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ABSTRACT

We have investigated which aspects of transcription
factor DNA interactions are most important to ac-
count for the recent in vivo search time measure-
ments for the dimeric lac repressor. We find the best
agreement for a sliding model where non-specific
binding to DNA is improbable at first contact and
the sliding LacI protein binds at high probability
when reaching the specific Osym operator. We also
find that the contribution of hopping to the overall
search speed is negligible although physically un-
avoidable. The parameters that give the best fit re-
veal sliding distances, including hopping, close to
what has been proposed in the past, i.e. ∼40 bp,
but with an unexpectedly high 1D diffusion constant
on non-specific DNA sequences. Including a mecha-
nism of inter-segment transfer between distant DNA
segments does not bring down the 1D diffusion to the
expected fraction of the in vitro value. This suggests
a mechanism where transcription factors can slide
less hindered in vivo than what is given by a sim-
ple viscosity scaling argument or that a modification
of the model is needed. For example, the estimated
diffusion rate constant would be consistent with the
expectation if parts of the chromosome, away from
the operator site, were inaccessible for searching.

INTRODUCTION

The DNA sliding model for target search was originally for-
mulated to explain the observed rapid rate of binding of lac-
repressor from Escherichia coli to its operator site on DNA,
which was estimated to be ca 100-fold faster than the ex-
pected maximal diffusion-limited value (1–4) in vitro at low
salt concentrations. In the model, the protein finds its target
site on DNA through a combination of 3D diffusion and
1D diffusion (sliding) along the DNA contour. The main
effect is that the target size is effectively extended from one
base pair to the distance that the protein can slide during a

non-specific binding event. The model was successful in ex-
plaining the high association rate as well as its dependence
on the salt concentration, non-specific binding constant and
DNA-chain length (5–8). Since its original formulation, the
sliding model has been revisited and extended (9–35) and
also complemented with informative simulations at levels
of detail ranging from atomistic (36,37) to coarse grained
(13,17,21,38–39). This has not only generated new insight
into e.g. the role of water molecules, condensed ions and
DNA conformation during the sliding process but has also
stimulated new hypotheses related to search kinetics such as
the role of disordered tails in the search (21,38) or the role
of multiple DNA binding domains (13,40).

When confronted with in vivo data (41), the basic model,
which was developed to describe an in vitro situation, may
need to be extended with features found in the in vivo sit-
uation. The search problem involves finding a single (or
a few) specific site(s) among a vast excess of non-specific
ones. The search efficiency will depend on the speed with
which the repressor can transfer from one potential site to
another and several different mechanisms have been sug-
gested. There are in principle four different ones, correlated
or uncorrelated with or without dissociation from DNA. In
the correlated search the repressor will search sites nearby
on the contour and in an uncorrelated one it will search be-
tween random locations. While the repressor remains non-
specifically bound it can slide in a 1D diffusion along the
DNA contour and test correlated nearby sites, or it can be
transferred directly to an uncorrelated DNA segment (inter-
segment transfer) (5,19,42,43) that is close by in 3D space.
Similarly, after a dissociation event, the repressor can rebind
at a correlated site nearby (hopping) (5,8) or it can rebind
to a different segment (intersegmental jump) (22,31). In ad-
dition, there is the possibility that the repressor does not
recognize its specific site once it has been found. A specific
recognition step is needed, for example, to explain the ca
20% difference in rate between the natural operator O1 and
a synthetic operator sequence Osym (41). This recognition
step is equivalent to introducing a two-step model where
LacI is in equilibrium between a non-specific and a specific
binding mode conformation (6,29).
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Figure 1. The figure depicts a cartoon of the search process and the funda-
mental parameters involved in our model. In the MC simulation scheme,
following a dissociation the searching protein can associate with rate ka to
a non-specific stretch of DNA given that no other proteins (roadblocks)
are in the way. Given a successful non-specific association the protein may
diffuse in 1D along the length of the DNA or perform intersegment trans-
fer with rate kIST. After a number of non-specific association–sliding–
dissociation iterations during the total time � , the searching protein finds
its way to the specific binding site and binds with rate constant ksp.

Here, we evaluate how these different factors interplay
and, in particular, which of the many parameter combina-
tions are more likely to explain the in vivo search time mea-
surements for the lac repressor dimer binding its symmetric
operator Osym. The measurements that we seek to account
for are the total search time as well as the reduced associa-
tion rate per operator when two operators are close or when
a single operator is flanked by other proteins at specific dis-
tances (41). Specific questions that we address are whether
there are any physically reasonable sets of parameters for
which the model can explain the observed in vivo measure-
ments and whether hopping and intersegmental transfers
contribute to the search efficiency in this parameter range.

MATERIALS AND METHODS

The model

We build on the classical sliding model (2–5,8) (Figure 1),
where the DNA is considered as a smooth cylinder and the
protein is a fully reactive sphere. In the Supplementary ma-
terial the classical model is extended to include roadblocks,
i.e. non-specifically bound proteins to DNA, and a specific
recognition step at the specific operator site. The reaction
radius ρ is the sum of the radii of the cylinder and the
sphere. Non-specific protein–DNA binding is described by
the reaction radius ρ, a relative diffusion rate D3 and the
extent of diffusion control, α (Equation (3)). All steric ef-
fects in the binding are assumed to be incorporated in the
parameters α or ρ. Beyond the distance Rc from the DNA
axis, where it is equally far to another DNA segment, the
protein is assumed to have lost its correlations with a par-
ticular DNA segment and will be equally likely to bind any-
where on the DNA. If the number of accessible non-specific
binding sites on DNA is Macc with each base pair having a

length � and where the genome is confined to a volume Vc,
Rc can be determined from

Macc�π R2
c = Vc. (1)

This corresponds to a regular distribution where compet-
ing DNA segments are considered as lined up in parallel at
a mutual distance of ca 2Rc. In the Supplementary material
we show that very similar results follow from the assump-
tion that the DNA segments are homogeneously distributed
throughout the volume Vc.

