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ABSTRACT

BACKGROUND/OBJECTIVES: Cladophora glomerata extract (CGE), rich in polyphenols, was 
reported to exhibit antidiabetic and renoprotective effects by modulating the functions 
of protein kinases-mediated organic anion transporter 1 (Oat1) and 3 (Oat3) in rats with 
type 2 diabetes mellitus (T2DM). Nevertheless, the antioxidant effects of CGE on such 
renoprotection have not been investigated. This study examined the mechanisms involved in 
the antioxidant effects of CGE on renal organic anion transport function in an in vivo study.
MATERIALS/METHODS: Diabetes was induced in the rats through a high-fat diet combined 
with a single dose of 40 mg/kg body weight (BW) streptozotocin. Subsequently, normal-diet 
rats were supplemented with a vehicle or 1,000 mg/kg BW of CGE, while T2DM rats were 
supplemented with a vehicle, CGE, or 200 mg/kg BW of vitamin C for 12 weeks. The study 
evaluated the general characteristics of T2DM and renal oxidative stress markers. The renal 
organic transport function was assessed by measuring the para-aminohippurate (PAH) 
uptake using renal cortical slices and renal inflammatory cytokine expression in the normal 
diet (ND) and ND + CGE treated groups.
RESULTS: CGE supplementation significantly reduced hyperglycemia, hypertriglyceridemia, 
insulin resistance, and renal lipid peroxidation in T2DM rats. This was accompanied by 
the normalization of high expressions of renal glutathione peroxidase and nuclear factor 
kappa B by CGE and vitamin C. The renal anti-inflammation of CGE was evidenced by the 
reduction of tumor necrosis factor-1α and interleukin-1β. CGE directly blunted sodium 
nitroprusside-induced renal oxidative/nitrosative stresses and mediated the PAH uptake in 
the normally treated CGE in rats was particularly noteworthy. These data also correlated with 
reduced nitric oxide production, highlighting the potential of CGE as a therapeutic agent for 
managing T2DM-related renal complications.
CONCLUSION: These findings suggest that CGE has antidiabetic effects and directly prevents 
diabetic nephropathy through oxidative/nitrosative stress pathways.
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INTRODUCTION

Cladophora glomerata (CG) is a freshwater macroalga belonging to the phylum Chlorophyta. 
CG is grown widely in the Nan River, North Thailand, under the common name “Kai” and is 
an important human nutrient source. The species contains high quantities of carbohydrates, 
fat, proteins, vitamins, and minerals [1]. In addition, a CG extract (CGE) has shown anti-
inflammatory, anti-hypertensive, and antioxidant activities in vivo and in vitro [2,3]. A previous 
study reported that CGE has antidiabetic effects and protects the renal organic anion 
transport by modulating protein kinases C and ζ [3].

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia and 
an insufficiency of endogenous insulin secretion or action [4-6]. Prolonged hyperglycemia 
may result in the development of several diabetic complications, including retinopathy, 
peripheral neuropathy, and nephropathy [7]. On the other hand, elevated blood glucose 
levels are involved in the overproduction of reactive oxygen species (ROS) and antioxidant 
depletion in several tissues [8]. Recent studies have indicated that hyperglycemia induces 
ROS production, leading to oxidative and nitrosative stresses and contributing to diabetic 
nephropathy (DN) [9,10]. Nitric oxide (NO) production and function also increase in DN 
patients and rats [11,12].

