
in rat models. The study uncovered that in-utero exposure to moderate 
levels of Cd leads to several prominent hormonal alterations, such as 
reduced androgen receptor expression and elevated circulating testos-
terone levels in the mammary gland. The female offspring of the rat 
models also exhibited accelerated puberty onset and increased body 
weight. The data disclosed increased pre-malignant hyperplastic 
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Table 1 
General overview of the epidemiological studies investigating the association between Cd exposure from different resources and cancer development in diverse 
populations.  

Cancer type Exposure measurement Study type Exposed 
population 

No. of participants Findings Reference 

Breast cancer Urinary Cd Case-control White Caucasian Women 509 cases and 1170 
controls 

Association (Strumylaite et al., 
2019) 

Airborne Cd Nested case- 
control 

French E3N cohort 4,059 cases and 
4,059 controls 

No 
association 

(Erratum, 2020) 

Urinary Cd Case-control Women’s Health Initiative study 508 cases and 1,050 
controls 

No 
association 

(Adams et al., 
2016) 

Blood Cd and urinary Cd Cross-sectional Postmenopausal Swedish women 438 cases Association (Ali et al., 2014) 
Dietary Cd Prospective Danish postmenopausal women 1390 cases No 

association 
(Eriksen et al., 
2014) 

Urinary Cd Case-control Japanese women 153 cases, 431 
controls 

Association (Nagata et al., 
2013) 

Dietary Cd Prospective Postmenopausal 2,112 cases Association (Julin, Wolk, 
Bergkvist, et al., 
2012) 

Mammographic density 
and urinary Cd 

Cross-sectional Premenopausal women 190 cases Association (Adams et al., 
2011) 

Urinary Cd and serum 
levels of estrogens and 
androgens 

Prospective Postmenopausal Japanese women. 164 cases Association (Nagata et al., 
2005) 

Dietary Cd Prospective Postmenopausal women, Women’s 
Health Initiative 

155,069 cases No 
association 

(Adams et al., 
2014)  

Prostate cancer Airborne Cd Retrospective Patients in the United States 230,540 cases Association (Vijayakumar et al., 
2021) 

Dietary Cd Prospective Swedish men 41 089 cases Association (Julin, Wolk, 
Johansson, et al., 
2012) 

Urinary Cd Case-control Nigerian men PCa N = 82, BPH (N 
= 93), and controls 
(N = 98) 

Association (Bede-Ojimadu 
et al., 2023) 

– Case-control Employees of the United Kingdom Atomic 
Energy Authority 

136 cases and 404 
controls 

No 
association 

(Rooney et al., 
1993)  

Nasopharyngeal 
carcinoma 

Blood Cd Case-control Chinese Chaoshan 
population 

134 cases and 132 
controls 

Association (Peng et al., 2015) 

Urinary Cd Case-control Midwestern U.S. population 631 cases and 879 
controls 

Association (McElroy et al., 
2017) 

Dietary Cd Prospective Swedish Mammography Cohort 56,030 cases Association (Akesson et al., 
2008) 

Dietary Cd Prospective Postmenopausal women, Women’s 
Health Initiative 

155,069 cases No 
association 

(Adams et al., 
2014)  

Pancreatic Cancer Blood Cd Prospective Pancreatic Cancer Patients from the East 
Nile Delta Region of Egypt 

31 cases and 52 
controls 

Association (Kriegel et al., 
2006) 

Urinary Cd Prospective American Third National Health and 
Nutrition Examination Survey (NHANES) 
Cohort 

Men (N = 9,388) and 
women (N = 10,636) 

Association (Adams et al., 
2012) 

Urinary Cd Prospective American Indians from Arizona, 
Oklahoma, and North and South Dakota- 
The Strong Heart Study 

3,792 cases Association (Garcia-Esquinas 
et al., 2014) 

Lung cancer Urinary Cd Case-control American Third National Health and 
Nutrition Examination Survey (NHANES) 

Men (N = 9,388) and 
women (N = 10,636) 

Association (Adams et al., 
2012) 

Urinary Cd Prospective American Indians from Arizona, 
Oklahoma, and North and South Dakota, 
Strong Heart Study from 1989 to 1991. 

3,792 cases Association (Garcia-Esquinas 
et al., 2014)  

Ovarian cancer Dietary Cd Prospective Danish postmenopausal women 146 cases No 
association 

(Eriksen et al., 
2014) 

Dietary Cd Prospective Postmenopausal women, Women’s 
Health Initiative 

155,069 cases No 
association 

(Adams et al., 
2014) 

Dietary Cd Prospective Swedish Mammography Cohort 60,889 cases No 
association 

(Julin et al., 2011) 

Non-Hodgkin 
lymphoma 

Urinary Cd Case-control American Third National Health and 
Nutrition Examination Survey (NHANES) 
Cohort 

Men (N = 9,388) and 
women (N = 10,636) 

Association (Adams et al., 
2012) 

Leukemia Urinary Cd Case-control American Third National Health and 
Nutrition Examination Survey (NHANES) 
Cohort. 

Men (N = 9,388) and 
women (N = 10,636) 

Association. (Adams et al., 
2012)  

(continued on next page) 
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alveolar nodules and terminal end buds in the mammary gland. These 
findings clearly show that the effects of in-utero cadmium exposure are 
dose-dependent (Davis et al., 2013). 

Furthermore, several studies illustrate that prenatal Cd exposure 
could lead to the development of multigenerational adverse health 
outcomes. For example, Huang et al. found that prenatal Cd exposure 
could lead to transgenerational male reproductive problems in rats by 
affecting testosterone production (Huang et al., 2020). Similarly, several 
studies uncovered that prenatal Cd exposure could adversely affect 
hormonal production in rats in a cross-generation manner (Henson & 
Chedrese, 2004; Li et al., 2023b; Liu et al., 2020; Prins, 2008; Sun et al., 
2023). While the previously discussed studies provide critical insight 
into the relationship between Cd exposure and health outcomes and 
provide evidence that Cd induces changes that are imprinted and 
inherited by the next generations, highlighting the role of epigenetic 
variation, it is also evident that further research is needed to gain a clear 
understanding of the mechanisms involved in Cd early life exposure and 
the risk of cancer. 

4. Molecular mechanisms underlying Cd carcinogenesis 

4.1. Epigenetic effects 

The association between epigenetic alteration and Cd-induced 
adverse health effects is well-addressed in the literature (Manic et al., 
2022). A plethora of evidence suggests that epigenetic variation is a 
central underlying mechanism of prenatal Cd inducing adverse effects 
(Vilahur et al., 2015). Three common epigenetic mechanisms that con-
trol gene expression in response to Cd exposure include DNA methyl-
ation, histone posttranslational modifications, and non-coding RNAs, as 
illustrated in Fig. 2. Those mechanisms control gene expression without 
altering the DNA sequence (Manic et al., 2022). Table 2 summarizes the 
effect of Cd exposure mediating epigenetic variation on carcinogenesis. 

