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Abstract

Motivation: Species tree estimation is a basic part of biological research but can be challenging because of gene du-
plication and loss (GDL), which results in genes that can appear more than once in a given genome. All common
approaches in phylogenomic studies either reduce available data or are error-prone, and thus, scalable methods
that do not discard data and have high accuracy on large heterogeneous datasets are needed.

Results: We present FastMulRFS, a polynomial-time method for estimating species trees without knowledge of orthol-
ogy. We prove that FastMulRFS is statistically consistent under a generic model of GDL when adversarial GDL does
not occur. Our extensive simulation study shows that FastMulRFS matches the accuracy of MulRF (which tries to solve
the same optimization problem) and has better accuracy than prior methods, including ASTRAL-multi (the only
method to date that has been proven statistically consistent under GDL), while being much faster than both methods.

Availability and impementation: FastMulRFS is available on Github (https://github.com/ekmolloy/fastmulrfs).

Contact: emolloy2@illinois.edu or warnow@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Species trees are important models that can be used to address many
biological questions, for example how is biodiversity created/main-
tained and how do species adapt to their environments (Cracraft
et al., 2004). There is also a vast literature regarding gene tree recon-
ciliation, where gene trees are compared to an established species
tree in order to understand how genes evolved (for some of the re-
cent literature on this question, see Delabre et al., 2020; Dondi
et al., 2019; El-Mabrouk and Noutahi, 2019; Hasi�c and Tannier,
2019; Jacox et al., 2016; Kundu and Bansal, 2018; Lai et al., 2017;
Muhammad et al., 2018). However, in most cases, species trees are
not known in advance and instead must be estimated.

Most species tree estimation methods are designed for ortholo-
gous genes, which are genes related through speciation events only
and not through duplication events (Fitch, 2000; Moreira and
Philippe, 2000). Because orthology prediction is still difficult to do
correctly (Altenhoff et al., 2019; Lafond et al., 2018; Sousa da Silva
et al., 2014) and mistakes in orthology prediction can result in incor-
rect species trees, multi-copy genes are often excluded from species
tree estimation (e.g. Leebens-Mack et al., 2019; Wickett et al.,
2014). Methods that can estimate species trees from gene families
are of increasing interest, as this would enable phylogenetic signal to
be extracted from multi-copy genes while avoiding the challenges of
orthology prediction.

Several methods have been proposed to infer species trees from
multi-copy genes. PHYLDOG (Boussau et al., 2013), perhaps the
most well-known method explicitly based on a parametric model of
gene duplication and loss (GDL), uses likelihood to co-estimate the
species tree and gene family trees (which may contain multiple cop-
ies from some species). This is very computationally intensive, so

PHYLDOG is limited to very small datasets with 10 or so species.
Recently, De Oliveira Martins et al. (2016) proposed the Bayesian
supertree method, guenomu, which requires the posterior distribu-
tion to be estimated for each gene family tree, for example using
MrBayes (Ronquist and Huelsenbeck, 2003). Thus, guenomu is also
not fast enough to use on genome-scale datasets with 100 or more
species.

Non-parametric methods are more commonly used alternatives.
For example, gene tree parsimony (GTP) methods take a set of (esti-
mated) gene family trees as input, and then seek a species tree that
implies the minimum number of evolutionary events, such as gene
duplications and gene losses. Examples of GTP methods include
DupTree (Wehe et al., 2008), iGTP (Chaudhary et al., 2010) and
DynaDup (Bayzid and Warnow, 2018). Since GTP is NP hard, most
of these methods operate by using hill climbing. DynaDup, in con-
trast, uses dynamic programming to find an optimal solution within
a constrained search space; this type of approach, to the best of our
knowledge, was first proposed in Hallett and Lagergren (2000) and
has since been utilized for other problems, including the maximum
quartet support supertree problem (Bryant and Steel, 2001; Mirarab
et al., 2014) and the Robinson-Foulds Supertree (RFS) problem
(Vachaspati and Warnow, 2016). Although GTP methods can be
computationally intensive, they are more scalable than other
approaches (e.g. PHYLDOG), and several phylogenomic studies
have used GTP methods (Burleigh et al., 2011; Sanderson and
McMahon, 2007).