Several mechanisms are involved in the pathogenesis of DN, including the activation of 
transcription factors, pro-inflammatory cytokines, chemokines, and adhesion molecules [13]. 
Among these, nuclear factor kappa B (NF-κB) is the most important therapeutic target in DN 
[13]. Recent studies have found that deactivating NF-κB by curcumin and thiazolidinediones 
could improve DN in streptozotocin (STZ)-induced diabetic rats [13-15]. In addition, NF-
κB can be activated by inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), and 
interleukin-1β (IL-1β) [7,16,17]. Renal NF-κB are also upregulated and associated with TNF-α, 
IL-1β, monocyte chemoattractant protein-1, and IL-6 production [18]. The kidney is important 
in eliminating endogenous and exogenous compounds by various membrane transport 
proteins [19]. Therefore, organic anion transport mediated by transporters is the critical step 
in the cellular uptake of organic anions across the basolateral membrane of proximal tubules, 
resulting in organic anion excretion into the tubular lumen and urine [20].

Among the organic anion transporters (Oats), Oats 1 (SLC22A6) and 3 (SLC22A8) have 
the highest expression levels and recognize a broad spectrum of substrates and transport 
with a high-affinity for typical substrate, para-aminohippurate (PAH), and various anionic 
drugs, such as non-steroidal inflammatory drugs, antivirals and antibiotics in exchange for 
dicarboxylates inside the cells [21,22]. In addition, the changes in organic anion clearances 
are also involved in the severity and progression of DN. For example, decreased Oat1 and 
Oat3 gene expression in DN patients resulted in reduced urinary organic acid [11]. Renal 
PAH transport in T1DM in mice was decreased, corresponding to the downregulation of Oat3 
expression, but not Oat1 [23]. Recent studies reported that aqueous extractions of Spirogyra 
Neglecta and CGE, the major members of fresh macroalgae, exhibited antidiabetic effects and 
protected the renal organic anion transport function [3,24]. Nevertheless, it is unknown if 
the antioxidative effects of CGE have any direct renoprotective effects against T2DM.
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Therefore, this study examined the effects of CGE on renal oxidative/nitrosative stresses in 
T2DM rats and identified the possible mechanisms involved in preventing DN.

MATERIALS AND METHODS

Chemicals
Polyclonal rabbit anti-NF-κB p65 and goat-anti-mouse or rabbit IgG horseradish peroxidase-
conjugated secondary antibodies were purchased from Santa Cruz Biotechnology (Santa 
Cruz, CA, USA). Monoclonal TNF-α and polyclonal IL-1β were procured from R&D systems 
(Minneapolis, MN, USA). Monoclonal anti-lamin B1 was acquired from Cell Signaling 
(Danvers, MA, USA), and monoclonal anti-β actin was obtained from Abcam (Waltham, MA, 
USA). Tritiated para-aminohippurate ([3H]-PAH; specific activity 1 Ci/mmol) was supplied 
by PerkinElmer Life Sciences (Branford, CT, USA). STZ and CelLytic™ MT cell lysis reagents 
were purchased from Sigma-Aldrich (St. Louis, MO, USA), and vitamin C (VC) was obtained 
from Merck (Darmstadt, Germany). All other chemicals of high purity grade were obtained 
from commercial sources.

CGE preparation, purification, and qualification
CGE was previously identified [3]. A voucher specimen (number AARL G048) was deposited 
at the herbarium of the Applied Algal Research Laboratory, Department of Biology, Faculty of 
Science, Chiang Mai University, Chiang Mai, Thailand. The CGE was prepared, purified, and 
quantitated, as shown in a previous study [3]. In addition, the total phenolic content of CGE 
was quantified to reach a minimum of 8.36 ± 0.13 mg gallic acid equivalent/g of extract before 
use in this study.

