
Asynchronous parallel Bayesian optimization

for AI-driven cloud laboratories

Trevor S. Frisby, Zhiyun Gong and Christopher James Langmead*

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

*To whom correspondence should be addressed.

Abstract

Motivation: The recent emergence of cloud laboratories—collections of automated wet-lab instruments that are
accessed remotely, presents new opportunities to apply Artificial Intelligence and Machine Learning in scientific re-
search. Among these is the challenge of automating the process of optimizing experimental protocols to maximize
data quality.

Results: We introduce a new deterministic algorithm, called PaRallel OptimizaTiOn for ClOud Laboratories
(PROTOCOL), that improves experimental protocols via asynchronous, parallel Bayesian optimization. The algo-
rithm achieves exponential convergence with respect to simple regret. We demonstrate PROTOCOL in both simu-
lated and real-world cloud labs. In the simulated lab, it outperforms alternative approaches to Bayesian optimization
in terms of its ability to find optimal configurations, and the number of experiments required to find the optimum. In
the real-world lab, the algorithm makes progress toward the optimal setting.

Data availability and implementation: PROTOCOL is available as both a stand-alone Python library, and as part of a
R Shiny application at https://github.com/clangmead/PROTOCOL. Data are available at the same repository.

Contact: cjl@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Most standard laboratory techniques have been automated which,
in turn, has enabled the development of commercial robotic Cloud
Laboratories (e.g. EmeraldCloudLab and Transcriptic), and the
emergence of a new paradigm of Science-as-a-Service. Analogous to
cloud computing, cloud labs let scientists outsource the management
and maintenance of a set of resources—automated scientific instru-
ments, and thus devote more time and money to their research. In
addition to these administrative and economic benefits, cloud labs
also significantly increase the reproducibility of scientific research,
due to the use of robotics. For these reasons, one can anticipate an
increase in the utilization of cloud labs by scientists in academia and
industry alike, at least for certain tasks.

Existing cloud labs are largely open-loop, in the sense that
humans must specify every detail of the experimental protocols to
be executed by the robots. However, it is not difficult to imagine an
AI-driven cloud lab that automatically finds optimal instrument set-
tings and/or experimental conditions, so as to maximize throughput
and data quality, or to minimize costs. Eventually, such systems
might lead to the widespread use of general-purpose ‘robot scien-
tists’ capable of making novel discoveries autonomously, as first
demonstrated in 2004 (King et al., 2004). Toward these ends, this
paper introduces a method, called PaRallel OptimizaTiOn for
ClOud Laboratories (PROTOCOL), to perform closed-loop opti-
mization of experimental protocols against a user-defined objective.

PROTOCOL builds on recent work in Bayesian Optimization
(BO) (Snoek et al., 2012; Mockus, 1989), which is a sequential strat-
egy for optimizing black-box (i.e. unknown) functions. The tech-
nique is Bayesian because it places a prior distribution over the
objective function, and then computes posteriors at the end of each
round, based on the outcome of an algorithmically selected function
evaluation. The key differences between BO methods are the means
by which they represent the distribution over functions, and the way
that they select the next design configuration to test. Gaussian
Processes are a very common choice for specifying the distribution,
and that is what is used in this paper. The selection strategy, some-
times called the acquisition function, will define a utility function
and then searches for a design with (approximately) maximal utility.
PROTOCOL introduces a novel acquisition strategy that is matched
to the features of a cloud lab environment.

Bayesian Optimization is often used in application domains
where the evaluation of the objective function is extremely slow or
expensive, such as hyperparameter optimization in deep learning
(e.g. Bergstra et al., 2011). Performing wet-lab experiments is also
time-consuming, even under the best of circumstances. But cloud
labs comprise a set of shared resources, and so experiments often sit
in a queue waiting for specific instruments to become available.
That is, the benefits of outsourcing the management and mainten-
ance of a wet-lab to the cloud are somewhat offset by increased cycle
times, on a per-experiment basis. On the other hand, a suitably
equipped cloud lab may facilitate parallel searches for optimal

VC The Author(s) 2021. Published by Oxford University Press. i451

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37, 2021, i451–i459

doi: 10.1093/bioinformatics/btab291

ISMB/ECCB 2021

https://github.com/clangmead/PROTOCOL
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab291#supplementary-data
https://academic.oup.com/


conditions. PROTOCOL’s acquisition function takes advantage of
such parallelism by selecting batches of designs to test, while per-
forming closed-loop, asynchronous Bayesian Optimization.

We evaluated PROTOCOL on two test scenarios. The first opti-
mized four instrument parameters for MALDI-ToF mass spectrom-
etry in a simulated cloud lab (but using real data). The second
optimized five instrument parameters and the solvent ratio for
HPLC in a real cloud lab. PROTOCOL outperforms conventional
BO methods dramatically on the MALDI-ToF data, given the same
budget. On the real cloud lab, PROTOCOL makes progress toward
finding a high-resolution chromatogram.

2 Background and related work

2.1 Bayesian optimization with Gaussian processes
Bayesian Optimization is a sequential strategy for optimizing black-
box objective functions, f. As mentioned in the introduction,
Gaussian Processes (GP) are frequently used to represent and com-
pute over the distribution P(f). A GP is defined by a mean function
l : X ! R and kernel function K : X � X ! R. Common choices
for K include radial basis function (RBF) and Matérn kernels. In a
typical application of GP-based BO, it is assumed that
f � GPðl;KÞ, and thus f ðxÞ � NðlðxÞ;Kðx; x0ÞÞ, for all x 2 X .
This is useful because it provides a straightforward way to obtain
closed-form posterior mean (lP ) and variance functions:

lPðxÞ ¼ E½f ðxÞ� ¼ Kx;x0 ðKþ r2IÞ�1y

Var½f ðxÞ� ¼ Kx;x � Kx;x0 ðKþ r2IÞ�1Kx0 ;x

(1)

Together, these functions can be used to compute posterior prob-
abilities over function values, and related quantities, such as upper
and lower confidence values. These estimates can be used by an ac-
quisition function to identify untested points (i.e. designs) that will
provide information relevant to finding the optimal value of f.

