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Clinical applications that require extraction and interpretation of physiological signals orwaveforms are susceptible to corruption by
noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of
surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP)
waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured
ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the
interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter
and the 4-element Windkessel model with static parameters, arterial compliance 𝐶, peripheral resistance 𝑅, aortic impedance 𝑟,
and the inertia of blood 𝐿, to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and
artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the
noisy ABP waveform based on the past state history.The power spectrum of the measured ABP waveform and the synthesized ABP
waveform shows two similar harmonic frequencies.

1. Introduction

1.1. Motivation. According to Asgari et al., any type of clinical
application that requires the extraction and interpretation
of physiological signals or waveforms is susceptible to cor-
ruption by noise or artifacts [1]. Real-time hemodynamic
monitoring systems are important for clinicians to assess
the hemodynamic stability of surgical or intensive care
patients by interpreting hemodynamic parameters generated
by an analysis of aortic blood pressure (ABP) waveform
measurements. Hemodynamic monitoring instruments can
measure ABP waveforms invasively using catheters that are
inserted into the arteries [2] or utilize noninvasive sensors
that obtain arterial pressure pulses without catheter inser-
tion. Regardless of the method used for acquiring ABP
waveforms, ABP waveforms can be used as an input into
hemodynamic parameter estimation algorithms to estimate

hemodynamic parameters such as cardiac output (CO) or
stroke volume (SV) [2, 3]. Since hemodynamic parameter
estimation algorithms often have to detect events and features
from measured ABP waveforms in order to generate hemo-
dynamic parameters, the integration of noise and artifacts
into ABP waveforms can severely distort the interpreta-
tion of hemodynamic parameters by hemodynamic algo-
rithms.

There are many possible sources of noise and artifacts in
real-time hemodynamic monitoring systems. Such sources
can arise from the instrument or sensors unintentionally
picking up environmental noise, lack of channel synchro-
nization or delay between instruments that are used in
conjunction with each other, arterial line containing partial
or complete blockage that causes signal damping, patient’s
physical movements or physiological abnormalities, and
respiratory modulation due to ventilator use on patients.
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Lawless has shown through a study in the pediatric ICU
that the majority of alarms sounded by clinical equipment
were actually not clinically important—which facilitates the
need for improvements to bemade in patient caremonitoring
systems [4]. One method for improving patient monitoring
systems revolves around noise and artifact reduction. There
have beenmany past attempts to reduce noise and artifacts of
physiological ABP waveforms for use in patient monitoring
systems. Asgari et al. have shown the capabilities of noise
reduction by recognizing valid and invalid cardiac cycles—in
an attempt to avoid integrating noise and artifacts [1],
while Li et al. have shown the feasibility of avoiding errors
caused by noise, artifacts, or missing portions of data when
performing an estimation of heart rate (HR)—using signal
quality indices in conjunction with the Kalman filter [5].
While the researches ofAsgari et al. and Li et al. have provided
valid insights in preventing noise integration, we propose
the use of the Kalman filter, which is an adaptive filter, and
the 4-element Windkessel model of arterial circulation with
static parameters to both generate and reduce noise fromABP
waveforms.

1.2. Kalman Filter. The Kalman filter is a recursive optimal
estimator algorithm that utilizes parameters derived from
indirect, inaccurate, and uncertain observations. From the
uncertainty, theKalmanfilter can provide a recursive solution
that minimizes the mean square error of the estimated
parameters—allowing for the state of a dynamic determin-
istic system to predict the future outputs of the deterministic
system based on the system’s past [6]. The recursive steps of
the Kalman filter algorithm to yield the best estimate of x(𝑘)
are depicted in Figure 1.

The state equation of the Kalman filter, modeling the
transformation of the process state, is written as

x (𝑘 + 1) = Ax (𝑘) + Bu (𝑘) + w (𝑘) , (1)

where

x(𝑘) is the 𝑛 × 1 system vector representing the state
of the dynamic deterministic system,
A is the 𝑛 × 𝑛 state system matrix,
B is the 𝑛 × 𝑚 input matrix,
u(𝑘) is the𝑚 × 1 known input signal,
w(𝑘) is the process white noise [6].

The measurement equation describing the relationship
between the process state and the measurements is written
as

z (𝑘) = Hx (𝑘) + k (𝑘) , (2)

where

z(𝑘) is the known output measurement signal,
H is the𝑚 × 𝑛 output matrix,
k(𝑘) is the process measurement noise.

and error covariance P(k − 1)

Initial state estimate of x̂(k − 1)

P−(k) = AP(k − 1) AT + Q(k)

x̂−(k) = Ax̂(k − 1) + Bu(k)

K(k) = P−(k)HT[HP−(k)HT + R]−1

x(k) = x̂̂ −(k) + K(k)[z(k) − Hx̂−(k)]

P(k) = (I − K(k)H) P−(k)

(3) Update error covariance:

(2) Update the estimation with measurement z(k):

(1) Compute the Kalman gain to update measurement:

(2) Predict the error covariance:

(1) Predict the forward state and update time:

Figure 1: Complete system level diagram depicting the recursive
operations of the Kalman filter, adapted fromWelch and Bishop.