Animals and induction of diabetes in rats
Male Wistar rats weighing 120–150 g were obtained from the National Laboratory Animal 
Center, Mahidol University, Salaya, Thailand. The Laboratory of Animal Care and Use 
Committee at the Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand, 
approved the animal facilities and protocols (protocol number 12/2553). All rats were housed 
in a room maintained at 25 ± 1°C at a 12:12 h dark-light cycle. A previous study reported 
the anti-hyperglycemic effect of CGE [2]. Therefore, the dose of 1,000 g/kg body weight 
(BW) of CGE was also used in this study. The animals were divided randomly into 6 groups: 
normal diet (ND), normal diet supplemented with CGE (ND + CGE), T2DM (DM), T2DM 
supplemented with CGE at 1,000 mg/kg BW (DM + CGE), T2DM treated with positive control 
antioxidant, and VC at the dose of 200 mg/kg BW (DM + VC), as described elsewhere [24]. 
During the initial 2 weeks, the high-fat diet (58% calories as fat) rats were injected intra-
peritoneally with a low single dose of 40 mg/kg BW of STZ, as reported elsewhere [24]. Ten 
days after the injection, the rats in which the fasting blood glucose levels exceeded 250 mg/dL 
were considered T2DM. All non-diabetic rats were excluded from this study. Each rat received 
either CGE or VC, daily administered either via a vehicle (distilled water), CGE or VC by oral 
gavage for 12 weeks until sacrifice.

Determination of plasma glucose, triglyceride, and insulin levels
Hyperglycemia, hyperlipidemia, and insulin resistance were measured to determine the 
characteristics of T2DM. The total plasma glucose and triglyceride levels were analyzed 
by commercial enzymatic colorimetric assays (Biotech Reagent, Bangkok, Thailand). In 
contrast, the plasma insulin concentration was obtained using a Sandwich ELISA assay kit 
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from LINCO Research (Millipore, MA, USA). The homeostasis model assessment of insulin 
resistance (HOMA-IR) was calculated using the following formula: fasting plasma insulin 
(µU/mL) × fasting plasma glucose (mmol/L)/(22.5).

Determination of total, reduced, and oxidized plasma glutathione (GSH) levels
The effects of CGE on plasma total, reduced, and oxidized GSH were examined by 
performing colorimetric assays according to the manufacturer’s protocol (Cayman Chemical, 
Ann Arbor, MI, USA). The plasma samples were deproteinated by adding 5% metaphosphoric 
acid (MPA) and centrifuging at 3,500 g for 10 min. The supernatant was added to the assay 
buffer, and the MPA extract samples were collected for GSH evaluation.

Determination of the total malondialdehyde (MDA) level in renal cortical tissue
The renal oxidative stress condition was examined by measuring the total MDA level 
according to the manufacturer’s protocol (Cayman Chemical). Briefly, renal cortical tissues 
were cut and suspended in CelLytic™ MT cell lysis reagent containing protease inhibitors 
(Roche Applied Science, Indianapolis, IN, USA) according to the manufacturer’s protocol 
(Sigma-Aldrich). The tissues were then homogenized and centrifuged at 1,600 × g for 10 
min at 4°C. The supernatant was then collected for MDA measurement. Each sample was 
expressed as the total MDA level to total protein concentration (ηmol/mg protein).

Quantitative real-time polymerase chain reaction (qPCR) analysis
The total RNA was extracted from renal cortical tissues using the total RNA extraction kit 
(Amresco, Solon, OH, USA). First-strand cDNA was obtained using the iScript cDNA synthesis 
kit (Bio-Rad, Hercules, CA, USA), and qPCR was performed using Bio-Rad iQ SYBR green 
supermix on Bio-Rad iQ5 (Bio-Rad). The specific primer sets for the antioxidant and β-actin 
genes were purchased from Integrated DNA Technologies (Coralville, IA, USA), as listed in 
Table 1. The expression of antioxidant genes was normalized by β-actin and reported as the 
relative fold changes. The qPCR amplification was performed in duplicate for each cDNA.