2.2 Bound-based Bayesian optimization
Various acquisition function strategies have been proposed, includ-
ing Thompson Sampling (TS) (Agrawal and Goyal, 2012), Expected
Improvement (EI), Probability of Improvement (PI) and Upper
Confidence Bounds (UCB) (Wilson et al., 2018). A common feature
of these methods—and a potential weakness, is that they require ac-
cess to a finite sampling procedure which affects both the runtime
and the ultimate resolution the optimization procedure—the finer
the resolution, the more computationally expensive the optimiza-
tion. Recently, however, an algorithm that does not require sam-
pling during BO was introduced. That algorithm, called IMGPO
(Infinite Metric Gaussian Process Optimization) (Kawaguchi et al.,
2015), performs serial BO and comes with convergence guarantees.
Our method extends IGMPO to the asynchronous parallel setting.

IMGPO builds upon previous work in bound-based optimization
methods (Munos, 2011; Wang et al., 2014), and uses a divide-and-
search strategy based on estimated bounds, like DIRECT (Jones
et al., 1993). It proceeds by growing a hierarchical partitioning tree
over an n-dimensional search space while maintaining a GP model
conditioned on observations previously requested by the algorithm.
The tree is grown by iterating over it in a top-down fashion and
choosing whether or not to evaluate the center of intervals/hyperrec-
tangles associated with each node in the tree. Selected intervals may
be further divided into three subintervals along the hyperrectangle’s
longest dimension, resulting in three new leaf nodes in the tree.

The decision to evaluate and divide is made by comparing mul-
tiple bounds on the unknown ground-truth value of a given inter-
val’s center. These bounds are defined by the upper confidence
bounds (UCB) of the GP model (In this article, we assume that we
are trying to maximize the objective function. If attempting to min-
imize a function, one uses lower confidence bounds (LCB).), as well
as the ground-truth values of observed interval centers. In general,
when the UCB of the current iterate is greater than the current best
observed value, the algorithm will request to evaluate the current
interval’s center, and divide the interval. Ultimately, the sequence of

selected interval centers that are evaluated converge to the ground-
truth function’s optimal value. The IMGPO authors prove that their
algorithm achieves exponential convergence over continuous search
spaces with respect to simple regret, given by RðxþÞ ¼
supx2X f ðxÞ � f ðxþÞ, where xþ is the configuration found by the al-
gorithm, without the need for sampling of the input space. For full
technical details of the algorithm and proofs, we refer the reader to
their paper (Kawaguchi et al., 2015). We emphasize that the
IMGPO algorithm performs serial optimization, in that it only
requests the evaluation of one design at a time.

3 Our method: PROTOCOL

PROTOCOL adopts the hierarchical partitioning tree schema and
interval division criteria employed by IMGPO. The primary innov-
ation used by PROTOCOL is the calculation of a frontier from
which up to k experiments can be chosen to run in parallel. Here, k
is the maximum number of experiments a given cloud lab user is
authorized to run at the same time. The frontier consists of the cen-
ter points of the set of potentially optimal hyperrectangles in the n-
dimensional search space (i.e. those that may contain the optimum
of the objective function). The idea of maintaining a set of potential-
ly optimal hyperrectangles is borrowed and adapted from the
DIRECT algorithm (Jones et al., 1993) for derivative-free global,
serial (non-Bayesian) optimization. One of the points on the frontier
will always be the point that IMPGO would have selected (in the
serial optimization setting), given access to the same set of observa-
tions of the objective function. Hence, PROTOCOL inherits the
same guarantees as IMGPO, with respect to exponential conver-
gence (see below).

The remaining points on the frontier are identified by computing
the convex hull over a two-dimensional encoding of the sub-volumes
associated with all non-evaluated leaf nodes in the partition tree.
The two coordinates for each sub-volume are the corresponding
node’s depth in the tree (which is inversely proportional to the size
of the sub-volume), and the UCB of the objective function within
that region. The intuition behind maintaining a frontier based on
sub-volumes of different sizes is that those volumes represent differ-
ent trade-offs between exploration of the input space—to gather in-
formation from under-sampled regions (i.e. those corresponding to
relatively large volumes), and exploitation—to search in the vicinity
of the best design observed thus far (i.e. those corresponding to rela-
tively small volumes). Every BO acquisition function makes a trade-
off between exploration and exploitation; PROTOCOL’s strategy is
to select batches of experiments that individually make different
trade-offs. The use of the UCB is justified based on the well-estab-
lished principle of optimism under uncertainty (Bubeck and Cesa-
Bianchi, 2012). Using the convex hull ensures the algorithm avoids
requesting experiments the GP model believes to be suboptimal,
while considering nodes at each depth promotes choosing intervals
representing varied portions of the input space.

The selection strategy used by PROTOCOL can be described as
a three step process:

1. Identify intervals eligible for division. This step follows an anol-

ogous one in IMGPO, where the algorithm traverses the tree and

attempts to identify one interval at each depth of the tree that is

eligible to be divided. If a function evaluation is necessary,

PROTOCOL will calculate a frontier, and multiple experiments

may be requested accordingly.

2. Prune the chosen intervals. This step also follows directly from

IMGPO. Intervals selected in Step 1 are added to a list if they

contain a UCB greater than the value associated with any

smaller interval in the tree. Essentially, this determines whether

or not progress made in other portions of the tree suggests the al-

gorithm should continue to divide in that area or elsewhere.

3. Select and divide intervals. This step differs from IMGPO. Here,

any intervals that passed the initial two steps are divided into

three subintervals by splitting along the longest dimension. Any

i452 T.S.Frisby et al.



newly created intervals whose center would be evaluated accord-

ing to IMGPO are added to an experimental queue. From the

remaining experiments, a frontier is calculated, and the queue is

filled up to the maximum level of parallelization with experi-

ments that lie on the frontier. In the event that there are more

experiments on the frontier than space in the queue, those with

highest UCB are chosen. In the event that there aren’t enough

intervals to fill the queue (i.e. the size of the frontier is < k),

then the algorithm simply requests all the experiments it can.