Based on the definitions of (1) and (2), the random
variables w(𝑘) and k(𝑘) are independent representations of
the process andmeasurement noises—each carrying different
Gaussian probability density functions representing zero
meanwhite noise.The covariancematrix of the process noise,
w(𝑘), is Q(𝑘), also known as the process noise covariance.
Conversely, the covariance matrix of the measurement noise,
k(𝑘), is R(𝑘), also known as the measurement noise covari-
ance [7].

In addition to the variable definitions for the state
equation and measurement equation of the Kalman filter,
bothQ(𝑘) and R(𝑘) were chosen to be constants,

where

Q(𝑘) is the 𝑛 × 𝑛 process noise covariance,
R(𝑘) is the𝑚 × 𝑚measurement noise covariance,
P−(𝑘) is the 𝑛 × 𝑛 a priori estimate error covariance,
P(𝑘) is the 𝑛×𝑛 a posteriori estimate error covariance,
K(𝑘) is the 𝑛 × 𝑚 Kalman gain.

In the prediction step of the Kalman filter, the a priori
estimate state x̂−(𝑘) is estimated based on previous states
x̂(𝑘) and A. To gauge the deviation of the model’s output
and the measurements, the a priori estimate produces an
estimate of its predicted measurement, x̂(𝑘) = Hx̂−(𝑘), which
is subtracted from the actual measurement z(𝑘) in order to
obtain a residual z(𝑘) − Hx̂−(𝑘). The a priori estimate error
e−(𝑘) is defined as x(𝑘)− x̂−(𝑘)while the a posteriori estimate
error e(𝑘) is defined as x(𝑘) − x̂(𝑘).

The Kalman gain K(𝑘) is calculated as the blending
factor that minimizes the a posteriori error covariance. If
the a priori error e−(𝑘) is small, then K(𝑘) would also be
small—resulting in a minimal amount of correction to be
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Figure 2: Different Windkessel model diagrams, adapted fromWesterhof et al.

had in K(𝑘)[z(𝑘) − Hx̂−(𝑘)]. When it is determined that the
error of the a priori estimate is small, it is inferred that there
is no need for correction, and the system model is trusted
over the measurements. Conversely, if the a priori error e−(𝑘)
is big, then the a posteriori estimate of the states x̂(𝑘) will
depend more on the measurement z(𝑘), rather than the a
priori estimate x̂−(𝑘) [7].
2. Methods

2.1. Windkessel System Model. To implement the Kalman
filter, a model to represent arterial circulation is necessary
for the process state. The Windkessel model of arterial
circulation is a physiological lumped parameter model based
on the modeling of the arterial system as an air reservoir
and was chosen because of its low computational costs—as
a result of its simplification of both the fluid dynamics
of the blood and the mechanical dynamics of the arterial
blood vessels into lumped parameters. Despite its simplicity,
the Windkessel models have been shown to realistically
mimic systemic arterial load because each of the independent
parameters is based on real physiology [8]. Campbell et al.
performed a study to best fit pressure waveforms using aortic
flow and the 3-element Windkessel model—determining
that there is an agreement between the model’s prediction
ability and experimental data [9]. Compared to the 3-element
Windkessel model, the 4-element Windkessel model used
in this study contains four parameters that model arterial
circulation: arterial compliance 𝐶, peripheral resistance 𝑅,
aortic impedance 𝑟, and the inertia of blood 𝐿 [10].

Because of the close relationship betweenmechanical and
electrical systems, the Windkessel model can be represented
as either a mechanical or electrical system—which allows for
a source of time varying flow or current to be used as an
input to generate a source of time varying pressure or voltage,
respectively. Figure 2 shows the 4-elementWindkessel model
analogs—both of which are capable of generating ABP wave-
forms by modeling the propagation of blood as it interacts
with the aorta, the arterial tree, or both the aorta and the
arterial tree—depending on the Winkessel model used [10].

In order to model the process state and test the 4-element
Windkessel model’s capabilities, linear values of the Wind-
kessel parameters had to be determined to best represent the
pig data described in Section 2.2. Segers et al. performed

Table 1: LinearWindkessel model parameters, adapted from Segers
et al.