Subcellular fractions and western blot analysis
Subcellular fractions were extracted from the renal cortical tissues using differential 
centrifugation to determine the target protein expressions in each cellular compartment, 
as described in a previous study [24]. Briefly, renal cortical tissues were cut and suspended 
in CelLytic™ MT cell lysis reagent (Sigma-Aldrich) containing 1% complete protease 
inhibitor cocktail (Roche Applied Science). The homogenate samples were centrifuged at 
5,000 g for 10 min at 4°C, and the supernatant was specified as whole cell lysate. The pellet 
was re-suspended in the same solution and centrifuged at 10,000 g for 10 min at 4°C. The 
supernatant from this step was specified as the nuclei-rich fraction. The whole-cell lysate 
fraction was then centrifuged at 100,000 g for 2 h at 4°C, and the supernatant from the spin 
was specified as the cytosolic fraction. The commercial Bradford assay (Bio-Rad) was used 
to measure the total protein concentration of each sample. All samples were stored at −80°C 
prior to use in further experiments.
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Table 1. Primer sequences and expected amplicon sizes for the gene amplification
cDNA Genbank Acc. No. Forward primer Reverse primer Amplicon size (bp)
Cu-Zn SOD X05634 5′-GCAGAAGGCAAGCGGTGA AC-3′ 5′-TAGCAGGACAGCAGATGAGT-3′ 387
GPx NM030826 5′-CTCTCCGCGGTGGCACAGT-3′ 5′-CCACCACCGGGTCGGACATAC-3′ 297
CAT AH004967 5′-CCATCGCCAGTGGCAATTAC-3′ 5′-GGCATGTTGCTTGGGTCAA-3′ 670
Actin NM031144 5′-CCTAAGGCCAACCGTGAAAA-3′ 5′-GGAGCGCGTAACCCTCATAG-3′ 181
Cu-Zn SOD, copper zinc superoxide dismutase; GPx, glutathione peroxidase; CAT, catalase.



For western blotting, the protein samples (50 µg/lane for nuclei samples and 100 µg/lane for 
whole cell lysate and cytosolic samples) were resolved in 4X Laemmli solution and separated 
on 10% sodium dodecyl sulfate-polyacrylamide gel. The proteins were then transferred onto 
a polyvinylidene difluoride (PVDF) membrane (GE Healthcare, Milwaukee, WI, USA) using 
the Bio-Rad system. The non-specific bindings on the membrane were then eliminated by 
blocking with 5% non-fat dry milk in 0.05% Tween 20 in Tris-buffered saline (TBS-T) for 1 h 
at 4°C. The membrane was incubated overnight with the desired specific primary antibodies 
against NF-κB p65, TNF-α, and IL-1β. An anti-lamin B1 antibody was applied to confirm the 
enrichment of the nuclei fraction, whereas an anti-β actin antibody was also used as a loading 
control for all samples. The PVDF membranes were washed with TBS-T and incubated with 
goat-anti-mouse or rabbit IgG horseradish peroxidase-conjugated secondary antibody (Santa 
Cruz Biotechnology) for 1 h at 4°C. The target proteins were then detected using an enhanced 
chemiluminescent kit (GE Healthcare, Buckinghamshire, UK) and quantitatively analyzed by 
the Image J program from the Research Services Branch of the National Institute of Mental 
Health (Bethesda, MD, USA).

Renal slice preparation and transport study
The antioxidative effect of CGE on renal transport activity was examined by measuring the 
PAH uptake in renal cortical slices, as previously described [25]. Briefly, rat kidneys were 
removed and placed in an oxygenated saline buffer; the renal cortical slices (≤ 0.5 mm; 5–15 
mg wet weight) were then cut with a Stadie–Riggs microtome and maintained in ice-cold 
oxygenated modified Cross and Taggart buffer containing the following (mM): 95 NaCl, 80 
mannitol, 5 KCl, 0.74 CaCl2, and 9.5 Na2HPO4, pH 7.4. The renal slices were pre-incubated in 
modified Cross and Taggart buffer in the absence or presence of 5 mM sodium nitroprusside 
(SNP) for 30 min and then incubated in a buffer containing 5 μM [3H]-PAH for 30 min at 
reverse transcription. The uptake was stopped by adding ice-cold buffer. The slices were 
then washed, blotted, weighed, dissolved in 1 N NaOH, and neutralized with 1 N HCl. A 
scintillation fluid was added, and radioactivity was measured using a liquid scintillation 
analyzer (PerkinElmer Life Sciences, Hopkinton, MA, USA). The uptake of [3H]-PAH was 
calculated as the tissue to medium ratio, i.e., (DPM/g tissue)/(DPM mL medium).