By construction, one of the experiments selected in Step 3 would
have been chosen by the IMGPO algorithm (in the serial optimiza-
tion setting) given access to the same set of observations. Thus,
PROTOCOL has the same convergence guarantees as IMGPO. In
particular, both algorithms achieve exponential convergence:
RðxþÞ 2 OðkNþNGP Þ, where k < 1, N is proportional to the number
of evaluations of the objective (here, the number experiments per-
formed) and NGP is the number of evaluations of a Gaussian Process
model.

At the end of a given pass through the tree, the GP hyperpara-
meters are updated and the algorithm repeats until a prescribed
maximum number of evaluations are made.

3.1 Descriptive example of algorithm
To illustrate how the algorithm works, we optimize the 1 dimension
sinusoidal function f ðxÞ ¼ 1

2 sin 13x sin 27xþ 1Þð defined over the
unit interval (this function is visualized in Supplementary Fig. S1).
This function has multiple local maxima over this domain, where
the global maximizer is given by x � 0:868. We use a hierarchical
tree T to maintain and visualize the division scheme over the input
space. Each node corresponds to a subinterval obtained after div-
ision of its parent interval node. Each interval is either associated to
the ground-truth function evaluated at the interval center, if it has
been previously selected, or the UCB evaluated at the center accord-
ing to the GP model otherwise.

Figure 1 (Top) shows the hierarchical tree obtained by the algo-
rithm at three different time points. In these figures, the horizontal
axis refers to the input space for the function to be optimized, and
the nodes have been fixed along this axis according to each interval’s
center coordinate. The ground-truth function optimizer is indicated
by the star along the axis at x � 0:868.

The leftmost figure shows T 0, the tree after initial iteration 0.
The root node at depth 0 corresponds to the initial interval center
located at the center of the input space (x¼0.5). After evaluating
the function at this value, the interval is divided into three subinterv-
als with centers x � 0:167, x¼0.5 and x � 0:833. These intervals
correspond to the three nodes at depth 1 in the tree. Since the middle
interval has the same center coordinate as its parent, it is associated
with its ground-truth value, whereas the other nodes are associated
with the UCB of a GP model conditioned on this observed data
point. Proceeding through Step 1, the algorithm will iterate over
each depth level in the tree and try to identify the best candidate
node to divide while keeping track of the current best observed
value, �max. At depth 0, there is only one node, and that node has al-
ready been divided, so no candidate is chosen at this level. By de-
fault, �max will be set to the ground-truth value of this interval
center. At depth 1, none of the nodes have been divided. The algo-
rithm will identify the interval with the best associated value, and
one of the following will occur–

i. The selected interval has a ground-truth center value greater

than or equal to �max. This interval is then added to the candi-

date list for dividing, and �max is set to this center value.

ii. The selected interval has a ground-truth center value less than

�max. In this case, no candidate is added to the list at this depth,

and �max is not updated.

iii. The selected interval has a UCB-based center value, rather than

ground-truth (i.e. it has not been previously evaluated). If this

happens, a frontier will be calculated and up to k many experi-

ments will be requested (at this early stage of the algorithm,

there are only two possible intervals available for consideration,

so the frontier would not be invoked). Once experiments are

completed, the ground-truth observations are then associated

with their corresponding interval, and the algorithm will again

iterate over the depth 1 nodes until 1 or 2 occur.

If the tree has greater depths, the algorithm moves on to the next
depth in the tree, and proceeds until all depths have been visited.

The center of Figure 1 (Top) shows the progression of the algo-
rithm after four more iterations. To illustrate Step 2, suppose that
the interval represented by the indicated red node at depth 3 has
been selected by Step 1. This step will decide whether or not to keep
this interval in the list of intervals to be divided. A tree T 0 rooted at
the node given by this interval is grown to at most a pre-specified
depth by using the same division scheme employed by the algo-
rithm—dividing each interval into three smaller intervals by splitting
along the longest dimension. The UCB of each interval center is cal-
culated and associated with its node. The UCB values in T 0 are then
compared to the center values of nodes at depth greater than three
in T 4. If T 0 contains a UCB greater than the center of any of these
intervals from T 4, then the interval is kept in the list. Otherwise, it
is removed.

At the conclusion of Step 2, all intervals that remain selected are
then divided. Upon division of a given interval, two of the newly cre-
ated intervals will have unevaluated centers, while the middle inter-
val will inherit the ground-truth value of its parent. The algorithm
then decides whether or not to evaluate each of the two unevaluated
centers by comparing the UCB evaluated at the center to �max. If the
UCB is less than �max, then the UCB is used as the interval center.
Otherwise, the ground-truth value must be obtained. This is where
most calls to calculate the frontier occur.

Figure 1 (Bottom) shows an example frontier. For visual clarity,
the horizontal axis has not been directly fixed according to the inter-
val coordinates. In the leftmost figure, nodes 1 and 2 are the two
nodes created upon division, and nodes 3, 4 and 5 are the others
that are considered for the frontier (i.e. they are the remaining leaf
nodes whose centers have not been previously evaluated). The mid-
dle figure visualizes the frontier, where nodes 1, 2 and 4 are selected.
Nodes 1 and 2 are selected because they were the two new nodes
created by division (they happen to fall on the frontier, but would
have been evaluated regardless). Node 3 is not selected because it
does not fall on the upper convex hull, and node 5 is not selected be-
cause it is dominated by node 4, which has a greater UCB and is at
the same depth in T . The selected interval centers are then eval-
uated, and their ground-truth values are associated with each corre-
sponding node.

The algorithm repeats until a prescribed number of evaluations
are made. The rightmost figure in Figure 1 (Top) shows the final
tree T 11 obtained after 50 function evaluations. Notice how the
width of the tree indicates that the algorithm was able to explore the
initially unknown search space, while the depth of the tree is largely
concentrated near the optimizer x � 0:868. This shows that the GP
model was able to quickly guide the division toward this global opti-
mal solution.