4.1.1. DNA methylation 
DNA methylation is an epigenetic mark that results from the transfer 

of a methyl group to the C-5 position in cytosine nucleotide, usually 
followed by guanine nucleotide known as CpG island via DNA methyl-
transferase (DNMT) family of enzymes. DNA methylation either inhibits 
transcription factors’ binding to DNA or recruits proteins that modify 

Table 1 (continued ) 

Cancer type Exposure measurement Study type Exposed 
population 

No. of participants Findings Reference 

Gastric cancer Dietary Cd Case-control Korean population 415 cases and 830 
controls 

Association (Kim et al., 2019) 

Cd and lead exposure Case-control Chaoshan population of Southeast China 279 cases and 112 
controls 

Association (Lin et al., 2018)  

Fig. 2. Illustrate that the common epigenetic alteration mediates cd and induces tumorigenic transformation. Several epigenetic modifications can be depicted, 
including gene silencing by DNA methylation, histone posttranscriptional modification, and non-coding RNA such as lncRNA, circRNA, and miRNA and their role in 
facilitating Cd-induced transformation. Created with BioRender.com (Accessed on 9 December 2023). 
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chromatin structure to control gene expression (Moore et al., 2013). This 
section examines how Cd exposure can affect DNA methylation patterns 
and facilitate carcinogenicity in different cellular models. 

Several studies pointed to chronic Cd exposure mediating DNA 

hypermethylation and enhancing progressive tumorigenic phenotype. 
Zhang et al. (Zhang et al., 2023) uncovered that chronic Cd exposure 
mediates hypermethylation of genes associated with apoptosis and 
inflammation, including caspase-8 and interleukin-1β (Il-1β) and 

Table 2 
Depicts a comprehensive summary of epigenetic alterations as nongenotoxic mechanisms that regulate cellular responses and the underlying mechanisms that mediate 
Cd-induced carcinogenesis in vitro and in vivo, emphasizing the exposure mode, either acute or chronic, and the level of Cd concentration, either low or high.  

Cells line Cd conc. Epigenetic alteration Molecular events Study 
Type 

Exposure References 

Rat liver 
TRL1215 cells 

2.5 μM Hypermethylation ↑Invasiveness, ↓TET1, ↓ApoE, ↓TIMP2, 
and ↓TIMP3 

In vitro Chronic (Hirao-Suzuki 
et al., 2021) 

CNE-1 and CNE- 
2 

1 μM Hypermethylation ↓ 1α(CK1α), ↑EMT, ↑β-catenin, and ↑Wnt 
pathway activation 

In vitro Chronic (Peng et al., 
2019) 

HMy2.CIR cells 0.1 μM Hypermethylation ↓p16 In vitro Chronic (Yuan et al., 
2013) 

RWPE-1 cells 10 μM Hypermethylation ↑DNMT3b 
↓p21, and ↓RASSF1A 

Invitro Chronic (Benbrahim- 
Tallaa et al., 
2007) 

16HBE cells – Hypermethylation ↑DNMT1, ↑DNMT3a ↓hMSH2, ↓ERCC1, 
↓XRCC1, and↓hOGG1 

In vitro  (Zhou et al., 
2012) 

HepG2, MCF7, 
and HEK-293 
cells 

1 μM Hypomethylation ↑ PRMT5, and ↑EZH2, In vitro Acute (Ghosh et al., 
2020) 

MCF-10A, MCF- 
7, and SKBR3 
cells 

2.5 μM Hypomethylation ↓BRCA1, ↑CK5, ↑p63, ↑c-Myc, and ↑ KRAS In vitro Chronic (Benbrahim- 
Tallaa et al., 
2009) 

BEAS-2B cells 2.0 μM Histone methylation ↑ H3K4me3, ↑H3K9me2, 
↓ KDM5A, and ↓ KDM3A 

In vitro Chronic (Xiao et al., 
2015) 

HepG2 cells 0.1, 0.5, or 1.0 μM Histone methylation and acetylation ↓Histone methylation and ↓acetylation In vitro Acute (Cartularo et al., 
2015) 

BEAS-2B cells 1–––20 μM Histone 18 PTM ↓H3K4me2, ↓H3K36me3, ↑H3K9acS10ph, 
↑H4K5ac, ↑H4K8ac, 
and ↑H4K12ac 

In vitro Chronic (Liang et al., 
2018) 

16HBE cells – LncRNA-MALAT1 ↑MALAT1, ↑proliferation, 
↓FOXC2, ↓STAT3, ↓BAX, ↓EGFR, ↓TGF-β1, 
and ↑BCL-2 

In vitro Chronic (Huang et al., 
2017) 

BEAS-2B cells 2.5 μM, LncRNA -MEG3 ↓MEG3), ↑ DNMTs, ↓p21, ↑Rb, and ↑Bcl-xL In vitro Chronic (Lin, Rea, et al., 
2021) 

BEAS-2B cells 2.5 µM LncRNA-DUXAP10 ↑DUXAP10, ↑Hedgehog pathway, ↑Pax6, 
↑KLF4, ↑KLF5, and ↑Nanog 

In vitro Chronic (Wang et al., 
2021b) 

PC3 and DU145 
cells 

– LncRNA- OIP5-AS1 ↑ OIP5-AS1, ↓miR-128-3p, ↑SLC7A11, 
↓cell proliferation, and ↓ferroptosis 

In vitro Chronic (Zhang et al., 
2021) 

16HBE cells – LncRNA–ENST00000446135 ↑ENST00000446135, ↑ ATM, vATR, ↑ 
ATRIP, ↓MSH2, ↓OGG1, ↓ERCC1, ↓DDB1, 
↓DDB2, and↓ XRCC1 

In vitro Chronic (Zhou et al., 
2020) 

BEAS-2B cells 2 μM Circular RNA-circPUS7 ↑CircPUS7, ↓miR-770, and ↑KRAS In vitro Chronic (Pan et al., 
2021) 

BEAS-2B cells 2.0 μM Circular RNA-circ-SHPRH ↓circ-SHPRH, ↑miR-224–5p, ↓QKI, ↓E- 
cadherin, ↑vimentin 

In vitro Chronic (Zhou et al., 
2021) 

BEAS-2B cells 2.0 μM Circular RNA- CircSPAG16 ↓CircSPAG16, ↓PIP5K1α, 
And ↓Akt 

In vitro Chronic (Wang et al., 
2021b) 

BEAS-2B and 
16HBE cells 

16HBE cells: 10 
µM, BEAS-2B cells: 
1 µM 

Circular RNA- circCIMT ↓circCIMT, ↑γ-H2AX, ↑DNA damage, 
↓APEX1, ↓XRCC1, ↓PARP1, and ↓LIG3 

In vitro Chronic (Li et al., 2023a) 

BEAS-2B cells 0, 2.5, 5 and 10 μM MiR-30 family genes, miR-30a, miR-30b, 
miR30c-1, miR-30c2, miR-30d, and miR- 
30e 

↓miR-30 family members, ↑SNAIL, ↓E- 
cadherin, ↑ZEB1, and ↑vimentin 

In vitro Acute (Tanwar et al., 
2019)  

Model Cd dose Epigenetic alteration Mechanisms Study 
Type 

Exposure References 

Female BALB/c 
mice 

– Hypermethylation ↓Caspase-8, ↓IL-1β, and ↑Itm2a In vivo Chronic (Zhang et al., 
2023) 