Quantification of total NO level
The production of NO induced by SNP was determined by measuring the nitrite and nitrate 
levels using chemiluminescence assays. The slices were pre-incubated in 0.5 mL of buffer 
in the absence or presence of 5 mM SNP for 30 min, and the tissues were homogenized 
and centrifuged as described above. The nitrite and nitrate levels were measured using 
a slight modification of the methodologies reported elsewhere [26,27]. Briefly, nitrite, 
iron-nitrosyl, and S-nitrosothiols were reduced to NO gas using a triiodide solution. In 
contrast, all NO metabolites, including nitrate, were reduced to NO gas using a vanadium 
III chloride solution at 95°C [26,27]. The emitted photons were detected and quantified 
by a photomultiplier tube of a chemiluminescence-based NO analyzer (Eco Medics AG, 
Duernten, Switzerland). Sodium nitrite and sodium nitrate were used to produce standard 
curves for nitrite and nitrate measurement, respectively. The NO levels were calculated from 
the area under the curve using Origin7 (Origin Lab, Northampton, MA, USA). The value 
from the vanadium III chloride-based assay was subtracted from the nitrite level from the 
triiodide-based assay to yield the nitrate level. The nitrite and nitrate levels are reported as 
the total NO production.
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Statistical analysis
The data are reported as mean ± SE of the mean. Statistical differences were assessed using 
a one-way analysis of variance, followed by a Tukey-Kramer test. The SNP-induced NO 
production was analyzed using an unpaired, 2-tailed Student’s t-test. Statistical analyses were 
conducted using the Statistical Package for the Social Sciences (SPSS) version 11.5 (SPSS Inc., 
Chicago, IL, USA). A P-value of 0.05 was considered significant.

RESULTS

Effects of CGE on general characteristics of T2DM rats
The BW, kidney weight per BW ratio, food consumption, and water intake were similar 
among the experimental groups (Table 2). The fasting plasma glucose, triglyceride, and 
HOMA-IR values were significantly higher in the T2DM rats than in the control. In contrast, 
these parameters were markedly lower in the CGE-treated rats than in the T2DM rats. In 
addition, the DM + VC group showed significantly reduced triglyceride levels without changes 
in the glucose levels compared to T2DM rats. Despite no significant difference in the plasma 
insulin among experimental groups, the HOMA-IR was significantly lower in the CGE-
treated rats than in those with T2DM. Moreover, the plasma parameters were not altered in 
ND + CGE compared to the control. These results suggest that CGE improved the diabetic 
conditions without affecting the biochemical parameters under normal conditions.

Effect of CGE on plasma antioxidant levels and renal cortical oxidative stress
The total, oxidized, and reduced GSH levels were similar in all experimental groups (Fig. 1).  
In addition, the diabetic rats had significantly higher renal MDA concentrations than 
the control (Fig. 2), whereas the MDA level was lower in the CGE and VC-treated rats. 
Furthermore, CGE did not alter the MDA level in normal rats. These results suggest that the 
CGE could reduce renal oxidative stress in T2DM.