A non-specifically bound protein will dissociate with the
(microscopic) rate constant λ, which leaves the protein in so-
lution at the reaction radius r = ρ. The motion of the protein
after making a microscopic dissociation is described by dif-
fusion in cylindrical coordinates, with a radiation boundary
condition at the reaction radius (44) describing a rebinding
event,

2π D3ρ
∂c
∂r

∣∣∣∣
r=ρ

= κc(ρ), (2)

and an adsorbing condition at r = Rc. κ is a measure for the
reactivity by which the protein will adsorb or bind to DNA
at contact.

Solving the diffusion equation for the concentration c(r)
with these boundary conditions the total return probability
to the same DNA segment is given by (3–5,8)

φ0 = α ln (Rc/ρ)
1 + α ln (Rc/ρ)

. (3)

The parameter α serves as a measure for the extent of dif-
fusion control of the binding reaction and is defined as

α = κ

2π D3
= k

2π D3�
. (4)

Here k = � � has been introduced such that k is a proper
bimolecular association rate constant per base pair; it is the
macroscopic rate constant the protein would have if it was
diffusing infinitely fast. For α >> 1, the non-specific associ-
ation is significantly limited by the diffusion rate, i.e. it binds
non-specifically at the first contact.

In Equation (3), the fraction 1−φ0 of microscopic disso-
ciations goes beyond r > Rc and will eventually rebind at a
random position on the DNA. Thus the macroscopic non-
specific dissociation rate can be defined as

kd = λ (1 − φ0) = λ

1 + α ln (Rc/ρ)
. (5)

To give the same equilibrium constant as the microscopic
rates, the macroscopic association rate constant, ka, must
satisfy ka/kd = k/λ. Thus,

ka = k (1 − φ0) = k
1 + α ln (Rc/ρ)

= 2π D3�

1/α + ln (Rc/ρ)
. (6)

This is the average association rate constant for a protein
starting anywhere in the solution.

At equilibrium the fraction FB of proteins that will be
bound is determined by the non-specific binding constant



3456 Nucleic Acids Research, 2015, Vol. 43, No. 7

KRD such that

KRD = k
λ

= ka

kd
= FB

1 − FB

Vc

Macc
. (7)

During the time 1/kd that the protein remains non-
specifically bound macroscopically, it will make λ/kd −1 =
φ0/(1−φ0) returning micro-dissociations. For each of these
it can diffuse and rebind at a position z some distance away,
as given by the probability density F(z) in ((4,5); Supple-
mentary Equation (3)). This process, which is an integral
part of the diffusion geometry, has been called hopping.

While non-specifically bound, the protein can move along
DNA in a 1D diffusion with rate D1 (bp2s−1). If we, for a
moment, neglect the displacements to near-by sites during
the short-lived hopping events, the protein remains non-
specifically bound during the macroscopic residence time
1/kd. As a consequence, the protein will scan a distance
along the DNA corresponding to the sliding length during
each macroscopic non-specific binding event

s =
√

D1/kd . (8)

Thus a protein landing within a distance s from the spe-
cific site will also find it with high probability, giving an ef-
fective target size of 2s bp. Actually, under these conditions
one finds the total search time (Supplementary Equation
(29))

τ = Macc

2FB
√

D1kd
. (9)

This is the time to locate the specific site. However, it is
possible that the protein does not recognize it and binds but
instead slides off. If the protein binds specifically with a fi-
nite rate constant ksp, the total time to bind will be given by
the search time (Equation (9)) increased by the factor (41)
(Supplementary Equation (31))

fsp =
(

1 + 2
√

D1kd

ksp

)
. (10)

Another complication is that sliding could be impeded
due to crowding by other proteins that are bound to the
DNA. On the assumption that a fraction v (vacancy) of the
non-specific DNA is free of bound proteins, Li et al. (45)
showed that the fraction of sites available for binding by a
particular protein is ve1− 1

v . Thus, the total number of acces-
sible non-specific binding sites in the genome would be

Macc = Mtotve1− 1
v , (11)

where Mtot (bp) is the total genome size. Furthermore,
crowding impedes the sliding and the effective target size
becomes (45) L(v) as given by Supplementary Equation (40)
rather than 2s. Thus the search time in Equation (9) is in-
creased due to crowding by the factor

fcr = 2s
L(v)

= e1/v−1

√√√√1 + 1 − v

vd

√
π

D1

kd
. (12)

Here, d is the footprint of the DNA-binding protein. In
the parameter regime where the recognition step and the
effects of crowding contribute independently to the search

time, both correction factors (Equations (9) and (12)) can
simply be multiplied to the result (Equation (9)). In this case
the search time is given by

τ =

Mtot

2FB

√√√√ 1
D1kd

[
1 + 1 − v

vd

√
π

D1

kd

] (
1 + 2

√
D1kd

ksp

)
.(13)

This simple approximation works well in the parame-
ter space investigated as shown both by the simulations
(Supplementary Figure S7) and by theory (Supplementary
Equation (44)). However, with two operator sites within
sliding distance of each other, it is more difficult to find
analytical solutions for the combined effects of crowding
on DNA, hopping and finite binding rates and we have
therefore resorted to computer simulations to test the corre-
sponding parameter combinations. The simulations recover
the analytical results in the appropriate limits as shown in
Supplementary Figure S7.