SPF Sprague- 
Dawley rats 

high dose: 1.225 
mg/ kg, 
mid-dose: 0.612 
mg/ kg, and low 
dose: 0.306 mg /kg 

LncRNA-MALAT1 ↑MALAT1 In vivo Chronic (Huang et al., 
2017) 

SPF Sprague- 
Dawley rats 

high dose: 1.225 
mg/kg, 
mid dose: 0.612 
mg/kg, and low 
dose: 0.306 mg/kg 

LncRNA–ENST00000446135 ↑ENST000004461 In vivo Chronic (Zhou et al., 
2020) 

Female BALB/c 
mice 

0.640 mg m− 3 Circular RNA- circCIMT ↓circCIMT, ↑ALDH1A, and ↑Sox2 In vivo Chronic (Li et al., 2023a)  
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hypomethylation of the gene midline 1 (Mid1) in the mouse model. Rat 
liver cells TRL1215 cells exposed to 2.5 μM Cd for ten weeks exhibited 
enhanced invasiveness by downregulation of ten-eleven translocase 1 
(TET1) that can reverse DNA methylation and, consequently, the 
downregulation of the apolipoprotein E (ApoE) by hypermethylation 
(Hirao-Suzuki et al., 2021). In NPC, chronic exposure of CNE-1 and CNE- 
2 cell lines to Cd promotes cell proliferation and cancer progression via 
hypermethylation of casein kinase 1α(CK1α), which leads to activation 
of the Wnt/β-catenin pathway (Peng et al., 2019). In addition, using in 
vitro models, lymphocyte proliferation increased due to the down-
regulation of p16 caused by hypermethylation of its promoter (Yuan 
et al., 2013). A genome-wide methylation study for the nongenotoxic 
carcinogen- cadmium chloride unveiled that hypermethylation of 
several genes in the promoter region is associated with cancer and 
cancer pathways (Hwang et al., 2019). 

In addition, several lines of evidence suggest that Cd exposure in-
duces the expression of DNMTs and DNA hypermethylation, facilitating 
the tumorigenic transformation of prostate epithelial cells, lung 
epithelial cells, and human embryo lung fibroblast cells (Gao et al., 
2017; Jiang et al., 2008; Pelch et al., 2015). While acute Cd exposure 
inhibits DNMT, chronic exposure induces carcinogenesis via upregula-
tion of DNMT and hypermethylation of genomic DNA. Surprisingly, the 
level of genomic hypermethylation continued for four weeks after 
exposing the cell to Cd-free media (Takiguchi et al., 2003). Similarly, 
chronic exposure of PCa cells to Cd resulted in upregulation of DNMT3b 
expression and hypermethylation of the tumor suppressor p16 and 
RASSF1A (Benbrahim-Tallaa et al., 2007). Furthermore, Zhou et al. 
(Zhou et al., 2012) investigated the effect of Cd exposure mediating 
carcinogenic transformation of bronchial epithelial cells. The authors 
revealed upregulation of DNMTs, including DNMT1 and DNMT3a but 
not DNMT3b. In addition, genomic hypermethylation was observed, 
especially in DNA repair genes, including hMSH2, ERCC1, XRCC1, and 
hOGG1. In addition, Inglot and colleagues illustrated that Cd exposure 
induces chromosomal aneuploidy in the pig Robertsonian translocation 
model through DNA hypermethylation (Inglot et al., 2012). 

Hypomethylation is also a proposed mechanism for causing Cd- 
inducing carcinogenic transformation. Acute Cd exposure in hepatic 
and breast cancer in in vitro models demonstrated downregulation of the 
DNMTs, which resulted in demethylation of the CpG islands in the 
promoter region of protein arginine methyltransferase 5 (PRMT5) and 
the polycomb repressive complex 2 (PRC2) member enhancer of zeste 
homolog 2 (EZH2) and subsequently global hypomethylation of 
genomic DNA (Ghosh et al., 2020). Similarly, chronic Cd exposure in-
duces breast cancer malignant transformation. It exhibits global hypo-
methylation, especially for genes that enhance aggressiveness, such as 
the stem cell marker cytokeratin 5 (CK5) and p63, and the oncogenic c- 
Myc and Kirsten rat sarcoma viral oncogene homolog (KRAS) (Ben-
brahim-Tallaa et al., 2009). Hypomethylation initially happens during 
the acute exposure phase, followed by hypermethylation in the chronic 
phase. In addition, DNMT might play a crucial role in Cd inducing 
carcinogenicity as DNMT inhibitor 5-aza-2′-deoxycytidine has been 
shown to induce tolerance to Cd toxicity via hypomethylation of Met-
allothionein (MT) (Waalkes et al., 1988). 

4.1.2. Histone modifications 
Histone post-translational modification plays a crucial role in 

modulating gene expression. Several chemical groups can modify the 
histone tail, including acetylation, methylation, phosphorylation, 
ubiquitylation, deamination, ADP ribosylation, and isomerization. 
Those modifications induce intra-chromosomal changes and recruit-
ment of remolding complexes that modify gene expression (Bannister & 
Kouzarides, 2011). Histone modifications also have a role in Cd- 
inducing cellular transformation. In immortalized normal human 
bronchial epithelial (BEAS-2B) cells, acute Cd exposure resulted in the 
upregulation of trimethylated histone H3 on lysine 4 (H3K4me3) and 
dimethylated histone H3 on lysine 9 (H3K9me2) compared to control 

which was significantly increased with chronic exposure to low Cd 
concentration, and inhibition of lysine-specific demethylase 5A 
(KDM5A) and the lysine-specific demethylase 3A (KDM3A) demethy-
lases respectively (Xiao et al., 2015). 

Conversely, epiproteome profiling of transformed BEAS-2B through 
chronic exposure to Cd revealed downregulation in the methylation 
level of H3K4me2 and H3K36me3 and upregulation in histone acety-
lation (Liang et al., 2018). Another study reported that acute exposure in 
human hepatocellular carcinoma cells decreases histone methylation 
and acetylation, which was persistent for 72 h after Cd removal (Car-
tularo et al., 2015). Further research in this area is warranted to fully 
decipher the intricate mechanism of histone modification mediating Cd- 
induced carcinogenesis. In addition, exploring the role of other histone 
modifications, for example, phosphorylation and other modifications, 
and their role in the transformation process will be of great interest. 

4.1.3. Non-coding RNAs 
Non-coding RNAs(ncRNAs) refer to a group of RNAs that do not code 

for a protein and comprise most of the human genome. No-coding RNA 
can be classified into housekeeping RNAs such as rRNA, tRNA, snoRNA, 
and snRNA and regulatory RNAs, which can be subclassified according 
to their length to small non-coding RNAs such as microRNAs (miRNAs), 
small interfering RNAs (siRNAs), piwi interacting RNA (piRNA) and long 
noncoding RNAs (lncRNA) in addition to circular RNA (circRNA) 
(Almatroudi, 2022; Mattick & Makunin, 2006). Regulatory ncRNAs play 
vital roles in regulating gene expression via intricate network in-
teractions with crucial elements, including DNA, mRNA, proteins, pep-
tides, and small molecules and processes in the cell such as chromatin 
structure, transcription, RNA splicing, and protein translation (Alma-
troudi, 2022; Kazimierczyk et al., 2020; Mattick & Makunin, 2006). 