Effect of CGE on renal antioxidant
This study further investigated the effects of CGE on oxidative stress markers, including NF-
κB, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), catalase (CAT), glutathione peroxidase 
(GPx) and superoxide dismutase (SOD). Based on a previous study, hyperglycemia, free fatty 
acid, and oxidative stress were the major stimulators of NF-κB [28]. The levels of NF-κB active 
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Table 2. Effects of CGE on the general characteristics of T2DM experimental rats
Variables ND ND + CGE DM DM + CGE DM + VC
General characteristics

Body weight (g) 428.0 ± 20.5 430.0 ± 23.2 460.3 ± 28.2 430.5 ± 29.6 420.7 ± 60.5
Kidney index 5.4 ± 0.5 5.9 ± 0.6 5.8 ± 0.9 6.1 ± 0.9 6.0 ± 1.0
Food consumption (g/d) 20.8 ± 0.7 21.0 ± 0.5 20.5 ± 1.1 20.0 ± 0.7 22.1 ± 0.3
Energy intake 83.5 ± 2.9 84.3 ± 1.8 105.6 ± 5.4 102.9 ± 3.4 113.9 ± 1.7
Water intake (mL/d) 25.3 ± 7.1 27.2 ± 8.4 36.9 ± 5.3 35.4 ± 9.0 33.6 ± 2.5

Plasma parameters
Glucose (mg/dL) 115.7 ± 5.5 95.5 ± 8.2# 288.6 ± 7.2* 159.2 ± 12.9# 290.9 ± 15.0*‡

Triglyceride (mmol/L) 152.0 ± 15.4 127.5 ± 7.5# 270.9 ± 41.5* 140.3 ± 19.4# 119.4 ± 3.0#

Insulin (ng/mL) 1.8 ± 0.3 2.0 ± 0.3 1.7 ± 0.4 1.5 ± 0.2 2.0 ± 0.6
HOMA-IR 12.2 ± 3.2 12.2 ± 2.6# 31.5 ± 6.5* 14.3 ± 1.9# 25.3 ± 6.3

Data are expressed as the mean ± SE from 6 to 8 animals per group.
CGE, Cladophora glomerata extract; T2DM or DM, type 2 diabetes mellitus; ND, normal diet; VC, vitamin C; HOMA-IR, homeostatic model assessment of insulin 
resistance.
*P < 0.05 indicates the significant differences from ND; #P < 0.05 indicates the significant differences from DM group; ǂP < 0.05 indicates the significant differences 
from DM + CGE rats.



subunit (p65 nuclear factor κB [p65NF-κB]) expression in each subcellular fraction extracted 
from the renal cortical tissues were quantified using western blotting analysis. NF-κB activation 
(p65NF-κB) was significantly higher in the nuclei fraction of T2DM rat kidneys than in the 
control (Fig. 3A), whereas CGE and VC markedly reduced its activation. By contrast, there 
were no significant differences in Nrf2 protein expression in all cell compartments (Fig. 3B). 
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Fig. 1. Effects of CGE on the plasma total, reduced, and oxidized GSH levels, determined in plasma samples from each experimental group using a colorimetric 
assay kit. The results are expressed as the mean ± SE of the mean (n = 6). 
CGE, Cladophora glomerata extract; T2DM or DM, type 2 diabetes mellitus; ND, normal diet; VC, vitamin C; GSH, glutathione.
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Fig. 2. Effects of CGE on renal cortical MDA level, determined in renal cortical tissue homogenates from each 
experimental group using a commercial TBARS assay kit. The results are expressed as mean ± SE of the mean (n = 6). 
CGE, Cladophora glomerata extract; T2DM or DM, type 2 diabetes mellitus; ND, normal diet; VC, vitamin C; MDA, 
malondialdehyde. 
*P < 0.05 indicates a significant difference from ND; #P < 0.05 indicates a significant difference from DM rats.



In addition, the T2DM rats showed significantly higher renal GPx gene expression than the 
control. In contrast, CGE and VC could normalize GPx expression relative to that of T2DM 
without affecting CAT and SOD expression, suggesting that CGE affected the induction of 
antioxidant enzyme transcription (Fig. 3C). This result indicates that CGE improved oxidative 
stress in T2DM by preventing the activation and translocation of NF-κB.

