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A B S T R A C T   

Although immune checkpoint therapy has significantly improved the prognosis of patients with melanoma, 
urgent attention still needs to be paid to the low patient response rates and the challenges of precisely identifying 
patients before treatment. Therefore, it is crucial to investigate novel immunosuppressive mechanisms and 
targets in the tumor microenvironment in order to reverse tumor immune escape. In this study, we found that the 
cell cycle checkpoint Aurora kinase B (AURKB) suppressed the anti-tumor immune response, and its inhibitor, 
Tozasertib, effectively activated T lymphocyte cytokine release in vitro and anti-tumor immunity in vivo. Toza-
sertib significantly inhibited melanoma xenograft tumor growth by decreasing the number of inhibitory CD4+

Treg cells in the tumors, which, in turn, activated CD8+ T cells. Single-cell analysis revealed that AURKB sup-
pressed anti-tumor immunity by increasing MIF-CD74/CXCR4 signaling between tumor cells and lymphocytes. 
Our study suggests that AURKB is a newly identified anti-tumor immunity suppressor, whose inhibitors may be 
developed as novel anti-tumor immunity drugs and may have synergistic anti-melanoma effects with immune 
checkpoint therapies.   

Introduction 

Melanoma, one of the most lethal malignant neoplasms with a poor 
5-year survival rate, is an extremely aggressive malignancy that origi-
nates from the malignant transformation of melanocytes [1,2]. Ac-
cording to global cancer statistics, there were approximately 325,000 
new cases of melanoma and 57,000 new deaths in 2020 [3]. Patients 
with advanced melanoma who have lost the opportunity for surgical 
intervention are left with only drug-based treatment options such as 
immunotherapy and targeted therapies. Among these, three types of 
anti-tumor immunotherapies have emerged as prominent strategies for 
melanoma treatment: adoptive cell therapy, immune checkpoint 
blockade, and vaccination [4–6]. Immune checkpoint inhibitors (ICIs) 
improve the prognosis of advanced melanoma patients [7]. However, 
immune checkpoint blockade (ICB) has been constrained by low 
response rates in patients with melanoma, and the non-specific in vivo 
distribution of ICIs hinders therapeutic efficacy while raising the risk of 
side effects [8,9]. Recognizing the challenges in developing novel drugs, 

our focus has shifted toward exploring the immune-related functions of 
existing anti-tumor drugs with the aim of identifying drugs that could 
enhance tumor immunotherapy. 

In this study, we first determined the crucial genes involved in im-
mune regulation in melanoma and used a variety of bioinformatic an-
alyses based on sequencing data from melanoma patients. We combined 
weighted gene co-expression network analysis (WGCNA), differential 
gene expression analysis, literature CRISPR/gRNA library collection, 
survival analysis, and tumor immune infiltration score analysis, and 
found that Aurora kinase B (AURKB) is a crucial gene in modulating 
anti-tumor immunity in melanoma. AURKB is a serine/threonine kinase 
required for cell cycle progression that is predominantly expressed in 
mitotic eukaryotic cells [10]. Its elevated expression is linked to 
tumorigenesis, cancer development and even metastasis [11]. Toza-
sertib, a special molecular inhibitor of Aurora kinase, has been shown to 
effectively disrupt the cell cycle and inhibit tumor growth in a variety of 
cancer types [12]. In immune regulation, AURKB has been implicated in 
the control of macrophage polarization and promotion of B cell 
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apoptosis [13,14]. However, the role of AURKB in modulating T cell 
anti-tumor immune responses remains unknown. Tozasertib was used as 
a potent inhibitor to examine the role of Aurora B kinase [15]. T lym-
phocytes mainly consist of CD4+ and CD8+ T cells, both of which play 
essential roles in anti-tumor immune responses. CD8+ T cells specifically 
recognize endogenous antigen major histocompatibility complex (MHC) 
class I complexes, whereas CD4+ T cells recognize exogenous antigenic 
peptides presented by MHC class II molecules [16]. Upon recognition, 
they differentiate into cytotoxic T lymphocytes (CTLs) that target and 
eliminate tumor cells. However, a substantial subset of CD4+ T cells, 
known as regulatory T (Treg) cells, play a pivotal role in immunosup-
pression [17]. They contribute to the formation of an immunosuppres-
sive tumor microenvironment (TME) aimed at mitigating the 
inflammatory responses resulting from T cell hyperactivity, while also 
enabling tumor cell immune evasion [18]. Therefore, increasing CD8+

T-cell cytotoxicity, decreasing the inhibitory function of Treg cells, or 
combining both strategies can effectively enhance the anti-tumor 
response. 

Collectively, the existing evidence proves that Tozasertib is capable 
of suppressing melanoma; however, whether Tozasertib is an effective 
drug for T cell-mediated anti-tumor immune response remains unclear. 
Our research aimed to uncover the relationship between Tozasertib/ 
AURKB and tumor-infiltrating T cells and shed light on their importance 
in anti-tumor immunity. 