The effect of intersegment transfer is to modify the ex-
change rate between DNA segments following a macro-
scopic dissociation, kd, by adding to it another exchange
rate kIST (5). The nature of kIST is to allow for an ex-
change between DNA segments without prior dissociation.
We therefore make the substitution kd → kd+kIST in Equa-
tions (8) - (13) without changing the fraction bound FB.

The Monte Carlo simulation scheme

The search process for one or two operator sites was realized
using a 1D 5000-element (base pairs) lattice MC simulation
with periodic boundary conditions representing the DNA.
A protein corresponds to a position on the lattice with all
proteins having a footprint d, where d was set to 21 bp. Ex-
cept for the searching protein, the other proteins involved
are nucleoid associating (NAPs) such as H-NS, Fis or IHF
in E. coli (46). It is assumed that the NAPs are stationary
during the time microscopic processes (hopping and sliding)
govern the target search on the ms time scale. It has previ-
ously been shown that the effect of allowing NAPs to move
during the microscopic sliding events is small (45). When
the searching protein dissociates macroscopically the NAPs
are uniformly redistributed on the lattice. The redistribution
frequency is justified by the fact that the differences between
the dissociation constants for LacI and NAPs under com-
parable in vitro conditions (6,42,47–49) are mostly within an
order of magnitude of each other. We tested this by redis-
tributing NAPs every 10th LacI macroscopic dissociation
which resulted in a difference in search times within a few
percent depending on the vacancy. The output of the simu-
lation is the average number of microscopic or macroscopic
binding–dissociation cycles before one of the two operators
is found in the 5000-bp DNA. The number of cycles is then
linearly scaled to the 4.5 × 106-bp E. coli chromosome.

The algorithm starts with randomly positioning the
searching protein on DNA followed by placements of road-
blocks, one on each side of LacI such that the end-to-end
distance (ζ ) distribution between them is p(ζ ) (45) (Supple-
mentary Equation (45)). A new end-to-end distance distri-
bution is created by multiplying p(ζ ) with (ζ−d+1) where ζ
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= {d,d+1. . . ,2500�−d} since the simulations condition on
LacI being placed on DNA before the roadblocks. There
is exactly one way to place LacI between the roadblocks if
the distance between them is d, two ways if the distance is
d+1 and so on. The contribution to the search time from the
binding attempts hindered by obstructing proteins is taken
care of in the dissociation rate in Equation (16) through the
definition of the equilibrium constant (Equation (7)), which
contains the number of accessible sites only. This approach
where two roadblocks are distributed at either side of the
protein with the end-to-end distance distribution as given in
(45) agrees very well with simulations where all roadblocks
are included.

Next step in the simulation is to sample whether the
searching protein should (i) dissociate microscopically with
rate �, (ii) slide 1 bp in a direction which is not blocked
by another protein with rate D1, (iii) bind specifically with
rate ksp if the protein is on the lattice corresponding to the
specific site or (iv) intersegment transfer with rate kIST. The
probability for each event corresponds to the fractional rate
of the event as for any time continuous Markov process; e.g.
when the protein can slide in two directions the probability
that the next event is a microscopic dissociation is

pdissoc = λ

λ + 2D1 + ksp + kIST
, (14)

or a specific binding event

pbind = ksp

λ + 2D1 + ksp + kIST
. (15)

Using the experimentally determined values for Mtot, Vc,
D3, ρ, FB, v and � as constants and the largely unknown D1,
α and pbind as variable input parameters, λ and ksp can be
solved for and pdissoc calculated; see Table 1 for a summary
of the parameter names and their definitions in the model.

Using Equations (14) and (15) we determine whether to
dissociate microscopically or bind specifically. Given a mi-
croscopic dissociation the searching protein has a chance
of macroscopically dissociating as given by Equation (3). A
macroscopic dissociation implies resampling the position of
the searching protein and all the crowding proteins on the
DNA.

If the protein dissociates microscopically, but not macro-
scopically, and hopping is included in the description, then
the protein is displaced along the length of the DNA accord-
ing to the distribution in Supplementary Equation (3) with
reflective boundary conditions at the edge of a roadblock;
if hopping is not included, the protein is simply returned to
the site it came from. The number of microscopic dissocia-
tion events until specific binding is recorded, and the whole
process is repeated 150 000 times to get a good estimate of
the average search time for one set of parameters.

To arrive at the total search time, the number of micro-
scopic association–dissociation cycles (Nmicro) is multiplied
by the time it takes for each cycle, i.e. (λFB)−1. Thus,

τ = Nmicro

λFB
= Nmacro

(1 − φ0)λFB
. (16)

Figure 2. The level curves correspond to chi-square values less than 3 mea-
suring the goodness of fit of simulations to experiment for one of the two
operator sites at distances 25, 45, 65, 115 and 203 bp. The values are calcu-
lated for combinations of D1 and α values given the vacancy v, the proba-
bility of specific binding pbind as indicated and the fraction of non-specific
binding FB equal to 90% (Table 1). The cyan region in this figure shows
where the absolute search time is in the interval 236 s (three proteins)–416
s (five proteins).