4 Experiments and results

4.1 Simulated Cloud Lab with real data—MALDI-ToF

MS protocol optimization
Matrix-assisted laser desorption/ionization time of flight (MALDI-
ToF) mass spectrometry is a laboratory method used to characterize
the contents of a sample, and is used across many scientific domains
(Jang and Kim, 2018; Spraggins et al., 2016). The end result of this
experiment is a spectrum that is used to identify the components
within the sample. Significantly, a variety of instrument settings
must be specified, and these adjustable parameters affect the quality
of the resulting data. Typical user-specified parameters include: (i)

PROTOCOL i453

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab291#supplementary-data


the accelerating voltage, (ii) the grid voltage, (iii) the pulse delay and
(iv) the number of laser shots per spectrum.

When performing MALDI-ToF spectrometry, it is common to
perform a brute-force parameter sweep in order to identify the
configuration that produces the highest quality spectrum. We were
provided access to the data produced by two MALDI-ToF param-
eter sweeps for two separate samples. The biological context for
these experiments was a study for the use of enzyme-polymer con-
jugation for chymotrypsin enzyme replacement therapy
(Cummings et al., 2017; Kaupbayeva and Russell, 2020). The two
samples used in these experiments included one with native
chymotrypsin (CT), and the other with a chymotrypsin-polymer
conjugate (CT-polymer). The goal of the parameter sweeps was to
identify configurations that produce easily identifiable signals
from each sample. Since the CT-polymer conjugate is a more com-
plex sample, it should be expected to be harder to obtain such an
identifiable signal.

Each dataset consists of 120 MALDI-ToF spectra produced via a
manual, brute-force grid search over the four user-specified parame-
ters named previously. We ran PROTOCOL in a simulated cloud
lab environment to demonstrate that the algorithm can identify the
optimal parameter configuration in many fewer experiments. By
simulated, we mean that the results of each experiment submitted to
the job queue is simply fetched from the given datasets.

Our experiments considered several different definitions of spec-
tral quality. We used the MATLAB Bioinformatics Toolbox to cal-
culate peak height (intensity), peak width and signal-to-noise ratio
(SNR) of each spectrum. In general, a strong signal will include a
large peak, narrow width and small SNR. Additionally, as a means
of combining these properties into objective measures that quantify
multiple properties at the same time, we also used two linear combi-
nations of these endpoints:

Combo1 ¼ Peak Heightþ 1

Peak Width
(2)

Combo2 ¼ SNRþ Combo1 (3)

The peak height, peak width and SNR measurements were first
scaled to the unit interval to ensure that different underlying distri-
butions of each endpoint did not skew the objective.

For both datasets, we ran in silico experiments using
PROTOCOL that optimized for each of these endpoints. For each
endpoint, this entails sequentially observing ground-truth values for
experimental configurations according to the scheme outlined in
Section 3. Each of the four input parameters are scaled to the unit
interval, which transforms the input space onto the unit hypercube,
as is done with IMGPO. An important difference between this set-
ting and the example using the 1D sinusoidal function is that we
choose experiments from one of 120 possible configurations. To do
this, we use the division procedure outlined previously, but instead
of evaluating the center coordinate of an interval, we calculate the
Euclidean distance between the center coordinate and each trans-
formed parameterization, and assign the closest parameter setting to
the interval, where each parameterization is only allowed to be used
once. In general, PROTOCOL can also handle any non-continuous
variables in this way, so long as the variables are numerically
encoded.

In our experiments, we used a GP with Matérn kernel with
� ¼ 5=2, and initialized the hyperparameters r ¼ 1 and l¼0.25.
These hyperparameters are optimized by maximizing the log mar-
ginal likelihood at the end of each iteration. Given appropriate pri-
ors over the hyperparameters, they may be sampled from this
distribution, though we omit this procedure from our experiments.
Other IMGPO-specific hyperparameters were set to their default

Fig. 1. Top row. Shown are hierarchical trees produced by PROTOCOL at three different time points while optimizing a 1D sinusoidal function (see text for explanation). The

nodes are fixed along the horizontal axis according the center coordinate of the interval they represent. The function optimizer, x � 0:868, is indicated by the star along the

horizontal axis. Bottom row. A visualization of the frontier calculated by PROTOCOL in relation to the hierarchical tree. The enumerated red nodes on the left indicate inter-

vals whose center coordinate are used to calculate the frontier. The central diagram shows the frontier, where intervals 1, 2 and 4 lie on the frontier but intervals 3 and 5 do

not. Note that the depth of the tree is inversely proportional to the size of the interval. The red nodes on the right denote those intervals that lie on the frontier, and are those

whose center coordinates will be requested for evaluation

i454 T.S.Frisby et al.



settings. We set the level of parallelization to four, meaning that
PROTOCOL could request as many as four experimental conditions
to observe at a time. In each experiment, we allowed the algorithm
to select a total of 25 observations. This corresponds to having only
run 25 experiments in the simulated lab, as opposed to the complete
set of 120, as was done in reality. As points for comparison in a par-
allel setting, we also performed batch-mode GP optimization on the
same data using standard acquisition procedures, including
Thompson sampling (TS), UCB, EI and PI. Each of these methods
choose four configurations to observe according to the acquisition
procedure, update their GP model (including updating GP hyper-
parameters), then choose again using the updated model. The initial
setting of the GP in each of these were the same as with
PROTOCOL, and fully exhausting the 25 experiment request
budget was used as the stopping criterion. We repeated each 100
times with different randomly selected training sets of size equal to
the level of parallelization (in this case, 4). This imitates the most ef-
ficient way one could initiate each of these procedures in a real cloud
lab setting.