Methods 

Bioinformatics analysis 

Data download 
The Skin Cutaneous Melanoma (SKCM) RNA-seq gene expression 

datasets were obtained from Cancer Genome Atlas (TCGA) database. 
The clinical traits of patients with SKCM were downloaded from UCSC 
Xena (https://xena.ucsc.edu). The overexpressed genes (| log2Fold-
Change | ≥ 1 and q-value < 0.01) of SKCM were analyzed in Gene 
Expression Profiling Interactive Analysis 2 (GEPIA 2, http://gepia2. 
cancer-pku.cn/#index). We chose some important phenotypes what 
we considered relevant to the melanoma patients, such as pathologic 
stages, tumor grades, and days to death. 

WGCNA and Venn analysis 
To perform WGCNA, the clinical traits of the patients were filtered 

for the remaining indicators, such as pathologic stages, tumor grades, 
and days to death. The expression matrix was then integrated and 
analyzed using the WGCNA package in the R software. Hub genes 
negatively correlated with patient prognosis were identified for subse-
quent analyses. Additionally, we collected potential immunosuppressive 
genes from the CRISPR/gRNA library screening experiments of 10 
relevant articles (Supplementary Table 1). The Venn diagram for key 
gene screening was generated using Omicstudio online software 
(https://www.omicstudio.cn/tool). 

Functional enrichment analysis 
Gene set cancer analysis (http://bioinfo.life.hust.edu.cn/GSCA) was 

used to determine the relationship between gene expression levels and 
immune infiltration of SKCM. DAVID Bioinformatics Resources (https 
://david.ncifcrf.gov/home.jsp) were used for Gene Ontology (GO) 
function and Kyoto Encyclopedia of Genes and Genome (KEGG) 
pathway analysis. Gene set enrichment analysis (GSEA) was performed 
using the hallmark genes from the Molecular Signatures Database 
(https://www.gsea-msigdb.org), and |NES| > 1 and P < 0.05 were 
considered statistically significant. In addition, Protein-Protein Inter-
action Networks (PPI) were analyzed using the STRING online website 
(https://string-db.org/) and Cytoscape software. 

Other bioinformatics analysis 
The Tumor Immune Estimation Resource (TIMER, https://cistrome. 

shinyapps.io/timer/) was used to estimate the association between gene 
expression and T lymphocyte tumor infiltration. The overall survival of 
patients with SKCM and the correlation between gene expression was 
analyzed using GEPIA. AURKB expression in immune cells was analyzed 
using the Human Protein Atlas (HPA, https://www.proteinatlas.org/). 
The correlation between gene expression and response to anti-PD1 
therapy was analyzed using the GSE168204 dataset in the Gene 
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih. 
gov/geo/). 

Single-cell sequencing analysis 
Initially, a cohort of single-cell sequencing data from melanoma 

patients was obtained from the GEO database (GSE174401). Subse-
quently, the count matrix was analyzed using the Seurat R package with 
the default parameters. Low-quality cells were filtered using the 
following criteria: (i) number of detected genes below 500 or over 2,500, 
(ii) percentage of mitochondrial genes below 5 %, and (iii) number of 
total UMIs between 1,000 and 40,000. Standard parameters were used 
for count normalization, principal component analysis (PCA), t-distrib-
uted stochastic neighbor embedding (tSNE) analysis, and cell clustering. 
Cluster-specific genes were identified based on RNA expression using 
the FindAllMarkers function in Seurat. To annotate different clusters, 
the cell type-specific gene signatures were used as follows: melanoma 
cells (PMEL, MLANA, MITF and S100A1); granulocytes: (CEACAM1, 
ALDH1A3, TSPAN8 and MTIM); fibroblasts: (TAGLN, COL1A1, COL3A1, 
DCN and COL6A3); dendritic cells (DCs): (CD1C, ITGAX, HLA-DQA1, 
FCER1A, CLEC10A and CD1E); macrophage cells: (ITGAM, CD14, 
MRC1 and CD163); B cells: (CD79A, CD19 and CD79B); CD4+ and CD8+

T cells: (PTPRC, CD3G, CD3D, CD4 and CD8A). In addition, we divided 
all single cells into two groups based on AURKB expression and analyzed 
the effects of different AURKB expression levels on immune cell pop-
ulations and cell-cell communication. Single-cell communication was 
analyzed using the standard CellChat R package (https://github. 
com/sqjin/CellChat). 