Other fast approaches include supertree methods that have been
adapted to work with gene family trees, referred to as multrees, as
they can have multiple copies from each species. The most
well-known supertree method for multrees is perhaps MulRF
(Chaudhary et al., 2014b), which attempts to find a solution to the
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NP-hard Robinson-Foulds Supertree problem for multrees (RFS-
multree). Although MulRF does not explicitly account for GDL, it
has been shown to produce more accurate species trees than
DupTree and iGTP on datasets simulated under challenging model
conditions with GDL, incomplete lineage sorting (ILS), horizontal
gene transfer and gene tree estimation error (GTEE) (Chaudhary
et al., 2014a).

In a very recent advance, Legried et al. (2020) proved that
ASTRAL-multi (Rabiee et al., 2019), an extension of ASTRAL
(Mirarab et al., 2014) to address multi-allele inputs, is statistically
consistent under the standard stochastic model of GDL proposed
by Arvestad et al. (2009) in which all the genes evolve independ-
ently and identically distributed (i.i.d.) within a species tree, with
duplication and loss rates fixed across the edges of the species tree.
In fact, ASTRAL-multi is the only method that has been proven
statistically consistent under any GDL model. Yet, a comparison
reported by Legried et al. (2020) between ASTRAL-multi and three
earlier species tree estimation methods, including DupTree, STAG
(Emms and Kelly, 2018), and MulRF, showed that ASTRAL-multi
had good but not exceptional accuracy; specifically, when the du-
plication and loss rates were both high, ASTRAL-multi was more
accurate than DupTree (except when GTEE was low) and STAG
(which often failed to complete), but was less accurate than
MulRF.

The high accuracy of MulRF in comparison to ASTRAL-multi
encouraged us to explore the optimization problem that MulRF
attempts to solve (RFS-multree), and led to the following advances.

• We prove (Theorem 5) that the true species tree is an optimal so-

lution to the NP-hard RFS-multree problem, provided there is no

adversarial GDL (which occurs when the pattern of duplication

and loss events produces bipartitions that are incompatible with

the species tree). This model is less restrictive than the standard

GDL model in that it does not assume genes evolve i.i.d. (similar

to the No Common Mechanism model of Tuffley and Steel,

1997), but is more restrictive in that it prohibits adversarial

GDL. However, we conjecture (Conjecture 7) that adversarial

GDL will occur with sufficiently low probability so that an exact

solution to the RFS-multree problem will be statistically consist-

ent for reasonable duplication and loss probabilities.
• We present FastMulRFS, a polynomial-time algorithm that uses

dynamic programing to solve the RFS-multree problem exactly

within a constrained search space (computed from the input gene

family trees), and prove (Theorem 6) that FastMulRFS is statis-

tically consistent under a generic GDL model when no adversar-

ial GDL occurs.
• We prove (Theorem 2) that when solving the RFS-multree prob-

lem, any input set of multrees can be replaced by a set of smaller

trees (with each species labeling at most one leaf), thus reducing

memory and running time for methods that attempt to solve the

RFS-multree problem.
• We evaluate FastMulRFS in comparison to ASTRAL-multi,

DupTree and MulRF on 1200 different datasets with 100 species

and up to 500 genes, generated under 120 model conditions with

varying levels of GDL, ILS and GTEE. We find that FastMulRFS

is generally more accurate than DupTree and ASTRAL-multi,

and ties for most accurate with MulRF. We also find that

FastMulRFS is much faster than MulRF and ASTRAL-multi, and

ties for fastest with DupTree. The improvement in performance

over ASTRAL-multi is the most important result, as ASTRAL-

multi is the only other method to date that has been proven stat-

istically consistent under a stochastic GDL model.