RESULTS

Approach

Our approach to estimate the in vivo parameters governing
the target search is to acquire the time it takes for LacI to
find its specific binding site using a combination of Monte
Carlo simulations and analytical calculations as a function
of three unknown variable input parameters D1, α and pbind.
The calculated search time is then used to compare with two
sets of single molecule in vivo data which are the search times
to one operator site and the ratio of search times for one
and two operator sites at various distances. The parame-
ter regions where there is agreement between the calculated
search times and the measured search times are illustrated
in Figure 2. Here the semi-transparent cyan region corre-
sponds to parameters where the overall search time to one
site is acceptable and the level curves correspond to chi-
square values for the agreement for the two-operator data
set. The calculated search times should conform to both sets
of in vivo data, which means that the acceptable parameter
space is the region where the cyan region overlaps with the
contour map. The constraint to small chi-squared values is
because they quantify the difference between the estimated
search times and the experimental search times for the data
involving two operator sites as exemplified in Figure 3. This
approach is expanded upon and clarified in the sections that
follow.

Parameters. We treat the parameters that are not known
in vivo as variable input parameters (see Table 1), i.e. the
probability (pbind) that the repressor recognizes and binds
to its specific site after finding it, the 1D diffusion coeffi-
cient for sliding along DNA in vivo (D1 given in bp2s−1 in
the equations, otherwise given in �m2s−1) and the degree
of diffusion control in binding non-specific DNA sequences
(α). The parameters, for which we have better estimates, are
treated as constants, i.e. the 3D diffusion coefficient for LacI
D3 = 3 �m2s−1 (50), the E. coli genome size set to Mtot = 4.5
× 106 bp, the base pair length � = 0.34 nm, the cell volume
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Table 1. Description of the parameters used in the model

Mtot (4.5 Mbp) Total E. coli genome size
Vc (1 �m3) Cell volume per genome equivalent
D3 (3 �m2s−1) 3D diffusion coefficient for LacI
ρ (5.5 nm) The reaction radius between LacI and a non-specific DNA segment
� (0.34 nm) The width of one base pair
FB (0.9) The fraction of time a searching protein stays non-specifically bound to DNA
v {0.70,0.85} The fraction of the genome unoccupied by DNA binding proteins
D1 {0.01–0.05} �m2 s−1 1D diffusion coefficient for a non-specifically bound LacI molecule
α {0.05–0.80} The degree of diffusion control
pbind {0.2,1.0} Probability of binding the specific operator site
kIST {0–500}s−1 Intersegment transfer rate

The variable parameters are the 1D diffusion coefficient D1 [�m2s−1], the degree of diffusion control, α, the probability of binding the specific site given
that the searching protein is on it, pbind, are indicated by the curly brackets. The other parameters are considered well known and are fixed except for the
vacancy on DNA, v, where we test two different values.

Figure 3. The figure shows examples of fits of simulations (dashed, dash-
dot and dotted curve) to experiments (solid curve) and the corresponding
chi-square values used as constraints in determining the solution space.
The y-axis is the ratio between the rate with which LacI finds one of the
two operator sites at a certain distance from each other and the rate with
which it finds one operator site; the x-axis is the distance between operator
sites in base pairs. The s-values in the legend are the unobstructed sliding
length for LacI given by Equation (8).

(per genome equivalent) Vc = 1 �m3, the reaction radius ρ
= 5.5·10−3 �m and the fraction of time the searching pro-
tein stays non-specifically bound FB = 0.9 (41). For the frac-
tion of the total DNA length not covered by other proteins
(i.e. the DNA vacancy v) there are alternative literature val-
ues and we therefore independently tested both v = 0.7 (45)
and v = 0.85 (46). Furthermore, the average number of re-
pressors per genome equivalent in the experimental system
was estimated (41) to be between 3 and 5.

Two parameters, α and D1, were varied systematically
given high and low values of pbind. pbind is given the ex-
treme value pbind = 1, corresponding to always binding
when reaching the site and pbind = 0.2, below which we
get no solutions with an acceptable total search time. The
range of D1 is confined from above by the corresponding
in vitro value of 0.046 �m2s−1 (50,51) and from below by
0.01 �m2s−1 where the total association is too slow to give
any acceptable solutions. Based on viscosity effects alone,
Tabaka et al. (52) calculate D1 = 0.025 �m2s−1; this ne-
glects friction with DNA and corresponds to half the in vitro
value. Thus, we expect the actual value to be lower than this.

α can, in principle, take any real positive value and we eval-
uate the model in the range where we have acceptable agree-
ment with both sets of data.

Correlated binding to two different operator sites. The most
informative experimental constraints on the allowed pa-
rameter space are those that compare the ratios of the
search times for one of the two specific sites at distances
25, 45, 65, 115 and 203 base pairs apart and one specific
site alone (41). When the specific sites are far apart, the ap-
proaching protein will see them as two independent sites,
but when they are within sliding distances from each other,
the effective target will look more like a single site. The level
curves correspond to chi-squared values less than 3. Figure
3 shows examples of the fits afforded for some of these chi-
square values justifying our choice of the threshold at 3 as
a good-fit region.

The positive correlation for low chi-square values (red)
in the D1-α plane of Figure 2 is due to the opposite effects
these parameters have on the sliding length (Equation (8)).
Increasing the degree of diffusion control means increas-
ing both association and dissociation rates (Equation (4))
since the equilibrium constant is held constant. The sliding
length, being inversely proportional to the square root of
the dissociation rate, will thus decrease, which means that
D1 increases to maintain the sliding length and the depen-
dence between two operators at different distances.

The total binding time. In the Materials and Methods sec-
tion we derive the equation for the total search time for one
repressor and one operator when crowding and finite bind-
ing probability at the operator site is introduced (Equation
(13)). As the derivation includes some approximations, the
validity of this equation was tested and found to agree well
with simulations in the parameter ranges of interest (Sup-
plementary Figure S7).