Cell lines and cell culture 

The cell lines were obtained from the American Type Culture 
Collection (ATCC, Manassas, VA, USA). B16F10 cells were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM, Gibco) supplemented 
with 10 % Fetal Bovine Serum (FBS, LONSERA, S711-001S). Jurkat T 
cells were cultured in RPMI Medium 1640 basic (Gibco, C11875500CP) 
supplemented with L-glutamine and 10 % FBS. Cell cultures were 
maintained in an incubator at 37◦C with a 5 % CO2 atmosphere. All cell 
experiments were conducted during the logarithmic growth phase. For 
cell passaging, the cells were washed with 1 × PBS and digested with 
0.25 % trypsin-ethylenediaminetetraacetic acid (Gibco, 25200072). 

RNA extraction and RT-qPCR 

Tozasertib (Selleckchem, S1048) was dissolved in DMSO (Beyotime, 
ST038) at a concentration of 1 mM as a stock solution. B16F10 cells were 
treated with Tozasertib at the dosage of 10 μM, then total RNA of the 
cells was extracted according to the protocol of RNAiso Plus (Takara, 
9109) and the concentration was measured by NanoDrop (Thermo, ND- 
2000c). The qPCR primers were synthesized by Sangon Biotech Com-
pany and are listed in Supplementary Table 2. RT-qPCR was performed 
using a Quantstudio1TM Real-Time PCR instrument (Life Technologies, 
USA). 

RNA-seq analysis 

B16F10 cells were treated with 10 μM Tozasertib or equal volume 
DMSO for 24 h. Total cell RNA were extracted by RNAiso Plus, and sent 
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to the Beijing Genomics Institute (BGI) for RNA-sequencing. Differen-
tially expressed genes (DEGs) were screened (the cut-off value was set as 
p < 0.05 and | log2FC | ≥ 1). 

Mouse tumor models 

All animal experiments were approved by the Laboratory Animal 
Welfare and Ethics Committee of Army Medical University. Six-week- 
old female C57BL/6 mice were used to establish subcutaneous xeno-
graft tumor models under specific pathogen-free (SPF) conditions. 
Briefly, the mice were subcutaneously inoculated with 5 × 104 B16F10 
cells in the right flanks. After the tumor became visible, the mice were 
randomly divided into two groups and intraperitoneally injected with 
Tozasertib (50 mg/kg) or an equal volume of vehicle daily. Tumor di-
mensions were measured using a Vernier caliper, and body weight was 
recorded every other day. The tumor volume was calculated using the 
following formula: length×width×width/2. An ethical endpoint for 

euthanasia was set at a tumor volume greater than 2000 mm3. 

Flow cytometry analysis 

Isolating tumor-infiltrating immune cells 
Tumors were harvested from both control and treatment groups. PBS 

was added to homogenize the tumor tissue into a single-cell suspension 
by passing a 70 μm strainer. Density-gradient centrifugation was per-
formed using a Percoll centrifuge (Cytiva, 17089109) at 600 × g for 20 
min at room temperature. Immune cells were carefully collected from 
the middle of the cloudy layer. After washing with PBS, the red blood 
cells were lysed using Red Blood Cell Lysis Buffer (Beyotime Company, 
C3702). Afterward, cells were incubated with eBioscience™ Brefeldin A 
(1000 × Solution, invitrogen, 00-4506-51) and eBioscience™ Monensin 
(1000 × Solution, invitrogen, 00-4505-51) for 4 h at 37℃ and 5 % CO2 
to facilitate further intracellular proteins staining. 

Fig. 1. AURKB is a crucial gene in modulating anti-tumor immunity in melanoma. (A, B) Hierarchical cluster dendrograms and heatmaps illustrating the correlation 
between different modules and clinical traits of Skin Cutaneous Melanoma (SKCM) analyzed by weighted gene co-expression network analysis (WGCNA). (C) Venn 
diagram was constructed to identify key overlapping genes among WGCNA hub genes, upregulated differentially expressed genes (DEGs) in SKCM, and immuno-
suppressive genes identified through CRISPR/gRNA library screening. (D) Expression levels of three candidate genes in normal and tumor tissues of melanoma 
patients as determined by Assistant Clinical Bioinformatics. (E) Overall survival plots of the three candidate genes obtained from GEPIA, with group cutoffs set at the 
quartile of their expression levels. (F) The relationship between AURKB expression and the effectiveness of anti-PD1 therapy in SKCM patients, using data from the 
GSE168204 dataset. (G) Gene Set Cancer Analysis (GSCA) depicting the correlation between gene expression and immune infiltration in SKCM. 
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Staining immune cells and flow cytometry analysis 
Immune cell staining and live/dead status were assessed using the 

antibodies listed in Supplementary Table 3. For intracellular proteins 
staining, cells were incubated for 20 min in Fixation and Per-
meabilization Solution (BD Biosciences, 554722), and then stained with 
anti-IFN-γ, anti-TNF-α in 1 × BD Perm/WashTM Buffer for 20 min at 4℃. 
FOXP3 was stained with an antibody using the FOXP3/Transcription 
Factor Fixation/Permeabilization Solution (eBioscience, 00-5521-00). 
After washing with PBS, samples were analyzed using a flow cytome-
ter (BD LSRFortessaTM) and the data were analyzed using FlowJo V10.3 
software. The gating strategy for T cells included the initial selection of 
single cells, followed by the exclusion of dead cells using a live/dead 
viability dye. Subsequently, T cells were identified based on CD3 posi-
tivity, and CD4 and CD8 positive subsets were evaluated by PD1, TIGIT, 
LAG3, TIM3, CD107a, TNF-α and IFN-γ expression. 