In summary, FastMulRFS is a new and very fast method for spe-
cies tree estimation that does not require reliable orthology detection
and outperforms the leading alternative methods (even under

conditions for which FastMulRFS is not yet established to be statis-
tically consistent).

2 The RFS-multree problem and FastMulRFS

We define the RFS-multree and present FastMulRFS, an algorithm
that solves this problem exactly within a constrained search space.
Later, we prove that FastMulRFS is statistically consistent under a
generic model of GDL when no adversarial GDL occurs. We begin
with terminology and definitions.

2.1 Terminology
A phylogenetic tree T is defined by the triplet ðt;/; SÞ, where t is its
unrooted tree topology, S is the label set and / : LðtÞ ! S is the as-
signment of labels to the leaves of t. If each label is assigned to at
most one leaf, then we say that T is singly labeled, whereas if any
label is assigned to two or more leaves, then we say that T is multi-
labeled (equivalently, T is a multree). The edges that are incident
with leaves are referred to as terminal (or trivial) edges, and the
remaining edges are referred to as internal (or non-trivial) edges.

Deleting an edge e but not its endpoints from T produces two
subtrees tA and tB that define two label sets: A ¼ f/ðlÞ : l 2 LðtAÞg
and B ¼ f/ðlÞ : l 2 LðtBÞg. If no label appears on both sides of e,
then A and B are disjoint sets, and the edge e induces a bipartition pe

on the label set of T (i.e. the edge e splits the leaf labels into two dis-
joint sets). However, if some label appears on both sides of e then A
and B are not disjoint, and so by definition, the edge e does not in-
duce a bipartition. We let C(T) denote the set of bipartitions induced
by edges in tree T, noting that not all edges of T will necessarily con-
tribute bipartitions to C(T), unlike the case of singly-labeled trees.

A key concept in FastMulRFS is compatibility, originally
described by Estabrook et al. (1975), which we now define (see also
Warnow, 2017). Let T� be the true (fully resolved) species tree on S,
and let p ¼ AjB be a bipartition on S0 � S. Then p is compatible
with T� if and only if there is a bipartition p0 ¼ A0jB0 2 CðT�Þ so
that A � A0 and B � B0. Equivalently, bipartition p on label set S0 �
S is compatible with T� if there exists p0 2 CðT�Þ such that p0 is iden-
tical to p when restricted to label set S0. Similarly, a tree T on label
set S0 is compatible with the species tree T� if every bipartition in T
is compatible with T�.

2.2 Robinson-Foulds supertree problem for multrees
The RF distance (Robinson and Foulds, 1981) between two singly-
labeled trees on the same label set has a simple definition as the
bipartition distance (i.e. number of bipartitions in one but not in
both trees). Now suppose T and T 0 are singly-labeled trees on label
sets S and R � S, respectively. Then the RF distance between T and
T 0 can be computed as

RFðT;T 0Þ ¼ jCðTjRÞ�CðT 0Þj (1)

¼ jEðTRÞj þ jEðT 0Þj þ jCðTjRÞ \ CðT 0Þj (2)

where TjR denotes T restricted to leaves with labels in set R (after
suppressing internal nodes with degree 2). When one or both trees is
a multree, then the RF distance has an alternative definition (which
is equal to the standard definition when both trees are singly labeled
and on the same label set): the edit distance under contraction-and-
refinement operations, where a contraction is collapsing a single
edge, and a refinement is inserting a single edge to decrease the de-
gree of a polytomy (i.e. node of degree four or more). When both
trees are multrees, computing the RF distance is NP-complete
(Chaudhary et al., 2013). However, Chaudhary et al. (2013) proved
that the RF distance between a multree and a singly-labeled tree can
be computed in polynomial time as follows: (i) extend T with respect
to M, denoted Ext(T, M) (Fig. 1), (ii) relabel the leaves of M and
Ext(T, M) in a mutually consistent fashion so that both trees are sin-
gly labeled and (iii) compute the RF distance using Equation (1)

i58 E.K.Molloy and T.Warnow



between the relabeled versions of Ext(T, M) and M, denoted
ExtðT;MÞ0 and M0, respectively; see Appendix for additional details.