MALDI-ToF simulated cloud lab results

In both MALDI-ToF datasets, we find that PROTOCOL is able to
find the optimal parameter configurations in most situations.
Tables 1 and 2 show the probability that PROTOCOL and other
GP optimization algorithms identify the optimal parameter config-
uration for each endpoint. As PROTOCOL is a deterministic algo-
rithm, it can only take values 100% or 0%. The other probabilities
are calculated as the number of times each found the optimal setting
out of the 100 repeated experiments. There was only one case where
PROTOCOL did not find the optimal configuration (SNR, CT data-
set), whereas the other GP-based algorithms have low success rates
(mean ¼ 34%; median ¼ 36%; SD ¼ 13:4%; max ¼ 69%).
Notably, PROTOCOL was able to identify the optimal configur-
ation for each endpoint with the more difficult CT-polymer dataset.
Comparably, the performance of the other GP optimization regimes
tended to decrease with the CT-polymer dataset compared to just
native CT.

To succinctly describe the selection behaviors of each algorithm,
we focus our next analyses on the peak height endpoint, though
similar summaries could be made for others. Figure 2 (Top) shows
the average progress of each algorithm in identifying the optimal ex-
perimental parameterization. That is, it shows the best observed
value as a function of number of experiments requested and con-
ducted. Experiments with both native CT and CT-polymer conju-
gates yield similar patterns. Initially, PROTOCOL lags behind the
other GP optimization algorithms, but then quickly rises to the top
and identifies better protocols (in the case of peak height, the best
available protocol). We emphasize that the apparent success of the
random procedure is due to the relatively few experiments available
(120) to be chosen from 25 times without replacement. Tables 1 and
2 show that the random procedure finds the true optimum much less
frequently than the other conventional BO approaches, as expected.
To demonstrate these results generalize beyond these specific data-
sets, we additionally ran experiments optimizing general-purpose
optimization functions, and obtained similar results (Supplementary
Fig. S2).

As already described, the comparison GP algorithms require an
initial training batch, and are only able to identify the optimal par-
ameterization a fraction of the time depending on this initial training
data. Figure 2 (Bottom) focuses on the subset of trials that were able
to correctly identify the optimal protocol parameterization. Over
these trials, it shows how many experiments were requested on aver-
age before the optimal configuration was chosen. The native CT
data PROTOCOL needed only 10 experiments, while the other
methods required on average 12–14 experiments. This suggests that
even when the other GP algorithms are able to identify the optimal
experimental parameterization, PROTOCOL is capable of identify-
ing the optimal solution more quickly.

With the CT-polymer conjugate data, TS and UCB seem to
identify the optimal configuration in fewer experiments compared
to all other methods (although, as previously mentioned and
shown in Table 2, they find such optimal configurations less than
57% of the time). To investigate this behavior further, Figure 3
visualizes choices made by PROTOCOL compared to two trials
that used GP-UCB—one that identified the optimal protocol and
one that did not (results with TS are similar). In the figure, the
configurations are enumerated along the horizontal axis, with the
peak height of the spectra produced by the given experiment along
the vertical axis. In general, configuration numbers closer to each
other correspond to experimental configurations that are more
similar to each other.

PROTOCOL’s initial experiment corresponds to an experiment
that is far from optimal. Still, the algorithm is able to quickly survey
the input space, and converge on experimental configurations that
yield large peak heights. With the UCB algorithm, the behavior is
largely dependent on the initial training set that was randomly
chosen. When there are training instances that are similar to the op-
timal configuration, the algorithm successfully identifies the optima,
but is prone to converging on local optima more similar to the train-
ing data otherwise. This suggests that PROTOCOL is better at
escaping local optima than the comparison algorithms.

In Supplementary Figure S3, we show results from experiments
where we varied the level of parallelization from k¼1 to k¼10,
using both MALDI-ToF datasets, as well as with three commonly
used optimization functions. For each data and choice of k, we see
that PROTOCOL performs the best.

4.2 Real-world Cloud Lab—HPLC protocol optimization
High performance liquid chromatography (HPLC) is an analytical
chemistry technique used to separate and quantify components of
complex mixtures. The method uses pressurized liquid solvent to
force a sample through a column containing specialized solid ad-
sorbent material. This material interacts with each component of
the sample differently, causing each to travel through the column at
different rates, thus separating the mixture. A detector measures the
absorbance of each sample as they elute at different times.
Chromatograms are generated from these measurements, which
allows for identification of each component (Thammana, 2016).

We used PROTOCOL to optimize an HPLC experimental design
in a real cloud lab setting using Emerald Cloud Labs (ECL). This
means that whenever PROTOCOL requested an experimental con-
figuration to observe, we remotely executed an actual experiment to

Table 1. The probability that each algorithm identifies the optimal

experimental parameterization with the Native CT data for each

endpoint

Algorithm Height Width SNR Combo1 Combo2

PROTOCOL 100% 100% 0% 100% 100%

TS 43% 9% 40% 35% 38%

EI 35% 11% 69% 40% 38%

PI 36% 40% 63% 40% 38%

UCB 42% 9% 42% 36% 29%

Random 25% 19% 24% 23% 18%

Table 2. The probability that each algorithm identifies the optimal

experimental parameterization with the CT-polymer conjugate

data for each endpoint

Algorithm Height Width SNR Combo1 Combo2

PROTOCOL 100% 100% 100% 100% 100%

TS 42% 50% 41% 21% 31%

EI 38% 54% 53% 25% 26%

PI 39% 56% 52% 25% 26%

UCB 43% 53% 37% 28% 28%

Random 21% 31% 19% 22% 18%

PROTOCOL i455

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab291#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab291#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab291#supplementary-data


be performed at ECL’s laboratory in South San Francisco, CA.
Specifically, the HPLC experiment involved the separation of a three
component mixture of the organic compounds phenol, toluene and
2,5-xylenol in a water/methanol solvent. The accuracy of the separ-
ation and quantification steps are sensitive to multiple parameters.
In each experiment, we chose a setting for each of the following
parameters:

• Flow rate—The speed of the fluid through the HPLC pump.

Selected from the range 0.2–2 mL/min.
• Injection volume—The physical quantity of sample loaded into

the flow path for measurement. Selected from the range 1–50 lL.
• Column temperature—The temperature of the HPLC column.