H&E staining and immunofluorescence 

Tumor, liver, and kidney tissues harvested from tumor-bearing mice 
were fixed, embedded, sectioned, and stained with hematoxylin and 
eosin (H&E) or immunofluorescence (IF) staining. For IF staining, Treg 
cells were stained for CD4 (Santa Cruz Biotechnology, sc-19641) and 
FOXP3 (Cell Signaling Technology, 12653). HMB45 (Santa Cruz, sc- 
59305) was used to mark melanoma cells. MIF (ImmunoWay Biotech-
nology Company, YT2761) and CD74 (ImmunoWay Biotechnology 

Company, YT5464) were detected. Samples were visualized and images 
were captured using a fluorescence microscope (Leica, DMi8). 

Statistics analysis 

GraphPad Prism 8.0 statistical analysis software was used for sta-
tistical analysis in this study. Data are presented as the mean ± standard 
deviation, and statistical significance was defined as p < 0.05 in the 
unpaired t test. 

Results 

AURKB is a crucial gene in modulating anti-tumor immunity in melanoma 
according to bioinformatics analysis 

To identify the key genes that modulate immunity in melanoma, a 
series of bioinformatics analyses were conducted. WGCNA is a systems 
biology method used to identify potential biomarker genes by identi-
fying modules of gene signatures that share common expression patterns 
and analyzing their correlation with sample traits [19]. Initially, we 
performed WGCNA using TCGA SKCM gene expression matrix and pa-
tient clinical traits. Several color modules that aggregated highly 
correlated genes were generated. We then analyzed the correlation be-
tween these modules and clinical prognostic indicators to identify hub 
genes that were negatively associated with patient prognosis. All hub 

Fig. 2. RNA-seq analyzing results of B16F10 cells treated with 10 μM Tozasertib. (A) The chemical structure of Tozasertib. (B) Volcano plot illustrating differentially 
expressed genes (DEGs). (C) Clustered heatmap of DEGs. (D) Key pathways enriched via Gene set enrichment analysis (GSEA). NES, normalized enrichment score. (E) 
Analysis of Gene Ontology (GO) terms for DEGs. (F) Analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for DEGs. 
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genes are listed in Supplementary Table 4. Our results revealed that the 
brown and purple modules were key modules associated with poor 
prognosis, and we identified 20 hub genes within these modules through 
weighted analysis (Fig. 1A, B). Furthermore, 6,451 DEGs in SKCM were 
analyzed and obtained from the GEPIA 2 database. Additionally, we 
collected 1,742 potential immunosuppressive genes from the relevant 
literature on CRISPR/gRNA library screening in cancer cells or xenograft 
mouse models (Supplementary Table 1). A Venn diagram was used to 
combine these gene sets and ultimately identify three candidate genes 
(AURKB, PLK1, and TK1) for further analysis (Fig. 1C). Through 
expression analysis, we observed that all three genes exhibited higher 
expression levels in melanoma tumor tissues than in normal tissues 
(Fig. 1D). Based on overall survival analysis, AURKB exhibited a more 
significant negative association with patient survival than the other two 
genes (Fig. 1E). Importantly, patients with SKCM with high AURKB 
expression appeared to be less responsive to anti-PD1 therapy, which 
was most pronounced among these three genes [20] (Fig. 1F). In addi-
tion, GSCA analysis revealed that AURKB expression correlated with 
immune cell tumor infiltration [21] (Fig. 1G). AURKB is a well-known 
cell cycle regulator critical for tumor cell division and proliferation. 
However, its role in regulating tumor immunity remains unclear. 

In addition to inhibiting the cell cycle, the anti-cancer activity of Tozasertib 
may also be achieved by affecting immune response pathway 

Tozasertib (MK-0457 or VX-680), a specific small-molecule inhibitor 
of AURKB, was employed in our study (Fig. 2A). First, we performed 
RNA-seq analyses of Tozasertib-treated B16F10 cells at the tran-
scriptome level. We identified 73 upregulated and 403 downregulated 
genes through (DEG) analysis and showed the top eight upregulated and 
downregulated DEGs in a heatmap (Fig. 2B, C). GSEA revealed that 
Tozasertib treatment significantly enriched cell cycle associated path-
ways, including G2M checkpoint and E2F targets [22] (Fig. 2D). 
Furthermore, GO terms and KEGG pathway analyses revealed that DEGs 
were significantly enriched in the positive regulation of cell proliferation 
and various immune-related signaling pathways (Fig. 2E, F). Taken 
together, our transcriptome sequencing results suggest that Tozasertib 
treatment not only inhibits the cell cycle but also influences the 
anti-tumor immune response. 