The total search time from this analytical expression is
used as an additional constraint for the acceptable param-
eter space. The average number of searching proteins was
estimated to be between 3 and 5 per genome equivalent
(41) with an experimental search time for Osym of 81 ± 2
s. This corresponds to a search time for a single protein to
fall between 236 and 416 s. In Figure 2 this is translated
to an acceptable parameter space with respect to the ab-
solute search time shown in cyan. An agreement between
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experiments and the model would be achieved for parame-
ter values where the cyan region overlaps with the ‘good-fit’
red chi-square values. From the figure it is evident that the
model is not consistent with the calculated value v = 0.7,
since it would require D1 > 0.04 �m2s−1 for a reasonable
fit. This lends more credibility to the alternatively reported
value 0.85.

Constraints from one or two stationary roadblocks

Another experimental result that can be used to constrain
the solution space is the ratio of the search times with and
without a stationary protein, a roadblock, positioned next
to the operator site (see Table 2). The roadblock should in-
crease the binding time by a factor of two if the DNA is
naked except for the roadblock and pbind = 1.The ratio be-
tween the times has been found to be less than 2 in vivo,
which was one of the arguments suggesting that pbind <
1 (41). In the presence of other semi-dynamic roadblocks
however, this argument fails. A stationary roadblock next
to the operator reduces the probability that a random road-
block will overlap the operator and thereby hinder a spe-
cific binding event. The increased influx to the operator site
counteracts the doubling of the search time one would ex-
pect when only considering that half of the pathways into
the operator site is cut off by the stationary roadblock. This
can explain a factor less than 2 also when pbind equals 1. Fur-
ther, the values in Table 2 show that the magnitude of the
influx effect increases (the ratios get lower) as the vacancy
decreases. This is due to a relative increase in the number
of events where roadblocks are excluded from the specific
operator site. When pbind is 1, the increase in search time is
simply a factor 2v (Supplementary Equation (47)) and the
results (Table 2) exclude the case with 70% vacancies in the
operator region.

Hammar et al. (41) also have results for two cases where
the operator is boxed in between two stationary roadblocks
with different gap length. The simulation results for these
cases are consistent with the parameter estimates above but
do not contribute any new constraints on their values.

The sliding length

An important parameter for characterizing the target
search is the sliding length (Equation (8)) for which there
are both theoretical and experimental estimates (8,41,52).
The best fits to the model result in sliding length between 30
and 40 bp for the acceptable solution space i.e. where cyan
regions overlap with chi-squared level curves. These sliding
lengths are in accord with recent in vivo estimates (41,52).

The effect of hopping

Hopping is the correlated motion of the searching protein
along the length of DNA at the microscopic dissociation
distance where the protein loses all electrostatic and van der
Waals interactions with DNA. The hopping effect is ana-
lytically tractable and the theory is developed in the Sup-
plementary material in the case of no crowding proteins (v
= 1) and unity probability of specific binding (pbind = 1).
The results are summarized in Figure 4 where we have used

Figure 4. The association time to a specific site in vivo calculated for Rc
= 0.014 �m, L = 765 �m, D3 = 3 �m2/s, FB = 0.9 and ρ = 5.5 nm.
Black curves are the full results from Supplementary Equation (27) with
hopping and gray curves are approximate neglecting the effects of hopping
from Supplementary Equation (29). D1 = 0.3 (dotted), 0.03 (dashed), 0.003
(solid) and 0 (dash-dot) �m2s−1. Horizontal gray line shows the measured
τ of ca. 325 s. Left panel: plotted as a function of �; right panel: as a func-
tion of sliding length.

the expressions for the total search time with and without
hopping in Supplementary Equations (27) and (28), respec-
tively. In the case without hopping a microscopic dissocia-
tion results in rebinding to the same position it left. These
results only show divergence between the search times with
and without hopping when the degree of diffusion control
(α) is increased beyond 1 or as the sliding length is decreased
below 10 for LacI. Thus, we begin to see an increase in
the relative contribution of hopping which effectively ex-
tends the specific operator site a few base pairs as the sliding
length decreases. In the absence of sliding, hopping could
decrease the search time by an order of magnitude (if α >
10; dashed-dot curves in Figure 4 Left Panel). However, the
parameter region where hopping influences the search time
falls outside the bounds of the experimental constraints;
low D1 and high α means high chi-square values (see Fig-
ure 2). Furthermore, the search time remains invariant with
respect to hopping also when both crowding proteins and
a specific binding probability less than 1 are introduced in
the MC simulations (data shown in Supplementary Figure
S5) for combinations of parameters that are consistent with
experimental data.

Intersegment transfer

The process by which two DNA segments diffuse within
binding distance of a protein capable of transiently binding
both segments and therefore transfer from one segment to
the other without dissociation is called intersegment trans-
fer. We take this mode into account using the approach of
(5). For the combination of parameters having no analytic
counterpart we used simulations to get the chi-squared val-
ues. We find that intersegment transfer rates below ca 100
s−1 have a negligible effect on the minimal acceptable D1
value (Figure 5). The reason for the small effect is that inter-
segment transfer disrupts the sliding process which weakens
the correlations in the two-operator data effectively increas-
ing the required D1 value. At the same time, intersegment
transfer increases the specific association rate, effectively de-
creasing D1. For higher values of kIST, the fit becomes in-
creasingly bad, pushing the minimal acceptable D1 higher
(Supplementary Figure S8).
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Table 2. Stationary roadblock next to the operator site, simulations and analytic results

Simulations Theory

(pbind = 1.0, v = 0.85) 1.66 1.70
(pbind = 0.2, v = 0.85) 1.60–1.50 1.63–1.55
(pbind = 1.0, v = 0.70) 1.35 1.40
(pbind = 0.2, v = 0.70) 1.33–1.26 1.37–1.32

The table shows the ratio between the time for binding one specific operator site with and without one stationary roadblock adjacent to the operator site
for different values of pbind, and v with D1 = 0.03 �m2s−1 and α = 0.10–0.80. The experimental value is 1.75 ± 0.18 (41). Results are from simulations and
from theory (Supplementary Equation (46)).