Selected from the range 25–45�C.

Fig. 2. Top row. The ground truth peak height of observed MALDI-ToF experimental configurations is shown as a function of the number of total evaluations. The error bars

in the non-PROTOCOL curves denote a mean 6 1 SEM calculated over 100 trials initialized with different randomly chosen training sets of size 4 (which is equal to the

allowed level of parallelization). Bottom row. Again with the peak height endpoint, these show the number of evaluations each algorithm requested before identifying the opti-

mal configuration. For the non-PROTOCOL algorithms, only the subset of the 100 trials that actually identified the optimal configuration are used. Error bars denote 6 1

SEM over this subset of trials

Fig. 3. CT-polymer conjugate ground-truth peak heights for MALDI-ToF parameterizations selected by PROTOCOL and the GP-UCB algorithm. Two cases are shown for the

GP-UCB algorithm—one where the algorithm identified the configuration that led to the maximum peak height, and one that did not. For each, the initial evaluation points

are indicated by an ‘x’. Whereas the initial point evaluated by PROTOCOL is a consequence of the algorithm (the central point of the input space), GP-UCB depends on an ini-

tial training set. The ability of GP-UCB to identify the optimal configuration is influenced by this initial set

i456 T.S.Frisby et al.



• Absorbance wavelength—The wavelength used by the detector

to identify samples flowed through the column. Selected from

260–285 nm.
• Solvent ratio—The proportion of methanol to water in the solv-

ent. Selected from 65:35, 70:30, 75:25 and 80:20.
• Gradient—The proportion of solvent: sample flowed through the

column over time. Selected from a non-linear (the default ECL

setting), constant, quick linear, linear and slow linear setting.

Unlike the MALDI-ToF experiments where we wanted to opti-
mize the signal from a single sample with a single component, here
we want to simultaneously optimize for the sample (by adjusting
solvent ratios) and the instrument settings that best resolve the three
compounds mixed within a sample. To do this, we used the reso-
lution of the chromatogram (RS) as our objective function. This is a
commonly used metric to describe HPLC spectra, and is given by:

RS ¼
Xn�1

i¼1

cðtiþ1 � tiÞ
wi þwiþ1

(4)

where n is the number of peaks, ti refers to the time component i
elutes from the HPLC column, wi refers to the half-height width of
component i, and c is a constant that arises from assuming each
peak takes the shape of a Gaussian. Essentially, this objective quanti-
fies how clearly distinguished all adjacent peaks are from each other.
The larger the value, the more clear the separation. We used ECL’s
built in software in order to pick peaks from the chromatogram.

We had access to three threads on ECL, meaning we could run up
to three experiments at a time. We thus allowed PROTOCOL to se-
lect up to this many experiments per request. Since each possible par-
ameter configuration was either chosen from a finite list (gradient
and solvent ratio) or subject to a finite level of precision when meas-
uring (flow rate, injection volume, column temperature and absorb-
ance wavelength), we used the same strategy as with the MALDI-ToF
experiments when assigning a parameter configuration to an interval
within PROTOCOL’s hierarchical tree. The input space was similarly
scaled to the unit hypercube, and we used the same GP and IMGPO
specific hyperparameters detailed in Section 4.1.

Since we were running real experiments with a limited number
of threads on ECL, we did not have the time or resources to conduct
experiments according to alternative acquisition functions (TS, EI,
etc.) as with the MALDI-ToF simulated cloud lab data. Thus, we
also used Latin Hypercube Sampling (LHS) as a baseline to select
experiments to conduct on ECL. Unlike with PROTOCOL and
other conventional BO strategies, this is not a sequential process,
but rather a form of randomly sampling a prescribed number of
experiments to conduct. This allowed us to submit all the experi-
ments at once, and allow them to complete according to available
resources without the need for further intervention. We then com-
pared the results of the LHS versus PROTOCOL in a separate set of
experiments. In total, we executed 18 experiments selected by
PROTOCOL, and (separately) 18 experiments selected via LHS on
ECL. Given our available resources, this was the number of experi-
ments we estimated could be run in 2 month’s time (1 month for
each approach).

HPLC real cloud lab results

PROTOCOL and LHS are both able to identify HPLC configura-
tions that yield high resolution. Table 3 shows the top three scoring
resolutions obtained from configurations selected by both methods.
While PROTOCOL’s top scoring configuration yielded a resolution
of 17.4, strikingly, LHS selected a configuration that obtained a
resolution of 44.1. Since LHS is ultimately a random sampling pro-
cedure, it was unexpected that it was able to identify such a highly
resolved spectrum. This led us to investigate precisely how unlikely
this finding was.

We accomplished this through simulation. We trained a random
forest regression model with the 36 experiments obtained from
PROTOCOL and LHS, using the measured resolution as the label.

We then repeated the LHS sampling procedure used to generate
experiments 500 times. This allowed us to predict the resolution of
these samples using the random forest regression model. The result
of these 500 LHS simulations are shown by Sim.-LHS in Table 3 as
a mean 6 1 standard deviation.

We find that the Sim.-LHS results do not yield resolutions any-
where near as large as the 44.1 found by the experiments on ECL.
Rather, the best prediction on average had a resolution of 15.8. For
reference, PROTOCOL’s best is about one standard deviation larger
than this value. Furthermore, the maximum predicted resolution
over all 500 simulations was only 26.9, giving a 39% difference in
the maximum resolution observed in the ECL experiments. This is
evidence that the configuration that yielded a 44.1 was highly un-
likely to have been chosen.

The best experimental configurations selected by PROTOCOL
and LHS were quite different. PROTOCOL’s best configuration is
given by Flow rate ¼ 1 mL/min, Injection vol. ¼ 38.3 lL, Column
temp. ¼ 35�C, Absorbance wavelength ¼ 273 nm, solvent ratio ¼
75:25 and Gradient ¼ quick linear. LHS’ best is given by Flow rate
¼ 0.8 mL/min, Injection vol. ¼ 6.1 lL, Column temp. ¼ 26.7�C,
Absorbance wavelength ¼ 284 nm, solvent ratio ¼ 65:35 and
Gradient ¼ non-linear. PROTOCOL not finding a similar configur-
ation suggests that, within this search space, more than 18 experi-
ments were needed. We emphasize that the choice to perform 18
experiments was a product of time and resource constraints.