Tozasertib activates T lymphocytes to release cytokines in vitro 

Because we found a potential relationship between Tozasertib and T 
cells, we tried to determine how T cells would be influenced by Toza-
sertib. Jurkat T cells were first used to detect changes in cytokine release 
following Tozasertib treatment. Total RNA was extracted from 
Tozasertib-treated Jurkat T cells and control cells, and the expression of 
cytokines, including TNF-α, IFN-γ, and GZMB, was quantified using RT- 
qPCR. The results revealed that Tozasertib significantly upregulated the 
transcriptional expression of all three cytokines (TNF-α, IFN-γ, and 
GZMB) (Fig. 3A). Furthermore, flow cytometry analysis of Tozasertib- 
treated Jurkat T cells confirmed a substantial increase in the expres-
sion of TNF-α, IFN-γ, and GZMB. These findings are consistent with the 
results of RT-qPCR (Fig. 3B–D). Collectively, these results suggest that 
Tozasertib activates T lymphocytes and induces cytokine release in vitro. 

AURKB may promote tumor progression by increasing Treg cells in tumor 
microenvironment 

To elucidate the functional role of AURKB in regulating anti-tumor 
immunity, we first analyzed the correlation between AURKB and im-
mune infiltration levels of CD4+ and CD8+ T cells in SKCM using the 
TIMER database. The results indicated a significant negative correlation 
between the high AURKB expression and CD4+ T-cell tumor infiltration 
in SKCM (correlation: -0.289, p < 0.05) (Fig. 4A). Additionally, the PPI 
networks derived from our RNA-seq analysis of Tozasertib-treated 
B16F10 cells revealed that Tozasertib treatment predominantly 
affected CD4+ T lymphocyte-mediated anti-tumor immune responses 
(Fig. 4B). Furthermore, we examined AURKB across different immune 
cell types in the HPA dataset, which includes 1,206 cell lines, 40 human 
tissues, 18 blood cell types, and total peripheral blood mononuclear 
cells. Our results showed that Treg cells had significantly higher levels of 
AURKB expression than other types of immune cells (Fig. 4C). Moreover, 
we investigated the correlation between AURKB and Treg cell markers 
including CD4, FOXP3, IL2RA, CTLA4, IL10, and ITGAE [23–25]. The 
results demonstrated that AURKB expression and Treg cell markers were 
positively correlated (Fig. 4D). Single-cell function enrichment analysis 
using the Protein Atlas database revealed that AURKB was enriched in 
Treg cell cycle regulation (Fig. 4E). Taken together, these results suggest 
that in addition to its role in regulating the tumor cell cycle, AURKB may 
promote tumor progression by increasing Treg cells in the tumor 
microenvironment, and Tozasertib may decrease Treg cells to improve 
anti-tumor immune responses. 

Tozasertib activated anti-tumor immunity in vivo through inhibiting Treg 
cells 

To identify the immunological anti-tumor effects of Tozasertib, we 

Fig. 3. Tozasertib activates T lymphocytes to release cytokines in vitro. (A) 
Jurkat T cells were treated with 10 μM Tozasertib for 24 h. RT-qPCR was used 
to explore the mRNA transcriptional level of TNF-α, IFN-γ and GZMB. (B–D) 
Jurkat T cells were treated with 5 μM or 10 μM Tozasertib for 24 h. Flow 
cytometry was employed to detect the expression of TNF-α, IFN-γ and GZMB. 
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established a mouse xenograft model by subcutaneously injecting 
B16F10 cells. The mice were treated with either a vehicle or Tozasertib 
at a dose of 50 mg/kg daily. Body weight and tumor volume were 
measured every alternate day. Treatment of mice with Tozasertib 
significantly suppressed tumor growth after 7 days of drug exposure 
(Fig. 5A, B). Notably, there was no significant difference in the body 
weight between the two groups (Fig. 5C). Subsequently, H&E staining of 
tumor tissues from mice treated with Tozasertib revealed a reduction in 
densely packed cells with areas displaying sparse inflammatory/ 
apoptotic/necrotic cells. In contrast, H&E staining of liver and kidney 
tissues demonstrated that Tozasertib treatment did not induce observ-
able morphological changes (Fig. 5D). 

Furthermore, flow cytometry was further employed to detect the 
markers of tumor-infiltrating lymphocytes (TILs), including Treg markers 
(CD25 and Foxp3), immune inhibitory receptors (PD1, TIGIT, LAG3, 
TIM3 and CD96) and T cell activation marker TNF-α. Our results 
revealed that Tozasertib considerably decreased the number of Treg cells 
(CD4+, CD25+, and Foxp3+) and increased the CD8+ T cells to Treg cells 
(CD8/Treg) ratio. Additionally, Tozasertib treatment significantly 
reduced the proportion of TIGIT+ and LAG3+ CD4+ T cells, plus TIGIT+

CD8+ T cells, while enhancing the ratio of TNF-α+ CD8+ T cells 
(Fig. 6A–D). 