4.1.3.1. Long noncoding RNA. Long non-coding RNAs are a group of 
regulatory ncRNAs with a transcript length of over 200 nucleotides. It 
regulates gene expression at the transcriptional and post-transcriptional 
levels by interfering with DNA, mRNA transcripts, sponging miRNA, or 
interfering proteins in different signaling pathways (Statello et al., 
2021). Several studies discussed the role of lncRNA in mediating Cd- 
induced carcinogenic cellular transformation. For example, the 
metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) 
expression was upregulated by cadmium in transformed human bron-
chial epithelial 16HBE cells and in a rat model, which led to increased 
cell proliferation, migration, invasion, and decreased apoptosis in those 
cells (Huang et al., 2017). 

Furthermore, BEAS-2B cells exposed to low doses of Cd down-
regulated tumor suppressor lncRNA maternally expressed gene 3 
(MEG3) expression. In addition, chronic exposure to Cd in those cells 
decreased p21 expression and phosphorylated retinoblastoma protein 
(pRB) while increasing the expression of the antiapoptotic protein Bcl- 
xl. Overexpression of MEG3 inhibited the transformation phenotype, 
implying that MEG3 might play an essential role in Cd-promoted cellular 
transformation and carcinogenesis (Lin et al., 2021a). In addition, the 
study demonstrates that the upregulation of DNMT mediates MEG3 
downregulation through hypermethylation of the differentially meth-
ylated region (DMR) upstream of the MEG3 transcription start site (Lin 
et al., 2021a). The findings from this study are also supported by results 
from the NEST cohort study that show a significant correlation between 
elevated prenatal Cd levels and MEG3 DMR hypermethylation in 
maternal blood Cd (B-Cd) concentrations of infants, indicating that 
hypermethylation of DMR is imprinted on MEG3 (House et al., 2019). 

Moreover, Lin et al. (Lin et al., 2021b) revealed that chronic low Cd 
exposure in the lung epithelial BEAS-2B cells induces cellular trans-
formation, stem cell-like phenotype, and upgradation in the hedgehog 
pathway and induces tumor formation in a xenograft model. The authors 
show that the lncRNA DUXAP10 was upregulated in transformed BEAS- 
2B cells. The silencing of DUXAP10 resulted in the loss of transformation 
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and CSC-like properties, implying that the role of DUXAP10 in Cd in-
duces carcinogenesis. Low-dose Cd exposure increases cellular growth 
and ferroptosis inhibition in PCa cellular models, PC3 and DU145. RNA 
seq data analysis unveiled that the cadmium upregulates the expression 
level of lncRNA OIP5-AS1 in PCa cells. Knockdown of OIP5-AS1 inhibits 
cell growth and induces cell death via ferroptosis. The authors revealed 
that OIP5-AS1 sponge the miR-128-3p, which modulates the expression 
of SLC7A11 and, subsequently, inhibition of ferroptosis in PCa cellular 
models, further confirming that lncRNA dysregulation might play a 
crucial role in modulating carcinogenic effect of Cd in different cellular 
models (Zhang et al., 2021). Studies collectively support the idea that Cd 
induces carcinogenesis via a nongenotoxic mechanism. 

In contrast, DNA damage in the Cd-transformed human bronchial 
epithelial cell line16HBE cells was increased alongside the increase in 
damage-related genes such as ATM, ATR, and ATRIP. It decreased the 
expression of DNA repair-related genes such as MSH2, OGG1, ERCC1, 
DDB1, DDB2, and XRCC1. The authors demonstrate that the expression 
of lncRNA–ENST00000446135 was significantly upregulated in 16HBE 
bronchial cells and rat models, as well as in workers who faced chronic 
Cd exposure. Silencing of ENST00000446135 resulted in decreased cell 
growth and DNA damage in addition to downregulation of DNA 
damage-related and upregulation of DNA repair-related genes, further 
confirming the role of ENST00000446135 in mediating Cd-induced 
carcinogenesis (Zhou et al., 2020). The work by Feng and colleagues 
supports the role of lncRNA mediating DNA damage and Cd-induced 
carcinogenic effect. The authors demonstrate that the lncRNA MT1DP 
mediates a Cd-induced genotoxic effect. They compared residents with 
high U-Cd with individuals with low U-Cd and found downregulation in 
DNA repair genes and MT1DP (DNA damage response, genome insta-
bility, and replication fork stalling). Exposure to Cd resulted in ATR 
activation enhancing HIF-1α expression, leading to increased MT1DP 
expression and subsequent binding to chromatin, where it competitively 
inhibits SMARCAL1 interaction with replication protein A (RPA) com-
plexes, ultimately causing replication stress and DNA damage (Feng 
et al., 2022). 

Furthermore, Dai et al. performed RNA-seq analysis for the lung 
adenocarcinoma A549 lung cells exposed to chronic low concentrations 
of Cd. They found that there were 679 differentially expressed lncRNAs, 
out of which 375 were upregulated and 304 were downregulated, 
further insinuating the role of lncRNA dysregulation in modulating Cd- 
induced carcinogenesis (Dai et al., 2021). Those findings shed light on 
the complicated role of lncRNA mediating Cd carcinogenicity via non-
genotoxic and genotoxic mechanisms. 

4.1.3.2. Circular RNA. Circular RNA is another distinct group of 
ncRNAs lacking a 5′ terminal cap and 3′ polyA tail. Its closed-loop makes 
it more stable and resistant to exonuclease degradation than linear 
ncRNAs. Those characteristics render circRNA capable of regulating 
gene expression via different mechanisms, including sponging miRNAs, 
interfering with transcription, alternative splicing, and translation (Ma 
et al., 2021). Emerging evidence supports the role of circRNAs in cancer 
proliferation, progression, stemness, and resistance to chemotherapeutic 
agents (Su et al., 2019). Nevertheless, the role of circRNAs is to be fully 
elucidated. The expression of circPUS7 markedly increased in BEAS-2B 
cells exposed to Cd for 20 weeks. Chronic Cd exposure shows increased 
cell proliferation and invasiveness characteristics, markedly decreased 
upon circPUS7 knockdown, indicating the significant role circPUS7 
plays in modulating Cd-induced cellar transformation. The mechanistic 
study shows that circPUS7 modulates its effect via sponging the tumor 
suppressor microRNA miR-770, subsequently increasing its downstream 
KRAS expression (Pan et al., 2021). Another study found that chronic Cd 
exposure in BEAS-2B cells resulted in malignant transformation and 
increased epithelial-mesenchymal transition (EMT). In addition, circular 
RNA circ-SHPRH and QKI expressions were downregulated during the 
transformation. The tumor suppressor protein QKI is known for 

inhibiting cellular proliferation and EMT. The role of circ-SHPRH in 
mediating Cd-induced transformation was confirmed by overexpressing 
circ-SHPRH, which abrogates the transformation process and the asso-
ciated EMT process. Circ-SHPRH is shown to sponge the microRNA miR- 
224-5p, subsequently affecting the expression of QKI and inhibiting Cd- 
induced transformation (Zhou et al., 2021). 