Figure 4 shows peaks that correspond to experiments selected by
PROTOCOL and the outlier LHS result. The panel on the left is typ-
ical of the chromatogram one obtains using a configuration chosen
at random (including those typically chosen via LHS). The panel on
the right is an example of a reasonably high quality chromatogram,
albeit one that is unlikely to have been observed when using LHS, as
previously argued. The middle panel is the best one found by
PROTOCOL given a budget of 18 experiments. It is clearly an im-
provement over the left panel. In particular, the built-in automatic
peak picking and resolution-calculating software only identified two
peaks in the right panel, but identifies three peaks in the middle
panel (the correct number). Still, the middle panel is far from opti-
mal. We hypothesize that given a larger experiment budget,
PROTOCOL would have continued to find better configurations.
Moreover, as shown in the bottom row of Table 3, the typical best
resolution obtained via LHS is actually lower than that of the middle
panel. That is, the middle panel is probably representative of what
one might obtain via a LHS with a budget of 18 experiments over
this search space.

As a final note, we emphasize the advantage PROTOCOL’s use of
parallelism has over purely serial procedures (such as IMGPO). While
we only ran a modest number of experiments selected by PROTOCOL
(18), it still took 26 days to complete. Had we had run each experiment
sequentially one after another, we estimate from queue times and ex-
periment execution times that it would have taken at least 41 days,
meaning we saved greater than 15 days worth of work.

5 R Shiny application

We have implemented PROTOCOL as both a Python library, and
as part of a stand-alone application written in R Shiny (Chang et al.,
2020) (see Availability). The Shiny app lets the user initialize and

Table 3. The top 3 HPLC spectra resolutions according to configura-

tions chosen by PROTOCOL and LHS

Algorithm Best 2nd best 3rd best Average

PROTOCOL 17.4 16.4 8.5 14.1

LHS 44.1 11.5 2.9 19.5

Sim.-LHS 15.8 6 2.6 12.2 6 1.5 7.4 6 1.5 11.8

Note: Sim.-LHS refers to a simulated LHS method (see text for details),

where mean 6 1 standard deviation are shown over 500 runs. ‘Best’ refers to

the greatest observed resolution.

PROTOCOL i457



run optimization jobs using PROTOCOL or several conventional
BO methods (TS, EI, PI, UCB). The user defines the optimization
problem via a start page by specifying the names and types of the
parameters to optimize over (by hand, or by loading a configuration
file Fig. 5 (Left). After confirming all parameters, the users can up-
load historical parameters combinations with their observed object-
ive values (if available). The users then selects the optimization
method (e.g. PROTOCOL) and the degree of parallelism (k). If
desired, the user can select more than one optimization method to
consider different selections Fig. 5 (Right). The application com-
putes and displays the next parameter combination(s) to run. Any
existing data and the suggested combinations can be saved to a file,
in order to save state, as the user waits for the experiments to run.
When the results of the experiments are known, the user updates the
file and then loads it into the application, which then suggests the
next experiment(s) to run, and so forth.

6 Discussion and conclusion

Cloud-based laboratories present an emerging and exciting new
model for conducting scientific experiments. While they can provide
access to sophisticated equipment and the ability to run experiments

in parallel, performing experimental optimizations in a way that
fully utilize these capabilities is an unexplored area. To this end, we
have developed PROTOCOL, an algorithm that performs closed-
loop optimization of experimental protocols within this setting.
Built on the framework of recent bound-based optimization meth-
ods that come with convergence guarantees, we believe
PROTOCOL to be the first such method that explores optimization
of experimental designs within this environment.

In our MALDI-ToF experiments, we compared PROTOCOL to
conventional BO approaches. We found that PROTOCOL more
reliably identified the optimal configuration across five different end-
points and with two different samples. The ability of the conventional
approaches to select desirable parameterizations is highly dependent
on the initial data used to train the models. While there are ways to
promote exploration of the search space with such GP-based
approaches, this itself entails an auxiliary optimization routine, which
could be computationally prohibitive and/or prone to over-fit limited
data. We found that PROTOCOL’s DIRECT-like division scheme
over the input space was able to combat these issues.

The deterministic nature of the dividing scheme ensures that the
underlying GP model is exposed to instances that are representative
of a wide range of the input space, so it naturally promotes

Fig. 4. Chromatograms corresponding to the first experimental configuration chosen by PROTOCOL (left) as well as the experimental configuration that yielded the greatest

resolution chosen by PROTOCOL (middle) and LHS (right)

Fig. 5. Left. The Shiny app start page, where the user can initialize an optimization problem by defining the parameters to optimize over. Right. The Shiny app data upload

page, where the user can upload previously evaluated data and select the optimization algorithm to use

i458 T.S.Frisby et al.



exploration. Additionally, whereas the conventional approaches
select parameterizations primarily based on what the model
believes to be best at any given time, PROTOCOL’s strategy is to
present the model with parameterizations selected according to the
division scheme, and requesting experiments the model is suffi-
ciently uncertain about. This ensures that selections made by
PROTOCOL are not as exclusively influenced by what the model
has been exposed to previously, which leads to a regularization-
like behavior. Another area for future work is to integrate the
results of technical and/or biological replicates into the optimiza-
tion logic.

While our work with PROTOCOL is a promising start toward
experimental optimization in real Cloud Lab settings, there is still
much room for improvement. In our HPLC experiments using ECL,
we noted that PROTOCOL likely needed more than 18 selections to
identify an experiment as well resolved as the anomalous LHS find-
ing. Given that our search space over HPLC parameters was orders
of magnitude larger than that of the MALDI-ToF parameters, it is
not altogether surprising that a larger number of experiments could
be necessary.