To further validate the flow cytometry results, which confirmed that 
Tozasertib treatment decreased the ratio of tumor-infiltrating Treg cells, 
we evaluated B16F10 tumor tissue sections using immunofluorescence 
staining with anti-CD4 and anti-Foxp3 antibodies. Our results demon-
strated that Tozasertib treatment noticeably reduced the population of 
Foxp3+ CD4+ cells, which was consistent with the flow cytometry data 
(Fig. 7). In summary, our xenograft mouse data strongly suggested that 
Tozasertib significantly inhibited the proportion of Treg cells and 
enhanced CTLs in tumor tissues. 

SKCM single-cell analysis inferred that AURKB increases tumor-infiltrated 
Treg cells possibly by enhancing MIF-CD74/CXCR4 signals 

To further explore how the expression levels of AURKB influence 
anti-tumor immunity in patients with melanoma, we downloaded the 
single-cell dataset GSE174401 for analysis [26]. Initially, we divided the 
patients into two groups based on the expression levels of AURKB in 
melanoma cells in each sample. A total of 26,615 cells passed quality 
control by filtering. Nine cell types were identified using specific 
markers: granulocytes, melanoma cells, macrophages, mast cells, NK 
cells, B cells, CD4+ T cells, CD8+ T cells, and DCs (Fig. 8A, B, Supple-
mentary Fig. 1A). Subsequently, we annotated the subpopulations of 

Fig. 4. Bioinformatic analysis indicated that AURKB is associated with the Treg cells in tumor microenvironment. (A) Correlation between AURKB expression and 
infiltration levels of CD4+ or CD8+ T cells in primary SKCM through using TIMER database. (B) Hub nodes ranked by degree in protein-protein interaction networks 
analysis of our Tozasertib-treated B16F10 cells RNA-seq. (C) AURKB expression across immune cell types in HPA dataset. (D) Expression correlation analysis between 
AURKB and Treg cells markers. (E) Single-cell function enrichment analysis of AURKB in Protein Atlas database. 
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defined lymphocytes (T, B, and NK cells) using typical markers (Fig. 8C, 
D, Supplementary Fig. 1B). We determined that the proportions of 
tumor-infiltrating effective CD8+ T cells (Teff) and central memory CD4+

T cells (Tcm) were higher in patients with low AURKB expression than in 
those with high AURKB expression. Tumor tissues from patients with 
low AURKB expression contained considerably fewer exhausted CD8+ T 
cells and CD4+ Treg cells (Fig. 8E, F), which confirmed the above results. 

Analysis of cell-to-cell communication based on receptor-ligand in-
teractions is a key tool for revealing the underlying molecular mecha-
nism of single-cell analysis [27]. In this study, we used the CellChat R 
package developed by Jin et al. [28] to infer cell communication path-
ways. We first analyzed the communications between all identified cell 
types in melanoma tissues and found that melanoma cells could send 
signals to eight other cell types, with Macrophage Migration Inhibitory 
Factor (MIF) being the most important molecule in this process, fol-
lowed by SPP1 and MDK (Fig. 8G, Supplementary Fig. 2A–D). The cir-
cular plot revealed that melanoma cells sent MIF signals to CD4+ and 
CD8+ T cells (Fig. 8H). Furthermore, focusing on the MIF signaling 
pathway, heatmap analysis showed that melanoma cells were the pre-
dominant MIF signal sender cells, CD4+ T cells were the intermediary 
mediator cells, and CD8+ T cells were the receiver and influencer cells 

(Fig. 8I). Subsequently, we identified that the receptor-ligand pairs of 
the MIF signaling pathway were MIF-CD74/CXCR4 and 
MIF-CD74/CD44 between melanoma cells and CD4+ and CD8+ T cells 
(Fig. 8J). Analysis of the DEG in the single-cell type between AURKBhigh 

and AURKBlow expression levels revealed that MIF was significantly 
decreased in AURKBlow melanoma cells (p = 2.2e-16). Moreover, we 
found that the expression of both CD74 and CXCR4 in CD4+ and CD8+ T 
cells was downregulated in the AUBKB low-expression group (Fig. 8K). 
In short, single-cell analysis revealed that AURKB increased the number 
of tumor-infiltrating Treg, possibly by enhancing the MIF-CD74/CXCR4 
signaling pathway between melanoma cells and CD4+/CD8+ T cells. 