The role of dysregulated circRNAs seems crucial in the Cd-induced 
transformation of the human bronchial epithelial cell model either by 
stimulating transformation, such as circPUS7, or suppressing the trans-
formation, such as circ-SHPRH. Both circRNAs modulate Cd carcino-
genesis through the sponging of microRNAs. Another mechanism 
includes the decoying of oncogenic proteins. CircSPAG16 is another 
circRNA that can abrogate the cadmium-induced transformation of 
BEAS-2B cells by binding to phosphatidylinositol 4-phosphate 5-kinase 
type-1 α (PIP5K1α), an oncogene that binds to Akt. CircCIMT is another 
circRNA downregulated in lung epithelial in vitro and in vivo. The 
expression circCIMT is decreased in the mouse lungs and transformed 
BEAS-2B and 16HBE cells. Overexpression of circCIMT attenuates 
transformation properties and reduces DNA damage associated with 
transformation. 

In addition, the circuit binds to the endonuclease APEX1, acts as part 
of the base excision repair mechanism, and decreases DNA damage. Dual 
silencing of circCIMT and APEX1 further enhances the Cd, induces 
transformation, and increases DNA damage (Li et al., 2023a). Those 
findings support the role of circRNA in mediating Cd-induced carcino-
genesis. However, further studies are warranted in different cellular in 
vitro models to fully elucidate the mechanism of circRNAs mediating 
carcinogenesis. 

4.1.3.3. MicroRNA. MicroRNAs are 21–25-nucleotide small ncRNAs 
that can regulate gene expression by interfering with its mRNA tran-
script. The level of complementarity between miRNA and its target 
transcript will determine the level of inhibition, and full complemen-
tarity will result in complete silencing of the target gene, while partial 
complementary will result in downregulation of the target gene (Gebert 
& MacRae, 2019). They also regulate several essential cellular processes, 
such as cell growth, differentiation, and apoptosis. Dysregulation of 
miRNAs is associated with several pathological conditions, including 
cancer (Catalanotto et al., 2016). MiRNA can regulate cancer initiation, 
progression, treatment response, and mediate chemoresistance (Awa-
dalla et al., 2020). 

The role of Cd-mediated miRNA dysregulation in carcinogenesis is 
yet to be elucidated. Several studies have demonstrated that Cd expo-
sure results in miRNA dysregulation, subsequently mediating carcino-
genesis. lncRNA, such as OIP5-AS1 sponge miR-128-3p, and inhibit 
ferroptosis via SLC7A11 regulation (Zhang et al., 2021). Moreover, 
circRNAs such as circPUS7 and Circ-SHPRH sponge miRNAs, including 
miR-770 and miR-224-5p, thus significantly mediating Cd-induced 
transformation (Pan et al., 2021; Zhou et al., 2021). Awadalla et al. 
illustrated that the blood Cd concentration correlates with the tissue 
expression miRNA-21 in bladder cancer patients (Awadalla et al., 2020). 
Those studies provide direct evidence of the role of dysregulated miRNA 
in mediated carcinogenesis. At the same time, several lines of evidence 
also suggest miRNA’s crucial role in Cd carcinogenesis. Tanwar et al. 
(Tanwar et al., 2019) revealed that the acute exposure of Cd to BEAS-2B 
cells decreases the expression of the miR-30 family, including miR-30a, 
miR-30b, miR30c-1, miR-30c2, miR-30d, and miR-30e. The mechanistic 
study found that Cd exposure upregulates the expression of EMT regu-
lator SNAIL in those cells via downregulation of miR-30. EMT is asso-
ciated with several diseases, especially cancer (Tanwar et al., 2019). 

In addition, Liu et al. (Liu et al., 2015) investigated the expression 
profile of mRNA-miRNA using microarray profiling. They uncovered 
that chronic exposure to Cd in 16HBE bronchial cells resulted in dys-
regulation of several miRNAs upregulated hsa-miR-27b-3p, has-miR- 
1265, and downregulated hsa-miR-877-5p, has-miR-944, has-miR-1261, 
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has-miR-3960, and hsa-miR-4708-3p. Out of those dysregulated miR-
NAs, the has-miR-27b-3p was the most significantly upregulated, and 
has-miR-944 was the most downregulated; both target CCM2, a scaffold 
protein that regulates lumen formation, cytoskeletal structure, and 
cell–cell junction. 

Table 2 summarizes cadmium-induced epigenetic, nongenotoxic 
mechanisms described above. 

4.2. Genomic instability and DNA damage 

DNA damage process is essential for achieving genomic instability, a 
well-studied hallmark of cancer. The exposure of Cd to mammalian cells 
can induce DNA mutation, strand breaks, and chromosomal abnormal-
ities (Koyama et al., 2002). The most common form of DNA damage that 
Cd induces is double-strand break (DSB), which can happen in normal 
cells (Zhang et al., 2019). The usual response to DNA damage includes 
the recruitment and activation of several protein complexes to the DSB 
site that either initiate DNA repair, induce cell cycle arrest, or drive the 
cell to apoptosis (Goodarzi & Jeggo, 2013). Cd-mediated carcinogenic 
transformation can be explained via several mechanisms, including 
direct genotoxic effect through direct interaction with DNA nucleotides 
and the formation of Cd-DNA adducts, especially with adenine and 
guanine nucleobases (Hossain & Huq, 2002). Indirect genotoxic effects 
include induction of reactive oxygen species (ROS), lipid peroxidation, 
and interference with antioxidants such as catalase, superoxide dis-
mutase, and glutathione (Sanchez-Valle et al., 2013; Valverde et al., 
2001). The role of Cd-mediated oxidative damage carcinogenesis is 
reviewed elsewhere (Henkler et al., 2010; Liu et al., 2009). 

Cd can mediate carcinogenic transformation via interfering with 

DNA repair enzymes - the zinc finger family of proteins-either directly or 
indirectly. It directly interferes with DNA repair enzymes by displacing 
Zn or hampering their function (Anetor, 2012). Displacement of Zn by 
Cd in p53 results in conformational changes that decrease p53 - DNA 
binding activity and repair (Meplan et al., 1999). Furthermore, Cd 
promotes downregulation in the expression of DNA repair genes. For 
instance, RNA-seq data analysis from transformed bronchial epithelial 
cells by low Cd concentration revealed downregulation of DNA repair 
protein O6-methylguanine-DNA-methyltransferase (MTMG). 

Further demonstrating the reduced capability to repair DNA damage 
reflected by MTMG downregulation, cadmium markedly decreased the 
viability of transformed cells caused by the alkylating agent temozolo-
mide (Cartularo et al., 2016; Thevenod & Chakraborty, 2010). Cd 
disturbed the interaction between DNA and DNA repair proteins 
responsible for base excision repairs, such as XPA, non-homologous 
recombination, such as 53BP1, and homologous recombination, such 
as BRCA1. Interestingly, Cd exposure can also inhibit the accumulation 
of ubiquitination signals at the sites of DNA damage by mediating 
RNF168 degradation and decreasing RNF168 ubiquitin-ligase activity 
(Buchko et al., 2000; Hartmann & Hartwig, 1998; Zhang et al., 2019). 
Here, we summarize the effect of Cd-induced carcinogenic trans-
formation via DNA damage, as depicted in Fig. 3. 