Figure 5. The effect of intersegment transfer on the parameter space for
the intersegmental transfer rate, kIST = 100. The level curves correspond
to chi-square values less than 3 measuring the goodness of fit of simula-
tions to experiment for one of the two operator sites at distances 25, 45,
65, 115 and 203 bp. The chi-squared values come from simulations and the
absolute time semi-transparent cyan region was calculated for the best fit
combination of parameters with vacancy v = 0.85, the probability of spe-
cific binding pbind = 1.0 and the fraction of non-specific binding FB is equal
to 90%. The cyan region in this figure shows where the absolute search time
is in the interval 236 s (three proteins)–416 s (five proteins). The black hor-
izontal lines aid in comparing the lowest attainable D1 values between the
cases of no intersegment transfer (left: kIST = 0 s−1) and with intersegment
transfer (right: kIST = 100 s−1).

DISCUSSION

In this work we have tested if the classical sliding model for
target location, with a few extensions that previously have
been discussed and analyzed independently (1D crowding,
hopping, finite binding probability and intersegment trans-
fer), is sufficient to explain recent single-molecule in vivo
data with reasonable parameter values. The free parameters
in the simulations are the 1D diffusion coefficient D1 and
the degree of diffusion control α which have been varied for
high and low pbind (the probability of binding specifically
at the operator site). The rest of the parameters are taken
from experimental literature reports. When there are con-
flicting literature values we have tested which set of param-
eters results in the best overall fit. There are also obviously
uncertainties for other literature values such as the number
of searching proteins N or the total accessible genome size
Macc.

Given the limitations, the parameter sweep generates a
small but reasonable solution space where the model ex-
plains the experimental data, and without additional exper-
imental observations we find no need to discard the model.
The solution space does, however, result in relatively spe-
cific predictions of the unknown parameters; the most un-
expected of these is a relatively high value of D1 and a low
value of α.

Parameter space––1D diffusion and sliding

The upper bound on D1 was set to 0.05 �m2s−1 based on
in vitro single-molecule tracking experiments (50). The pa-

rameter sweeps suggest that D1 cannot decrease below 0.01
�m2s−1 (Figure 2) to give both the experimental association
time and reasonable chi-square values. However, a simulta-
neous fit with the two-operator dependence suggests that D1
≥ 0.02 �m2/s. This seems high, considering that viscosity
effects alone one gets D1 close to 0.025 �m2s−1 in vivo (52)
which becomes 0.009 �m2s−1 when multiplied with a retar-
dation factor e−(ε/kBT)2

(37) which takes into account that
LacI diffuses in a rugged-free energy landscape (53) with
roughness � ∼ 1 kBT (37,53). Thus a D1 value approaching
0.009 �m2s−1 is more reasonable than the D1 ≥ 0.02 �m2/s
constraint given by the model and the simulations. There
are two possible reasons for this apparent discrepancy, ei-
ther the model or some of its parameters are wrong, which
is addressed in the next paragraph, or 1D sliding in vivo is
faster than what can be expected by an extrapolation from in
vitro data. This would in particular suggest that the magni-
tude of the ruggedness of the free-energy landscape (37,53)
along DNA could be higher in vitro than in vivo. A smoother
free-energy landscape in vivo might be due to a stabilization
of the DNA phosphate backbone by nucleoid-associated
proteins, metabolites or ions (4,6) missing in vitro. Other
effects that are neglected in the simple lattice MC simula-
tion method and which could potentially explain the dis-
crepancy between the expected and the fitted D1 values are
hydrodynamic interactions (HIs) and conformational fluc-
tuations (CFs) of DNA (54). These effects enter in the 1D
diffusion coefficient (D1) and the propensity of LacI to re-
bind (α). As these parameters were varied in the simulations
and then constrained by fitting to experiments both HIs and
CFs of DNA are included to the extent that they contribute
to the in vivo search kinetics, although we cannot separate
each effect and gauge its respective magnitude. However,
D1 calculated from viscosity effects on the protein motion
and multiplied with the fluctuations in the interaction free-
energy between LacI and DNA gives ∼0.045 �m2s−1 (51)
which is the value measured in vitro. Therefore, we expect
that the same kind of estimate, without explicitly including
the effects of CFs and HIs, will also be valid in vivo.

Parameter space––uncertainties

When looking at which of the experimental input parame-
ters are most uncertain we find that there are considerable
uncertainty in both the DNA vacancy v and in the estimated
number (N ≈ 3–5) of repressors participating in the search.
The number of proteins does not influence the chi-square
fits in Figure 2, but the total search time is influenced in di-
rect proportion. Thus, if N > 5, the overlap region would
be pushed toward lower α and D1 (Figure 6). The DNA va-
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Figure 6. The dependence of the parameter space on the total number of
searching proteins and the genome size showing how the front of the semi-
transparent cyan regions in Figure 2 would move under different assump-
tions. The blue, green and magenta lines correspond to 4, 5 and 6 searching
proteins, respectively, while the black dashed line represents an 85% va-
cancy around the operator site (vOP) and a vacancy of 70% elsewhere. The
chi-square values depend weakly on the genome size as tested by simula-
tions. The acceptable 1D diffusion constant is pushed toward lower values
by either increasing the number of searching proteins or decreasing the
genome size.

cancy has been assumed to be uniform over the chromo-
some; however, it could be very different around the op-
erator regions as compared to the bulk of the DNA, for
instance if parts of the genome are excluded due to local
folds or if DNA binding proteins themselves are clustered
in regions of the chromosome other than the operator re-
gions (55). This would have the effect of lowering the oc-
cupancy around the operator site while allowing for more
DNA binding molecules overall. Taking this effect into ac-
count, the overlap between the cyan region and the red chi-
square values would increase, which would also allow for
lower D1 values (Figure 6).