To verify our hypothesis, we conducted an immunofluorescence 
analysis of tumors from control and Tozasertib-treated mice. We found 
that Tozasertib decreased MIF expression in melanoma cells, which were 
marked by HMB45 staining (Fig. 8L). Immunofluorescence staining 
revealed that CD74 expression on the surface of CD4+ T cells was 
downregulated after Tozasertib treatment (Fig. 8M). 

Discussion 

Metastatic melanoma is known for its high mortality rates. Anti- 

Fig. 5. Tozasertib suppressed tumor growth without inducing liver or kidney injury in B16F10 melanoma mice models. B16F10 cells were subcutaneously injected 
into C57BL/6 mice and divided randomly into two groups (n = 6). Mice were treated with Tozasertib or equal volume of vehicle. (A) The weight of tumors. (B) Tumor 
growth curve of each group during treatment period. (C) Mice body weight curve. (D) Representative H&E-stained tumor, liver, and kidney sections from two groups. 
Scale bar = 100 μm. 
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tumor immunotherapy, as represented by ICIs and CAR-T cells, has 
achieved favorable therapeutic outcomes and has advanced rapidly in 
recent years [29]. However, owing to its low response rate, immuno-
therapy has encountered hurdles in melanoma. Tumors that do not 
respond to checkpoint blockage are frequently infiltrated by suppressor 
immune cells, especially Treg cells and tumor-associated macrophages 
(TAMs), which compose the TME [30]. Therefore, there is an urgent 
need for the development of more effective immunotherapy medications 
to diminish these suppressive cells in the TME and mitigate the growing 
mortality of melanoma patients. 

Through a series of integrated bioinformatics analyses based on the 
RNA-seq data of melanoma patients, their clinical prognostic data, and 
potential immunosuppressive molecules from CRISPR/gRNA library 
screening, we identified the cell cycle checkpoint AURKB as a key 
molecule that simultaneously suppresses anti-tumor immunity. Aurora 
kinases, including Aurora A (AURKA), Aurora B (AURKB) and Aurora C 
(AURKC), are involved in a variety of critical biological processes, 
including mitosis, spindle assembly and maintenance, centrosome 
maturation and separation, chromosome segregation, and cytokinesis 

[31]. The increased expression of these genes is closely related to 
tumorigenesis and patient prognosis. Thus, Aurora kinase inhibitors are 
frequently employed in cancer treatments in mouse models, as well as in 
anti-tumor clinical trials, including AML, CML, PC, and OV [32–35]. 
However, whether AURKB and its inhibitor, Tozasertib, are involved in 
modulating the anti-tumor immune response remains unclear. Punt 
et al. reported that Aurora kinase could be a mediator of melanoma cell 
resistance to T cell-mediated cytotoxicity and that inhibition of Aurora 
kinase synergizes with T-cell-mediated cytotoxicity in vitro [36]. 
Another study revealed that AURKA deletion or pharmacological inhi-
bition slowed tumor growth, which was accompanied by an increase in 
tumor-infiltrating CD8+ T cells, and that anti-tumor effects were 
diminished in the absence of CD8+ T cells [37,38]. In addition, AURKA 
inhibition has been shown to abolish the immunosuppressive effects of 
myeloid-derived suppressor cells (MDSC) and improve the anti-breast 
cancer efficacy of Anti-PD-L1 [39]. In our study, we found that 
AURKB expression was consistent with immune cell tumor infiltration 
and that melanoma patients with high AURKB expression were more 
unresponsive to anti-PD1 therapy than patients with low AURKB 

Fig. 6. Tozasertib promoted anti-tumor immunity by inhibiting Treg cells in B16F10 xenograft mouse model. (A) Gating strategy. (B) The percentage changes of 
tumor-infiltrated Treg cells and the CD8+ T cell to Treg cells ratio. (C) Immune inhibitory receptors (PD1, TIGIT, LAG3, TIM3 and CD96) and T cell activation marker 
TNF-α expression on CD4+ T cells. (D) Immune inhibitory receptors (PD1, TIGIT, LAG3, TIM3 and CD96) and TNF-α expression on CD8+ T cells. 
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expression. In addition, our pathway enrichment analysis showed that 
Tozasertib-treated B16F10 cells were associated with positive regulation 
of the anti-tumor immune response. More importantly, our data indi-
cated that Tozasertib could activate T lymphocytes to release cytokines 
in vitro and in vivo. 