4.3. Oxidative stress 

Cd-mediated oxidative stress and its role in mitochondrial function 
have been comprehensively discussed elsewhere (Cui et al., 2021; 
Henkler et al., 2010; Liu et al., 2009; Nemmiche, 2017). The role of Cd 
mediating oxidative stress is well established in the literature. 

Fig. 3. Illustrates the common DNA damage mechanisms mediating Cd-induced carcinogenic transformation. Exposure to Cd induces DNA double-strand breaks, 
interacts with DNA nucleobase, and forms DNA adducts. In addition, Cd inhibits the accumulation of ubiquitination signals by decreasing RNF168 ubiquitin-ligase 
activity. Cd displaces Zn in p53, reducing p53 DNA binding activity and conformational changes, eventually leading to impaired DNA repair. It also can disturb the 
interaction between DNA and DNA repair proteins and hinder the recruitment of DNA damage proteins to the breaking site. Created with BioRender.com (Accessed 
on 9 December 2023). 
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Nevertheless, little was known about the mechanisms of Cd inducing 
oxidative stress until not long ago (Liu et al., 2008). Cd is implicated in 
mediating oxidative stress via direct and indirect mechanisms. Direct 
mechanisms include Cd replacing divalent cations, glutathione deple-
tion, and protein-bound sulfhydryl group, which generate ROS (Liu 
et al., 2009; Valko et al., 2006). The indirect mechanism emphasizing 
the role of Cd-mediated oxidative stress comes from studying the spin- 
trapping technique in conjunction with electron spin resonance that 
involves the direct interaction between a short-lived free radical with a 
paramagnetic compound to form a perpetual free radical product that 
can be measured in acute overloaded Cd models. Along with perturba-
tion in lipid peroxidation, activation of redox-sensitive transcription 
factors and redox signaling molecules such as activator protein 1 (AP-1), 
nuclear factor (erythroid-derived 2)-like 2, nuclear factor-κB (NF-κB), 
phosphoinositide 3-kinase (PI3K)/Akt (protein kinase B), mitogen- 
activated protein kinases (MAPK), and disparities in gene expression 
of several genes such as heme oxygenase-1, oxidative stress protein 
A170, GSH S-transferases, heat-shock proteins, GADD45, GADD153, and 
metallothionein provide a robust mechanism of Cd-induced ROS indi-
rectly (Liu et al., 2009). In addition, those factors are adaptation 
mechanisms that reduce Cd-induced oxidative stress in chronic expo-
sure. Nonetheless, low ROS levels can potentially result in carcinogen-
esis (Emami et al., 2022). 

5. Cellular and molecular pathways mediating Cd induce 
malignant transformation 

5.1. PI3K/Akt signaling pathway 

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is over-
activated in numerous cancers, promoting cell proliferation, invasion, 
metastasis, and survival capacities of tumor cells (Rascio et al., 2021). 
Here, we discuss the involvement of the PI3K/Akt signaling pathway in 
Cd-induced carcinogenic transformation in various cellular models 
(Fig. 4.). Chronic Cd exposure led to the transformation of cells and 
acquiring more aggressive tumorigenic characteristics confirmed by the 
development of tumors in mice. The PI3K/Akt array analysis revealed 
that Cd regulates the PI3K/Akt pathway on both transcriptional and 
translational levels, proposing that the PI3K/Akt signaling pathway 
plays a crucial role in the transformation of normal prostate cells into a 
malignant form due to Cd exposure, offering insights into potential 
therapeutic strategies for cadmium-induced prostate cancer (Kulkarni 
et al., 2020). Another study shows that KRAS silencing abrogates Cd- 
mediated carcinogenic transformation of prostate epithelial cells 
RWPE1 and downregulation of the PI3K/Akt signaling pathway, which 
further highlights the importance of this pathway in the transformation 
process (Ngalame et al., 2016). 

Furthermore, chronic Cd exposure induces tumorigenic 

Fig. 4. Illustrates the underlying mechanism of cd-mediated carcinogenic transformation via activation of several signaling pathways. Cd induces ros generation that 
activates signaling pathways involved in cell proliferation and survival, such as the PI3K/Akt pathway and MAPK/Erk. In addition, Cd induces the dissociation of 
β-catenin from the cell membrane, resulting in localization to the nucleus, where it can activate the expression of proto-oncogenes. Cd induces ROS formation, 
leading to defective autophagy that mediates cell survival. created with BioRender.com (Accessed on 9 December 2023). 
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transformation of BEAS-2B cells and leads to the development of tumors 
in mice. Mechanistic studies found that Cd induces ROS formation and 
activates PI3K and its downstream Akt. The effect of ROS-mediated Cd 
activation of the PI3K/Akt signaling pathway was confirmed by trans-
fection with the antioxidant enzymes catalase and superoxide dismut-
ase, which resulted in abrogation of the transformation process, further 
ensuring the role of ROS in carcinogenic transformation (Son et al., 
2012). Mohapatra et al. investigated the effect of cigarette smoke 
condensate containing approximately 1.011 μg Cd per cigarette equiv-
alent on the transformation of BC cells. Their experiments showed that 
cigarette condensate containing heavy metals, including Cd, caused a 
malignant transformation of breast epithelial cells. The authors found 
high expression of PI3K, AKT, and NF-κB, further documenting the 
participation of the PI3K/Akt signaling pathway in tumorigenic trans-
formation (Mohapatra et al., 2014). However, more mechanistic studies 
using different cellular and animal models are warranted to elucidate 
the contribution of this pathway to carcinogenesis. 

5.2. MAPK signaling cascade 

Mitogen-activated protein kinase (MAPK) cascades are essential in 
communicating signals to cellular responses. There are three well- 
characterized families of MAPK cascades, including the extracellular 
signal-regulated kinases (Erk), C-Jun N-terminal kinase (JNK), and p38 
kinase (Zhang & Liu, 2002). MAPK signaling cascades modulate essen-
tial cellular processes, including cellular growth, cell differentiation, cell 
death, and stress responses (Guo et al., 2020). The role of MAPK 
signaling cascades modulating Cd to promote malignant transformation 
is elusive. Dasgupta et al. unveiled that chronic Cd exposure modulates 
malignant transformation via activating the Erk/MAPK pathway (Das-
gupta et al., 2020). In addition, the activation of Erk and Akt promotes 
angiogenesis by inducing the expression of hypoxia-inducible factor-1 
(HIF-1) and vascular endothelial growth factor (Jing et al., 2012). 
Further research is still warranted to decode the role of the Erk/MAPK 
pathway in Cd-mediated tumorigenic transformation (Fig. 4.). 

Additional members of the MAPK cascades that play a crucial role in 
modulating Cd-mediated tumorigenesis, such as JNKs, also known as 
stress-activated kinases (SAPKs). The importance of JNK comes from its 
role in regulating essential processes such as cell growth, cell death, and 
DNA repair. Aberrant JNK signaling contributes to the development of 
several diseases, including cancer (Johnson & Nakamura, 2007). 
Chuang and colleagues unveiled that low Cd doses activated JNK and 
inhibited apoptosis (Chuang et al., 2000). Conversely, another mecha-
nistic study disclosed that in Cd-transformed cells, the high expression of 
the antiapoptotic protein Bcl2 possibly attenuates JNK1/2 phosphory-
lation, evading apoptosis (Qu et al., 2006; Qu et al., 2007). 