There are a number of algorithmic improvements worth pur-
suing. This includes identifying better strategies to initialize
PROTOCOL’s hierarchical tree. At present, the algorithm always
starts by selecting the center of the hyperrectangle, no matter
how much prior data are available. An alternative approach
might initialize a tree that is already grown to some depth, and
using some subset of leaf nodes in this tree as a starting point.
The use of the frontier would provide a natural way to still select
from nodes that were created in the tree’s initiation. Since this
tree could provide a larger initial pool of experiments to choose
from, it could help provide a better initial search in larger dimen-
sional settings.

In this work, we have shown how to adapt a principled
bound-based BO routine to work in a parallel setting. We further
demonstrate that such an approach is capable of being executed
in a real cloud lab environment, and show that it performs favor-
ably relative to conventional BO routines on real-world data.
While we chose to adapt PROTOCOL from IMGPO due to its
theoretical guarantees, there are of course other sophisticated BO
algorithms that could be similarly adapted to work in our cloud-
based setting (e.g. Tarun et al., 2016). We leave formal compari-
sons between the performance of such alternative approaches in
the cloud lab to future work.

One final point is that PROTOCOL is broadly more applicable
than the experimental design use case we have presented here. Since
it shares similarities with other bound-based optimization algo-
rithms (most directly IMGPO), it could be used to optimize most
any black-box function. It would be interesting to apply
PROTOCOL to tackle such problems in parallel, such as hyperpara-
meter optimization for deep models, especially those applied to bio-
logical settings.

Acknowledgements

The authors thank Dr. Alan Russell and Bibifatima Kaupbayeva for providing

the MALDI-ToF mass spectrometry data. They also thank Emerald Cloud

Labs for providing us cloud lab access, and for their continued help and sup-

port with using their Command Center interface.

Funding

This research was supported by National Institutes of Health T32 training

grant [T32 EB009403] as part of the HHMI-NIBIB Interfaces Initiative.

Conflict of Interest: none declared.

References

Agrawal,S. and Goyal,N. (2012) Analysis of thompson sampling for the mul-

ti-armed bandit problem. In Proc. 25th Annual Conference on Learning

Theory, Volume 23 of Proceedings of Machine Learning Research, pp.

39.1–39.26, Edinburgh, Scotland, pp. 25–27.

Bergstra,J.S. et al. (2011) Algorithms for hyper-parameter optimization. In:

Shawe-Taylor,J. et al. (eds.) Advances in Neural Information Processing

Systems. Vol. 24. Curran Associates, Inc., Granada, Spain, pp. 2546–2554.

Bubeck,S. and Cesa-Bianchi,N. (2012) Regret analysis of stochastic and non-

stochastic multi-armed bandit problems. Found. Trends Mach. Learn., 5,

1–122.

Chang,W. et al. (2020) Shiny: Web Application Framework for R. R package

version 1.5.0 https://cran.r-project.org/web/packages/shiny/index.htm.

Cummings,C.S. et al. (2017) Design of stomach acid-stable and mucin-binding

enzyme polymer conjugates. Biomacromolecules, 18, 576–586.

Jang,K.-S. and Kim,Y.H. (2018) Rapid and robust MALDI-TOF MS techni-

ques for microbial identification: a brief overview of their diverse applica-

tions. J. Microbiol., 56, 209–216.

Jones,D.R. et al. (1993) Lipschitzian optimization without the lipschitz con-

stant. J. Optim. Theory Appl., 79, 157–181.

Kaupbayeva,B. and Russell,A.J. (2020) Polymer-enhanced biomacromole-

cules. Progress Polym. Sci., 101, 101194.

Kawaguchi,K. et al. (2015) Bayesian optimization with exponential convergence.

In: Cortes,C. et al. (eds.) Advances in Neural Information Processing Systems,

Vol. 28. Curran Associates, Inc., Montréal, Canada, pp. 2809–2817

King,R.D. et al. (2004) Functional genomic hypothesis generation and experi-

mentation by a robot scientist. Nature, 427, 247–252.

Mockus,J. (1989) Bayesian Approach to Global Optimization: Theory and

Applications, Volume 37 of Mathematics and Its Applications. Springer

Netherlands, Dordrecht.

Munos,R. (2011) Optimistic optimization of a deterministic function without

the knowledge of its smoothness. In: Shawe-Taylor,J. et al. (eds.) Advances

in Neural Information Processing Systems, Vol. 24. Curran Associates, Inc.,

Granada, Spain, pp. 783–791.

Snoek,J. et al. (2012) Practical Bayesian optimization of machine learning algo-

rithms. in Advances in Neural Information Processing Systems, pp. 2951–2959.

Spraggins,J.M. et al. (2016) Next-generation technologies for spatial proteo-

mics: integrating ultra-high speed MALDI-TOF and high mass resolution

MALDI FTICR imaging mass spectrometry for protein analysis.

Proteomics, 16, 1678–1689.

Tarun,K. et al. (2016) Batched gaussian process bandit optimization via deter-

minantal point processes. In Proceedings of the 30th International

Conference on Neural Information Processing Systems, NIPS’16. Curran

Associates Inc., Red Hook, NY, USA, pp. 4213–4221.

Thammana,M. (2016) A review on high performance liquid chromatography

(HPLC). Research & Reviews: Journal of Pharmaceutical Analysis, 5, 1–7.

Wang,Z. et al. (2014) Bayesian multi-scale optimistic optimization. In:

Kaski,S. and Corander, J. (eds.) Proceedings of the Seventeenth

International Conference on Artificial Intelligence and Statistics, Volume 33

of Proceedings of Machine Learning Research, pp. 1005–1014. PMLR,

Reykjavik, Iceland, pp. 22–25.

Wilson,J.T. et al. (2018) Maximizing acquisition functions for bayesian opti-

mization. In: Bengio,S. et al. (eds.) Advances in Neural Information

Processing Systems, Vol. 31. Curran Associates, Inc, Montréal, Canada.

PROTOCOL i459

https://cran.r-project.org/web/packages/shiny/index.htm

	tblfn1