Direct effect of CGE on renal inflammatory response
TNF-α and IL-1β protein expression in renal cortical tissues was further determined to 
confirm whether CGE directly affects NF-κB activation, the downstream of NF-κB. As 
observed in p65NF-κB, CGE significantly decreased the TNF-α and IL-1β protein expression 
levels in renal cortical tissues relative to normal kidneys (Fig. 4). Hence, CGE directly 
improved oxidative stress by reducing pro-inflammatory cytokine production.

Effect of CGE on SNP-induced renal NO production
The data showed that the pre-incubation with SNP inhibited PAH transport mediated by Oat1 
and Oat3 in the renal slices from normal rats (Fig. 5A). Interestingly, the CGE-treated normal 
rats did not differ in PAH uptake after SNP pre-incubation. This suggests that CGE directly 
prevented nitrosative stress-induced impairment of the organic anion transport function.

The effects of SNP in renal tissues were confirmed by measuring the total NO levels. The results 
showed that CGE reduced renal NO production under normal and SNP induction conditions 
(P < 0.05; Fig. 5B). Furthermore, an increase in NO production induced by SNP was opposed 
after CGE supplementation (P < 0.05). These data confirm that CGE prevented nitrosative 
stress, restoring the organic anion transport function.

DISCUSSION

The CGE is widely produced along the Nan River North Thailand. Previous studies have shown 
its beneficial effects, including antigastric ulcer, analgesic, hypotensive, anti-inflammatory, 
and antioxidant activities [2]. In addition, a recent study reported that CGE has antidiabetic 
and renoprotective effects in T2DM rats by restoring the renal organic anion transport 
function, but the underlying mechanisms are unclear [3]. This question was addressed by 
evaluating the antioxidant effects of CGE on renal oxidative stress and inflammation in the 
T2DM rat model. The present work shows that the antioxidant effect of CGE reduced renal 
cortical oxidative/nitrosative stress by inducing antioxidative gene expression, GPx, inhibiting 
NKB translocation, and decreasing pro-inflammatory cytokine production. These factors 
could prevent the impairment of renal organic anion clearance, leading to a significant 
decrease in the risk of DN. According to a previous study, CGE at 1,000 mg/kg BW in this study 
can be converted to a human dose at 9,720 mg/60 kg BW/day [28].

Hyperglycemia and hyperlipidemia are prominent causative factors in ROS production 
[29,30]; ROS can directly damage DNA, proteins, and lipids in the cells. Previously, 
membrane lipids have been shown as one of the targets of ROS [31]. Lipid peroxidation 
produces several reactive aldehydes, such as MDA, acrolein, and 4-hydroxynonenal [32]. 
Among these, MDA is a primary biomarker of membrane lipid damage and oxidative stress 
[33]. In addition, oxidative stress contributes to the progression and severity of DN for 
20–30% of types 1 and 2 diabetes patients [34,35]. Thus, preventing ROS generation could 
delay the progression of DN. CGE can decrease renal cortical MDA levels, which could then 
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attenuate renal oxidative stress induced by diabetic conditions. Therefore, the antioxidant 
effects of CGE are a primary defense mechanism for DN prevention.