Furthermore, JNK is known to phosphorylate c-Jun at the N-terminal 
serine residues in response to stress stimuli (Johnson & Nakamura, 
2007). C-Jun is as vital as an oncogene and a member of the AP-1 
transcription factors that control gene expression responding to 
various stimuli (Johnson & Nakamura, 2007). Yang et al. uncovered that 
Cd exerts its malignant effect and induces cell proliferation through 
activating AP-1, which is mediated by JNK/c-Jun/AP-1 and ERK/Fra-1/ 
AP-1 activation and overexpression of the anti-apoptotic protein Bcl-xL, 
further supporting the role of JNK in mediating apoptosis resistance in 
transformed cells (Yang et al., 2008). In addition, several reports showed 
that Cd exposure results in the upregulation of several proto-oncogenes, 
including but not limited to KRAS, c-Myc, c-Fos, and c-Jun (Joseph et al., 
2001; Spruill et al., 2002). Both c-Fos and c-Jun are well-known proto- 
oncogenes combined to form an AP-1 complex that JNK can modulate to 
facilitate malignant phenotype in Cd-mediated transformation. 

5.3. β-catenin pathway 

The Wnt/β-catenin signaling pathway is crucial for tissue develop-
ment and homeostasis. The dysregulation of this pathway results in the 

etiology of several diseases, including cancer. Its importance comes from 
regulating several pathways critical for cancer development, such as 
cancer stem cell renewal, proliferation, and differentiation. (Liu et al., 
2022). The role of this pathway mediating Cd‘s role in tumorigenesis 
remains elusive. A few studies have demonstrated its involvement in Cd- 
induced transformation. Indeed, chronic Cd exposure promotes the 
transformation of BEAS-2B cells and results in tumors in mice. The au-
thors demonstrated that Cd induces ROS formation, which subsequently 
activates GSK-3β/β-catenin and PI3K/Akt pathway, as previously dis-
cussed. The expression level of β-catenin and phosphorylated GSK-3β 
(pGSK-3β) were higher in transformed cells than in control. The effect of 
the Cd-mediated activation of the β-catenin pathway was confirmed by 
transfection with the antioxidant enzymes catalase and superoxide dis-
mutase, which diminish the transformation process (Son et al., 2012). 
GSK-3β tightly regulates the activation of β-catenin. β-catenin phos-
phorylation by GSK-3β causes its degradation. In this study, it seemed 
that Cd-induced carcinogenic transformation activated the PI3K/Akt 
pathway that might phosphorylate GSK-3β, leading to increased levels of 
pGSK-3β and β-catenin stabilization (Son et al., 2012). 

Chronic Cd exposure exacerbated malignant transformation by 
activating the Wnt/β-catenin pathway in NPC (Peng et al., 2019). Cd 
exposure mediates the downregulation of E-cadherin, a protein 
responsible for maintaining cell–cell adhesion. The downregulation of E- 
cadherin resulted in decreased cytoplasmic E-cadherin/β-catenin com-
plex. It facilitated the localization of β-catenin to the nucleus, where it 
combines with transcription factor-4 (TCF-4) and regulates the expres-
sion of several genes responsible for tumorigenic proliferation and sur-
vival, such as c-Jun, c-Myc, and cyclin D1 (Fig. 4.) (Pearson & Prozialeck, 
2001). 

5.4. Defective autophagy facilitates survival in Cd and induces 
carcinogenic transformation 

Autophagy is a survival mechanism that facilitates the catabolic 
degradation of cellular organelles and proteins through the lysosomal- 
mediated degradation of loaded cargo (Saran et al., 2021). Several 
studies emphasized the role of autophagy in the modulation of trans-
formation by Cd. One study highlighted that Cd induces ROS generation 
and upregulation of NADPH oxidase 1 (NOX1), which in turn causes 
endoplasmic reticulum stress and activates the unfolded protein 
response (UPR) that leads to defective autophagy which in turn atten-
uates autophagosome-lysosome fusion and facilitate survival (Tyagi 
et al., 2023). Similarly, Cd induces ROS generation, resulting in defec-
tive autophagy, and bestows survival advantages to transformed cells. 
The transformation phenotype was abrogated upon overexpression of 
antioxidants such as catalase and superoxide dismutase (Kolluru et al., 
2019). Likewise, another study uncovered that Cd exposure induced the 
expression of Placenta Associated 8 (Plac8), which is a regulator of 
autophagosome/autolysosome fusion that leads to autophagy and 
increased cell proliferation and survival through the activation of pro- 
survival mechanisms, including Akt and NF-κβ (Kolluru et al., 2017). 
Psoralidin works as a chemoprotective agent by inhibiting cell prolif-
eration autophagy and inducing downregulation of pro-survival protein 
NFκB and the anti-apoptotic protein Bcl2, further emphasizing the role 
of autophagy in Cd, mediating tumorigenesis and the crosstalk between 
autophagy and apoptosis resistance to facilitate Cd carcinogenesis (Pal 
et al., 2017). Similarly, Cd induces ROS production, resulting in auto-
phagosome accumulation, upregulation of p61, and activation of NF- 
E2–related factor 2 (Nrf2). The activation of Nrf2 exhibits its effect via 
the upregulation of its downstream anti-apoptotic protein Bcl2 and Bcl- 
xL (Fig. 4.), hence inducing apoptotic resistance and enhancing cell 
survival (Wang et al., 2018). 
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6. Biomarkers and genetic factors influencing susceptibility to 
carcinogenesis 

The adverse effect of Cd exposure on human health is well estab-
lished. In our review, we discussed how Cd exposure mediates the 
carcinogenic transformation of normal cells. Therefore, discovering 
novel diagnostic biomarkers that reflect Cd exposure is crucial. Exposure 
to Cd results in multi-organ damage, primarily to the kidneys (50 % of 
cases), muscle (20 %), and liver (15 %). Blood Cd is a reliable indicator 
of body Cd load (Borne et al., 2019). Following exposure, much of the 
cadmium accumulates in the kidney, and urine levels correlate with 
kidney levels. As a result, U-Cd levels are frequently regarded as an 
indication of long-term exposure (Vacchi-Suzzi et al., 2016). The WHO 
recommended a health-based U-Cd exposure limit of 5 µg/g of creatinine 
(or 5 µg/L). Currently, the U-Cd level is considered safe for humans in 
most nations and is comparable to the WHO reference value (Gao et al., 
2014). 

Monitoring human populations for early symptoms of Cd exposure 
and toxicity has proven to be extremely difficult. Measuring Cd levels in 
blood or urine is the standard method researchers use to evaluate Cd 
exposure. However, several other methods include measuring Cd levels 
in hair, nails, and saliva. In addition, the emergence of innovative 
nanotechnologies, such as quantum dots, might help monitor Cd expo-
sure (Rafati Rahimzadeh et al., 2017). Yet, discovering novel diagnostic 
markers, especially those associated with the possibility of cellular 
malignant transformation, will be immensely important. 