Windkessel parameter Systemic circulation parameter
𝑅 1.72mmHg/(ml/s)
𝐶 0.48ml/mmHg
𝑟 0.105mmHg/(ml/s)
𝐿 0.0059mmHg/(ml/s2)

an experiment to estimate the 4-element Windkessel model
parameters with the use of both flow and pressure data
measured from a pig [11]. The linear Windkessel parameters
estimated by Segers et al. shown in Table 1 were used as the
static parameters for this article.

2.1.1. Windkessel Model Differential Equations. The electrical
analog of the 4-element Windkessel model shown in Fig-
ure 2(b) can bemathematically described by three differential
equations where

the differential equation representing the parallel
resistor and inductor is

𝑟
𝐿 𝑖 (𝑡) −

𝑟
𝐿 𝑖𝐿 (𝑡) =

𝑑𝑖
𝐿 (𝑡)𝑑𝑡 , (3)

the differential equation representing the parallel
resistor and capacitor is

1
𝐶𝑖 (𝑡) −

1
𝑅𝐶V𝐶 (𝑡) =

𝑑V
𝐶 (𝑡)𝑑𝑡 , (4)

the differential equation representing the series
impedance of the circuit is

V (𝑡) = 𝑖 (𝑡) 𝑟 − 𝑖𝐿 (𝑡) 𝑟 + V𝐶 (𝑡) . (5)

2.1.2. Windkessel Model Discretization. TheKalman filter can
be implemented as a digital filter with the 4-element Wind-
kessel as the system model. Because digital filters perform
computations in discrete time, the difference equations that
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represent the 4-element Windkessel can be derived using the
Euler forward method as

𝑇
𝑠

𝑟
𝐿 𝑖 (𝑘) − [𝑇𝑠

𝑟
𝐿 + 1] 𝑖𝐿 (𝑘) = 𝑖𝐿 (𝑘 + 1) ,

𝑇𝑠 1𝐶𝑖 (𝑘) − [𝑇𝑠
1
𝑅𝐶 + 1] V𝐶 (𝑘) = V𝐶 (𝑘 + 1) ,

V (𝑘) = 𝑖 (𝑘) 𝑟 − 𝑖𝐿 (𝑘) 𝑟 + V𝐶 (𝑘) ,
(6)

where 𝑇
𝑠
refers to the sampling period that was chosen based

on the 500Hz sampling rate of the pig data [12].
From the difference equations, the coefficient matrices

representing the 4-element Windkessel can be written as

𝐴 = [[
[
− 1𝑅𝐶𝑇𝑠 + 1 0
0 − 𝑟𝐿𝑇𝑠 + 1

]]
]
,

𝐵 = [[
[

1
𝐶𝑇𝑠𝑟
𝐿𝑇𝑠
]]
]
,

(7)

and the coefficient matrices representing the output can be
expressed as

𝐻 = [1 −𝑟] ,
𝑄 = [𝑟] . (8)

2.2. Data Sources. In order to simulate and generate synthetic
ABP waveforms, pig data was acquired from a previous
study by Cannesson et al. [12]. In that study, healthy pigs
with a normal anatomy were sutured with many lines to
measure different circulatory system waveforms. The pig’s
aortic flow was obtained from measurements with an aortic
flow probe—in a nine-hour open chest procedure at the
aortic root of a healthy 87-kilogram female pig. Aortic blood
pressure was measured with the implementation of a catheter
at the aortic root. Prior to opening the chest, gas anesthesia
and isoflurane were administered in order to prepare the
pig for the procedure. Local block lidocaine 1–3mg/kg was
administered through use of an IV drip—in order to provide
continuous amounts of sedative to the area of open incision.
The animal was euthanized at the end of the study. The
measured pig flowdata is depicted in Figure 3 andwas used as
an input into the 4-elementWindkessel.Themeasured output
pressure data is shown in Figure 4 and represents the expected
output of the 4-element Windkessel. In Figure 4, noise and
artifacts were recorded between 1 and 2 seconds.

3. Results and Discussion

In order to reduce noise and artifacts from ABP waveforms,
this simulation incorporates the Kalman filter with the 4-
elementWindkesselmodel representing the pathway of blood
as it circulates through the aorta and arteries. Measured pig
flow data was used as an input into the system in order
to synthesize an ABP waveform, while measured pig aortic
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Figure 3: Depiction of aortic flow measured from a pig.
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Figure 4: Depiction of aortic pressure measured from a pig.

pressure data was used as a baseline output for comparison.
Figure 6 depicts the measured pig ABP waveform superim-
posedwith theKalman filter’s estimation. In comparisonwith
conventional methods of noise reduction which entails the
elimination of data that exists at lower and higher bound
frequencies with high-pass or low-pass filters—since the
Kalman filter operates through the prediction of future states
based on prior state knowledge, it is able to strategically
eliminate noise and estimate an ABP waveform containing
low amounts of noise without the absolute loss of high or low
frequency waveform data.