According to a previous study, ROS can trigger Nrf2 translocation [36], which could induce 
the expression of the 3 primary antioxidant enzymes SOD, CAT, and GPx, preventing 
intracellular ROS production [37]. The T2DM rat model in this study showed strong 
expression of the GPx gene in the kidney. In agreement with the data, renal and cardiac 
GPx protein expression and function were higher in diabetic rat and mice models against 
oxidative stress [38-40]. According to GSH, it is the most abundant antioxidant molecule 
that uses GPx as a cofactor to reduce oxidative stress molecules, such as hydrogen peroxide 
radicals (H2O2) [40]. In addition, upregulated GPx by ROS could induce NF-κB activation 
in skeletal muscle cells [41]. The NF-κB subunits are bound to the promotor region 
of GPx in response to oxidative stress in lipopolysaccharide-induced U937 cells [42]. 
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This active p65NF-κB subunit induces the generation of inducible nitric oxide synthase 
(iNOS), resulting in NO production [43]. This partly contributes to hyperfiltration and 
microalbuminuria in early DN [44]. Previous studies have shown that epigallocatechin-3-
gallate, isoquinoline alkaloid, and berberine prevent the transformation of renal epithelial 
cells to fibroblasts in DN by activating Nrf2 [45,46]. Although Nrf2 protein expression did 
not change in any cellular compartments in this study, up-regulation of the downstream 
targeting protein of Nrf2 (GPx) by CGE supplementation did preserve and counterbalance 
renal oxidative stress in T2DM rat kidneys. Similarly, a previous study showed that curcumin 
normalized GPx expression in STZ-induced DM rats [38]. Moreover, flavonoids, one of the 
active compounds in CGE, potentially inhibited phosphoinositide 3-kinase/protein kinase 
B-induced eNOS function, reducing NO production [47]. Therefore, the strong inhibition by 
CGE is a primary defense mechanism for DN prevention.

In addition to activating renal iNOS, p65NF-κB can induce renal TNF-α and IL-1β production 
in diabetic rats [7,16,17]. Both pro-inflammatory cytokines, TNF-α and IL-1β, are involved 
in diabetic pathogenesis and are crucial in diabetic complications [48]. The extent of 
inflammatory infiltration into the tissues, including macrophages and T-cells, is associated 
with the severity of DN [49,50]. CGE also showed a direct antioxidative effect by reducing 
TNF-α and IL-1β production in ND treated with CGE compared to ND rats, suggesting that 
CGE has a strongly direct effect on proinflammatory cytokines, which are the oxidative stress 
markers. Several major chemical constituents in CGE exist, including isoquercetin, catechin, 
tannic acid, hydroquinin, quercetin, rutin, gallic acid, and kaempferol [3]. Isoquercetin 
blunts H2O2-induced ROS production through H2O2, hydroxyl radicals, and superoxide 
radicals in retinal ganglion cell 5 cells [51]. In addition, green tea catechin reduced the ROS 
levels by inhibiting ERK activation in the human breast epithelial cell line MCF10A [52].

As Oat1 and Oat3 play a crucial role in organic anion uptake across the basolateral membrane 
and are strongly expressed in the kidney [20], the function of these 2 transporters is 
regulated by several factors, such as hormones, endogenous/exogenous substances, 
pathological status, and oxidative stress condition [20,53]. On the other hand, oxidative 
stress impairs transporter function, and nitrosative stress is generated by reactive nitrogen 
species that impact several transporters. For example, SNP-induced nitrosative stress 
reduced organic cation transporter and Na+/taurocholate co-transporting polypeptide 
function in isolated rat hepatocytes [54]. Similarly, nitrosative stress induced by SNP-
impaired cyclosporin A transport is mediated by P-glycoprotein (P-gp) in mouse brain 
capillary endothelial (MBEC4) cells [55]. Similarly, SNP injection into a rat brain decreased 
the daunomycin efflux from the brain, suggesting that the P-gp function was impaired by 
nitrosative stress under in vivo and in vitro conditions [56]. These results suggest that PAH 
transport mediated by Oat1 and Oat3 was blunted under nitrosative stress induced by SNP. 
CGE could restore this defect directly. Overall, CGE has renoprotective effects against NO 
production, probably by directly scavenging NO molecules, leading to reduced renal organic 
anion transport.

This study reported the antioxidative, anti-inflammatory, and anti-nitrosative effects of 
CGE against impairment of renal organic anion transport mediated by Oat1 and Oat3 in 
experimental rats. CGE could improve renal oxidative/nitrosative stresses, restoring the Oat1 
and 3 transport functions. The mechanisms through which CGE improved PAH transport 
involved the modulation of free radical scavenging enzymes, NF-κB, and proinflammatory 
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cytokines. These findings facilitate the further development of CGE, making it a potential 
nutraceutical product for kidney diseases.
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