Parameter space––crowding and the propensity to bind non-
specifically

There are conflicting reports concerning the occupancy of
the DNA where Li et al. (56) calculate 30% while Tabaka
et al. (45) calculate 15%. Crowding on DNA has at least
three distinct effects on the association process: (i) binding
of other proteins on DNA beyond the immediate operator
region reduces the amount of competitive DNA leaving less
DNA to be searched. Alternatively, if, as in the calculations
above, the fraction FB of non-specifically bound repressor
is considered as a given experimental quantity, the reduc-
tion of competitive DNA would lead to a larger non-specific
binding constant (KRD). (ii) Crowding molecules can di-
rectly obstruct the operator site and thereby reduce the rate
of binding. (iii) Finally, crowding molecules would interfere
with the sliding process, effectively reducing the distance the
repressor can slide along the DNA. Thus when crowding is
introduced, the unobstructed sliding distance will have to
be increased to explain the dependence in the two-operator
data (Figure 2). The solution spaces exclude the previously
proposed 30% occupancy case simply because the search be-
comes too slow. The 30% occupancy cases also conflict with
the results from placing a stationary roadblock adjacent to
the operator (see Table 2).

As a solution, there could be two levels of chromosomal
DNA coverage: for example, perhaps half of the crowding
proteins have specific binding sites outside the operator re-
gion and would therefore only contribute to the decrease
of the competitive DNA. Moreover, this competition could
also decrease if some DNAs were inaccessible due to pack-
ing in the nucleoid. Thus, the kinetic data suggest that v =
0.85 at least in the operator region.

In the calculations above we have used FB = 0.9, i.e.
the repressor spends 90% of its search time on non-specific
DNA (41). We have also tried FB = 0.7 for which we find
no acceptable solution space. For proteins with very strong
non-specific binding (FB → 1), intersegment transfer would
be needed to avoid having them trapped in DNA regions far
from the operator or between roadblocks.

Parameter space––the recognition step

Once the repressor has reached the operator site it might
pass by without recognition and specific binding. Hammar
et al. (41) introduced an extra recognition step that was
given by the probability of binding, pbind, for a repressor
non-specifically bound at the operator site. This parame-
ter was introduced to explain the difference in association
rates to operators that differ only a few bases in sequence,
in particular the 20% difference in rate between the natural
operator O1 and a synthetic operator sequence Osym at 298
K; Without this extra step, the sliding model cannot explain
why the association rate depends on the operator sequence.
A finite recognition step could also explain why blocking off
half of the access paths for the repressor by placing a sta-
tionary roadblock on one side of the operator does not lead
to an increase in the association time by a factor of two but
only by 1.75. However, as we have shown in Table 2, such
a stationary-roadblock effect also follows from introducing
crowding with v = 0.85. This is because the stationary road-
block blocks not only the access path for the repressor but
also random roadblocks from directly obstructing the op-
erator site. The data used in the present analysis all refer to
Osym, which consequently could have pbind close to 1, while
O1 could have a significantly smaller value. Indeed, pbind =
1 affords a slightly better fit to the data than does pbind =
0.2 (Figure 2).

It should be noted that sliding allows the protein to test
a site many times before moving away, so that even a small
value for pbind leads to a modest decrease in the overall as-
sociation rate (41). For the relative small values of α and
large values of s found here, the effect of pbind < 1 is to in-
crease the association time by a factor (Equations (10) and
(15)) which can be approximated as 1 + 1−pbind

pbind

1
s . This gives

roughly a 10% increase for pbind = 0.2, but only 2.5% for
pbind = 0.5. Thus, it would be difficult to distinguish pbind-
values above ∼0.5 from this effect, why we can only say that
pbind is so high that the overall binding rate to Osym is not
significantly reduced.

Diffusion control and steric effects

The best fit to the in vivo kinetic data suggests that the pa-
rameter α is small (α ≈ 0.1–0.15; Figure 2) (52). This would
imply that the non-specific association rate constant (ka) is
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smaller than its maximal diffusion-limited value, which may
be interpreted as a reaction limited non-specific binding.
However, the reduction in ka could also be due to steric con-
straints, rather than an activation step in the non-specific
binding (37). Thus, the non-specific association could well
be diffusion limited when the steric effects are accounted
for.

The effective reaction radius for non-specific binding, ρ,
is difficult to estimate. At a maximum ρ would correspond
to the distance between the mass centers of the DNA cylin-
der and the protein when they form a non-specific complex
(the Smoluchowski limit), i.e. ρmax ∼5.5 nm. This would
be the case if all molecular collisions would have a high
probability of finding the productive orientational config-
uration required for a bound complex to form before dif-
fusing apart again. This, in turn, would require that the
molecules are held together for some time while they ex-
plore their mutual orientational space, akin to a local slid-
ing process. Although electrostatic attraction could help
pull the reactive regions together into a productive ori-
entation, these forces are screened and will help primar-
ily when the reactive regions are already close. If α ∼ 0.1
is interpreted as being due to steric effects (37), then the
corresponding effective interaction radius would be ρeff =
ρmaxe−1/α, which could be on the order of ∼10−4 nm as ex-
pected from some protein–protein association rates. While
the diffusion-limited protein–protein association rate is di-
rectly proportional to ρeff, for the protein–DNA associa-
tion, being largely a 2D process, a small value for ρeff de-
creases the macroscopic association rate only logarithmi-
cally.