Several studies have reported a significant association between Cd 
levels in blood and urine and dysregulation of ncRNAs, especially 
lncRNAs. The expressions of MALAT1 and ENST00000446135 are 
upregulated in Cd-transformed 16HBE cell rat models and in human 
subjects. MALAT1 and ENST00000446135 expressions correlate posi-
tively with U-Cd and B-Cd levels in both rat models and Cd-exposed 
workers, indicating that MALAT1 and ENST00000446135 might be 
used as novel biomarkers for Cd toxicity (Huang et al., 2017; Zhou et al., 
2020). In addition, Moawad et al. investigated the expression signature 
of lncRNA-ENST00000414355 in 139 workers from Cd battery manu-
facturers, including 74 non-smokers and 65 smokers. 
ENST00000414355 expression significantly correlated with B-Cd level 
(Moawad et al., 2021). 

MiRNAs also hold a potential role as an appropriate diagnostic 
marker for Cd exposure despite a lack of studies that examine the as-
sociation between miRNAs and Cd-induced carcinogenic phenotype. 
MiRNA profiling shows that miR-122-5p and miR-326-3p may be 
promising biomarkers for Cd exposure (Yuan et al., 2020). Those results 
highlight the promising role of the ncRNA signature as a diagnostic 
marker for chronic Cd exposure. 

Several studies explored whether genetics influence susceptibility to 
Cd-induced cancer. Even though the influence of genetic susceptibility 
of Cd induces malignant transformation, it is yet to be uncovered. 
Indeed, a complex network of interactions between various genes may 
be underlying the transformation. Our review has delineated the inter-
action between Cd mediate genetic modification, DNA damage, evading 
apoptosis, oxidative stress, carcinogenic transformation, and the recip-
rocal interaction between different mechanisms. Intriguingly, Cd- 
mediated transformation is not dominated by a single mechanism of 
action. Instead, there are several overlying layers of interactions that 
collectively modulate the transformation. Based on this premise, iden-
tifying genetic susceptibility biomarkers will enable vulnerable sub-
populations to take the necessary safety measures regarding Cd 
exposures and decrease disease risk. The effectiveness of translation 
(eukaryotic) initiation factor 3 (eIF3) as a diagnostic marker for Cd 
exposure has been investigated in Cd-transformed 16HBE cells, rat 
models, and human participants. Zhou et al. found a positive correlation 
between eIF3 expression and B- Cd, U-Cd, and β2-microglobulin content, 
implying that eIF3 might be an innovative surrogate marker for Cd 
exposure (Zhou et al., 2016). Further research focusing on the 

dysregulated proteomic, metabolomic, and transcriptomic signature in 
malignant transformed in vitro and in vivo models using innovative 
methods such as next-generation sequencing, mass spectroscopy, and 
microarray profiling will have a vital role in determining novel, inno-
vative diagnostic biomarkers that are associated with carcinogenesis. 

7. Strategies for Cd exposure prevention 

In this review, we have highlighted the role of Cd-induced carcino-
genesis and provided a comprehensive review of the literature on studies 
that find an association between Cd exposure and cancer development. 
In addition, we have discussed the risk of early life Cd exposure and 
cancer development. Several studies have focused on the preventive 
strategies that could reduce the risk of Cd exposure (Reviewed elsewhere 
(Mezynska & Brzoska, 2018; Nawrot et al., 2010; Schaefer et al., 2020; 
Sripada & Lager, 2022)), including several interventions that adopted 
strategies focusing on preventing Cd toxicity, especially plant-derived 
compounds with a particular focus on the role of flavonoid as antioxi-
dants, bio elements including magnesium, selenium, manganese, and 
zinc, the antioxidants N-Acetyl Cysteine, and probiotics (Cui et al., 2021; 
Dubey et al., 2019; Mezynska & Brzoska, 2018; Sripada & Lager, 2022). 
Others focused on providing strategies that help in reducing Cd in soil 
and crops, such as using lime or applying amendments such as bio-
fortification that can decrease the bioavailability of Cd in the soil, 
replacing phosphate-based fertilizers with zinc-based fertilizers can 
reduce the accumulation of Cd in crops (Schaefer et al., 2020). Genetic 
modification of rice, wheat, potatoes, and other staples to extract less Cd 
from the soil may also be helpful. The same may apply to tobacco to 
decrease Cd extraction from the soil. In addition, air monitoring and 
biomonitoring effectively reduce Cd among workforces (Lombaert et al., 
2023). Even though there is a tremendous need to investigate an inno-
vative drug that could reverse Cd-induced carcinogenicity, we discussed 
the promising potentials of autophagy inhibitors Psoralidin and sulfo-
raphane in reversing Cd mediating carcinogenic transformation (Pal 
et al., 2017; Wang et al., 2018). 

8. Beyond current paradigms: The future landscape of Cd- 
induced carcinogenesis 

8.1. Research trends in cadmium carcinogenesis 

The recent advances in diagnostic biomarkers, the genetic suscepti-
bility field, and strategies that might mitigate Cd exposure are tremen-
dous. Nevertheless, more research focused on deciphering the 
underlying mechanism mediating Cd-induced carcinogenic trans-
formation combining different multi-omics data generated from in vitro 
and in vivo Cd-transformed models will help understand the multifaceted 
role of Cd in deriving carcinogens. Results from the multiomic data will 
help researchers build networks combining transcriptomics, proteomics, 
and metabolomics data to help determine the hub gene(s) responsible 
for malignant transformation. In addition, applying state-of-the-art im-
aging techniques such as mass spectrometry, imaging, and PET/CT scans 
will provide insight into the effect of Cd-mediated transformation in 
animal models. Current knowledge points to epigenetic aberration as a 
common pathway for response to Cd exposure. However, several areas 
are to be discovered, such as the mechanism of Cd-mediated chromatin 
remodeling and the exact mechanisms underlying miRNAs, circRNAs, 
and lncRNAs aberration in transformed cells. It will also give an insight 
into the heritable trait and imprinting of genes that can affect offspring. 
Moreover, most research focuses on medical intervention; however, 
shifting our paradigm toward prevention research could also highly 
impact health outcomes. 

8.2. Translational opportunities and challenges 

Furthermore, the emergence of metallomics will guide researchers to 
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investigate the effect of biological trace elements and inorganic ele-
ments on biological systems equipped with innovative techniques such 
as mass spectrometry, electrochemistry, atomic spectroscopy, chroma-
tography, and computational modeling. Additionally, incorporating 
microphysiological systems will facilitate the emulation of biological 
systems using organ-on-a-chip technology that could collectively 
advance our understanding of the pathophysiology of metal-induced 
carcinogenesis and guide the development of groundbreaking diag-
nostic biomarkers and therapeutic agents. 

9. Conclusion 

In this review, we provided a comprehensive analysis of the effect of 
Cd exposure on human health, focusing on the risk of cancer develop-
ment and early life exposure to cancer risk. We further discussed the 
mechanisms mediating Cd-induced carcinogenic transformation on in 
vitro and in vivo models, focusing on epigenetic aberrations, DNA dam-
age, resisting cell death, inducing oxidative stress, and activating sur-
vival mechanisms. More research is warranted to fully understand the 
intricate mechanism underlying Cd-mediated carcinogenic 
transformation. 
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