Figure 7 is a superimposed depiction of the power spec-
trum corresponding to both themeasured pig ABPwaveform
and the synthesized ABP waveform generated by the Kalman
filter, which indicates that the frequency distribution of both
the measured and the generated waveform is very similar.
According to Pittman et al., ABP waveforms are generated
as a result of the summation of a forward wave, which is
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Figure 6: Kalman filter output of aortic pressure.

generated by the ejection of blood at the left ventricle in
the forward direction, and reflected waves resulting from
blood flowing in the reverse direction at arterial bifurcations
[13]. An example of an arterial bifurcation is depicted in
Figure 5. By recording arterial pulse tracings, Hoeksel et al.
determined that, in blood pressure waveforms, the amplitude
of the ABP waveform during the onset of blood ejection
(systole) can be represented as the forward wave, and the
duration of blood ejection (diastole) can be represented as
a percentage of the amplitude of the systolic portion of the
ABPwaveform due to wave reflections at arterial bifurcations
[14, 15]. Duan et al. experimentally studied the transmission
and reflection characteristics of blood pulse waveforms in
dogs and mathematically determined that the amplitudes of
wave reflections can be as high as 20% of the forward wave’s
amplitude [16]. Because the forward and reflected waves of
ABP waveforms are separated by the dicrotic notch, there
are two expected harmonic peaks that should exist when
ABP waveforms are analyzed using Fourier analysis. Figure 7
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Figure 7: Power spectrum of arterial pressure.

shows two harmonic peaks, where the first harmonic at≈ 1Hz
represents the forward wave and the second harmonic at ≈
2Hz represents the reflected wave.TheDC component found
at 0Hz can be ignored because it represents the average of
all the samples used, a harmonic that does not pertain to the
natural characteristics of the aortic tree. Changes are more
visible in the time domain, as the amplitude of the original
measured pressure is changed, but in the frequency domain
the corresponding harmonics remain the same.These results
demonstrate that the waveform estimated by the Kalman
filter is realistic and is comparable to real ABPwaveforms that
are measured from a pig.

A limitation of the Kalman filter’s ability to reduce noise
stems from the accumulation of errors with each completed
iteration. As a result, the Kalman filter’s ability to reduce
noise from ABP waveforms becomes hindered with time.
In order to gauge how such error accumulation can impact
the Kalman filter’s performance, a comparison of estimation
errors between the measured pig ABP waveform and the
synthesized ABP waveform generated by the Kalman filter
can be made by subtracting the measured pig ABP waveform
and the synthesized ABP waveform generated by the Kalman
filter. A plot of estimation error is shown in Figure 8, where
it can be seen that there is a negligible increase in estimation
error when comparing the initial estimation at 0 seconds with
that at 2 seconds.

In order to generate the best possible output, the Kalman
filter incorporates the measured pig ABP waveform in its
computation. As a result, the final estimate of a state is a
weighted combination of the state predicted by the system
model and the state estimated from the output observed.
The weighing between the model and the measurement
is determined by the Kalman gain matrix where if mea-
surements are noisy, then model prediction is weighted
more heavily, but if measurements have lower amounts of
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Figure 8: Kalman filter estimation error.
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noise, then measurements are weighted more heavily. Even
though Windkessel parameters can vary in a wide range
from one subject compared to another, the weighing process
performed by the Kalman gain adjusts and compensates
between measurements and the model in order to allow for
the use of static linear Windkessel parameters estimated by
Segers et al. shown on Table 1 to generate a very accurate
estimation of ABP waveforms. Values of the Kalman gain
that are closer to 0 indicate that the model was preferred
over the measurements. However, values of the Kalman gain
that are closer to 1 indicate that the measurements were
preferred over themodel.TheKalman gain is a function of the
certainty of the measurements and the current state estimate.
At steady state, Figure 9 shows the Kalman gain to be ≈
0.22—which indicates that the model was preferred more
over the measurements and also infers that the 4-element

Windkessel model using static Windkessel parameters is a
good representative model for aortic circulation.

4. Conclusion

In this article, we proposed the use of the Kalman filter and
the 4-element Windkessel model to represent aortic circula-
tion for generating accurate estimations ofABPwaveforms by
reducing noise and artifacts. In our simulation, the Kalman
filter was shown to very effectively eliminate noise and
generate a good estimation from the noisy ABP waveform. In
order to confirm the realism of the Kalman filter’s estimation,
the frequency spectrum of the synthesized ABP waveform
was observed and found to contain both a forward frequency
and reverse frequency—both of which are characteristics
that are observed in real-life ABP waveforms. In addition,
the similarity of the frequency spectrum of the synthesized
ABP waveform compared to the frequency spectrum of the
measured pig ABP waveform also demonstrates the realism
of the waveform generated by the Kalman filter.
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