Hopping

Hopping is a process where a non-specifically bound protein
dissociates and quickly rebinds mostly to the same DNA
site but occasionally to one nearby along the DNA con-
tour. Since hopping is a consequence of the diffusive motion
in the geometry of the protein leaving DNA in the form of
an extended chain, we expect it to exist for all DNA bind-
ing proteins. It can be formally distinguished from sliding
in that it involves diffusion paths where there are no inter-
actions between DNA and protein. The task at hand is to
quantify the influence of hopping on the rate with which
the LacI dimer finds its specific binding site. The model-
ing (5,8) shows that hopping would have little effect on the
LacI association process in the presence of sliding (Figure
4). However, hopping would be very important for non-
sliding proteins by allowing one that is ‘almost there’ to try
neighboring binding sites without having to start the search
all over. Although, it would be possible to model the ob-
served specific association time in vivo in terms of hopping
alone (Figure 4), it cannot explain the observed dependence
between different binding sites; since sliding is needed to
bridge the distances between them. When combining hop-
ping with sliding and crowding in the simulations, we find
no effect of hopping in the required parameter ranges. It
should be noted that there is ambiguity in the definition of
hopping in the literature, where it is sometimes defined as
a non-helical displacement of the protein along the DNA
while still bound to it (17,54). This would in our work cor-

respond to a non-helical sliding mode. Such a sliding mode
(defined as hopping in some other work) could have an im-
pact on the estimated value of D1. However, we find this un-
likely for two reasons: first, fully atomistic MD simulations
(37) show that the repressor has a high propensity to follow
the helical path. Furthermore, the agreement between the
experimental value for D1 and that calculated for a helical
sliding mode (51) shows that non-helical sliding does not
contribute significantly, at least not in vitro.

Intersegment transfer

Intersegment transfer is the process by which a protein
transfers to an uncorrelated distant site as measured along
the contour length of DNA via a doubly bound intermedi-
ate. This means that the transfer circumvents macroscopic
dissociation where the protein would have to diffuse in 3D
before finding and binding to an uncorrelated (beyond a
few persistence lengths) site. The need for a doubly bound
intermediate demands that the protein have two binding
sites with a geometry such that a doubly bound complex
is realizable. This geometrical requirement is satisfied for
the LacI tetramer for which the intersegment transfer mode
has been indirectly shown to occur between specific binding
sites in vitro based on the dependence of the specific disso-
ciation rate on the DNA concentration (57). However, to
our knowledge there is no experimental evidence of inter-
segment transfer between non-specific binding sites neither
for the LacI tetramer nor for the LacI dimer. In fact, an in-
tersegment transfer mode has not been observed between
specific binding sites for the LacI dimer either. A priori,
based on visual inspection of the geometry, it would seem
improbable that intersegment transfer would have any sig-
nificant effect on the LacI dimer search kinetics. The partial
unbinding of one of the two LacI dimer binding sites simply
does not allow for LacI conformations which could bind to
two DNA segments at the same time. Another possibility is
that the LacI dimer could bind two DNA segments but that
the non-specific binding strength is much stronger for the
native binding site which would make intersegment trans-
fer a very infrequent event. Although the introduction of
an intersegment transfer mode does improve the search ef-
ficiency, as seen by an increased specific association rate, the
results cannot be fitted well to the in vivo data if the interseg-
ment transfer rate is much larger than ∼100 s−1. Thus, the
1D diffusion coefficient would become impermissibly high
for higher intersegment transfer rates.

CONCLUSION

We have extended the sliding model to include crowd-
ing, hopping, intersegment transfer and the possibility of
traversing the specific binding site to calculate the time it
takes for one LacI molecule to find its specific binding site.
To account for recent in vivo data on the dependence be-
tween two operator sites as a function of the distance be-
tween them we also employed Monte Carlo simulations. Us-
ing the simulations and the analytical solutions as a con-
straint we generate solution spaces from a parameter sweep
where the 1D diffusion coefficient and the degree of diffu-
sion control were systematically varied given diverse values
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for the DNA occupancy, and the probability of LacI bind-
ing the specific operator site. We find that there exists a small
parameter space where the model is compatible with the ex-
perimental measurements. This space is not significantly ex-
tended by allowing for hopping or intersegment transfer of
the LacI dimer, which does not imply that these mechanisms
do not exist, only that they do not contribute significantly
in the allowed parameter space. The allowed space suggests
that LacI binds the specific Osym-operator site with a proba-
bility larger than 0.5. We also establish that the lac repressor
dimer binds non-specific DNA with a low probability at the
first contact. This does however not necessarily imply an en-
ergetic barrier for binding, but rather that not all patches on
the repressor or DNA will bind at contact and that steric
effects may need to be considered. Finally, based on that
the DNA occupancy by other proteins in the operator re-
gion seems to be ∼15%, while the overall occupancy may
be higher, we propose that chromosomal DNA may have
two levels of coverage by Nucleoid Associated Proteins, one
fraction that are randomly associated with DNA and thus
are found in the operator region where they influence bind-
ing and sliding by the repressor and one fraction of more
specifically binding proteins that do not reside in the opera-
tor region and only contribute to the search time by hiding
part of the chromosome from searching.
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