Treg cells are a subset of CD4+ T cells characterized by the expression 
of FOXP3 and CD25 that play immunosuppressive roles in preserving 
self-tolerance. Treg cells can inhibit the anti-cancer immunity in tumor- 
bearing hosts, thereby preventing protective immunosurveillance of 
tumor cells, and contributing to increased tumor growth and progression 
through secreting IL10 and TGF-β [40]. We revealed for the first time 
that AURKB promotes tumor progression by increasing the number of 
Treg cells in the tumor microenvironment. First, AURKB expression was 
positively correlated with Treg cell markers such as CD4, FOXP3, IL2RA, 
CTLA4, IL10, and ITGAE. Single-cell function enrichment analysis also 
suggested that AURKB was enriched in Treg cell cycle regulation. Sec-
ondly, both flow cytometry and immunofluorescence staining showed 
that Tozasertib significantly decreased the number of Treg cells in 
B16F10 tumors. Third, single-cell analysis of melanoma patients further 
verified that tumors with reduced AURKB expression had fewer CD4+

Treg cells. In addition, the cell-to-cell communication in our single-cell 
analysis revealed that CD4+ T cells function as intermediary mediator 
cells between melanoma cells and CD8+ T to transmit signals in mela-
noma tumors. Combined with our in vivo xenograft flow cytometry re-
sults, we propose that Tozasertib may indirectly raise the ratio of 
activated CD8+ T cell secreting TNF-α, and reduce the proportion of 
TIGIT+ CD8+ T cells, by reversing the immunosuppressive microenvi-
ronment through the suppression of Treg cells. 

Macrophage migration inhibitory factor (MIF) is a glycoprotein that 
contributes to the anti-inflammatory, immunological tolerance, and 
immunosuppressive TME in malignant cancers. MIF is overexpressed in 
various solid tumors and promotes neoangiogenesis in tumors [41,42]. 
Inhibiting MIF expression in tumor cells can effectively reduce tumor 
progression. In advanced melanoma, MIF contributes to immune 
evasion and tumor growth by recruiting a large number of 
immune-suppressed cells to the TME and inducing inhibitory immune 
cell differentiation [43]. Mechanistically, extracellular MIF interacts 
with the membrane receptors CD74, CD44, and CXCR4 to form a het-
erocomplex and subsequently initiates downstream MAPK and/or PI3K 
pathway effectors. A non-peer-reviewed study implicated CD74 as a 
driver of metastasis in melanoma [44]. Carlos et al. revealed that 
blocking MIF-CD74 in macrophages and dendritic cells restored the 
anti-tumor immune response against melanoma [45]. Our single-cell 
analysis demonstrated that MIF-CD74/CXCR4 signal communication is 
the most crucial receptor-ligand pair in the tumor tissues of patients with 

melanoma, where melanoma cells act as MIF signal sender cells and 
CD4+/CD8+ T cells act as signal-receiver cells. Moreover, we found that, 
compared to the high AURKB expression group, low AURKB expression 
significantly decreased MIF expression in melanoma cells and signifi-
cantly decreased both CD74 and CXCR4 expression in CD4+ T and CD8+

T cells. These data suggest that AURKB increases tumor-infiltrating Treg 
cells possibly by enhancing MIF-CD74/CXCR4 signaling. Our results 
verified that Tozasertib treatment decreased the expression of MIF on 
melanoma cells and CD74 on CD4+ T cell. 

In conclusion, this study revealed that AURKB, in addition to pro-
moting the cell cycle, can also inhibit anti-tumor immune responses by 
increasing the number of tumor-infiltrating Treg cells by enhancing the 
MIF-CD74/CXCR4 inhibitory signaling pathway. AURKB inhibitors may 
be developed as novel anti-tumor immunity drugs and may synergize 
with immune checkpoint antibodies for melanoma treatment. Moreover, 
inhibition of MIF was confirmed to be an effective strategy for over-
coming resistance to ICB therapy in melanoma [46]. However, further 
studies are needed to ascertain the specific molecular mechanism of the 
MIF/CXCR4 pathway following AURKB inhibitor treatment, as well as 
the synergistic anti-melanoma effect of combining AURKB inhibitors 
with approved anti-tumor immune-modulating drugs. Our findings 
provide novel targets and potential drugs for melanoma 
immunotherapy. 
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Fig. 8. AURKB may increase tumor-infiltrated Treg cells through enhancing MIF-CD74/CXCR4 signal communication according to single-cell analysis. (A) Marker 
genes expression levels of each cell type. (B) The t-SNE reducing dimensionality analysis of all cells in melanoma tissues. (C) The marker gene expression of 
lymphocyte subpopulation. (D) t-SNE plot of lymphocyte subpopulation clusters. (E, F) The different proportions of subclusters in AURKB high-expression and 
AURKB low-expression groups. (G) Circle plots present the cell-to-cell communication between cell populations. (H) Circle plots of MIF signaling pathway network. 
(I) Heatmap shows the relative contribution of MIF signaling network in different cell types. (J) Chord diagram of receptor-ligand pairs in MIF signaling pathway 
between melanoma cells and CD4+, CD8+ T cells. (K) Violin plots show the different expression of MIF in melanoma cells, CD44, CD74 and CXCR4 in CD4+ or CD8+ T 
cells between AURKB high and low-expression level groups. (L) The different expression levels of MIF on melanoma cells between control and Tozasertib treatment 
groups. (M) The different expression levels of CD74 on CD4+ T cells between control and Tozasertib treatment groups. 
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