Chaudhary et al. (2013) then proposed the RFS-multree. The in-
put is a set P of multrees with leaves labeled by elements of the set
S, and the output is a binary (i.e. fully resolved) tree T bijectively
labeled by S that minimizes

X

M2P
RFðExtðT;MÞ0;M0Þ: (3)

Any tree that minimizes this score is called an RFS-multree
supertree for P. Finally, when P is a profile of singly-labeled trees,
then the RFS-multree problem is the well-known RFS problem
(Bansal et al., 2010; Vachaspati and Warnow, 2016).

2.3 Reducing from multrees to singly-labeled trees
We simplify the RFS-multree problem by providing an alternative
proof that the RF distance between a singly-labeled tree T and a
multree M and can be computed in polynomial time (Lemma 13 in
Appendix). We summarize the intuition behind this lemma in
Figure 1, which leads easily to Theorem 2.

Definition 1. Given a multree M 2 P, we collapse internal edges with

some species labeling leaves on both sides of the edge, denoting the re-

sult XðMÞ. We then delete all but one leaf with each species label, denot-

ing the result MX ¼ RðXðMÞÞ. We define PX :¼ fMX : M 2 Pg.

Theorem 2. Let T be a singly-labeled, binary tree on label set S, and let

P be a set of multrees. Then, T is an RFS-multree supertree for P if and

only if T is a RF supertree for PX. Equivalently, T is an RFS-multree

supertree for P ¼ fMigk
i¼1 (with multree Mi on label set Si � S) if and

only if T is a binary tree that maximizes
Pk

i¼1 CðTjSi
Þ \ CðMiÞj.

2.4 FastMulRFS
A consequence of Theorem 2 is that any heuristic for the RFS prob-
lem can be used for the RFS-multree problem simply by computing
PX (i.e. by transforming the input multrees into singly-labeled trees)
and then running the heuristic on PX. In this study, we explore the
impact of using FastRFS (Vachaspati and Warnow, 2016), an effect-
ive heuristic for the RFS problem, and we refer to this two-phase ap-
proach as FastMulRFS.

The input to FastRFS is a profile T of singly-labeled trees, each
on a (possibly proper) subset of S and a set R of allowed bipartitions
on S; FastRFS provably returns a (binary) supertree T that minimizes
the total RF distance to the trees in T subject to CðTÞ � R. FastRFS
uses dynamic programing to solve the constrained optimization
problem in OðnkjRj2Þ time, where n ¼ jSj and k ¼ jT j. As we will
show, R can be defined from the input multrees so that FastMulRFS
runs in polynomial time and is statistically consistent under a generic
GDL model when no adversarial GDL occurs.

We now describe FastMulRFS, which takes a profile P of mul-
trees, each on a (possibly proper) subset of the species set S.

• Step 1: We construct PX from P by collapsing all internal edges

that have species labeling leaves on both sides of the edge and

then deleting all but one of the multiple copies of any species.

Thus, PX is a set of potentially unresolved single-copy gene trees.

(b)

(a) (e) (d)

(c)

Fig. 1. Reduction of the RFS-multree problem to the Robinson-Foulds Supertree (RFS) problem. To compute the RF distance between a singly-labeled tree T (a; bottom left)

and a multree M (b; top left), we replace M by a smaller singly-labeled tree RðXðMÞÞ (e; bottom center). We then compute the RF distance between T and RðXðMÞÞ using

Equation (1). Here we explain why this works. Suppose that T (a) is a candidate singly-labeled, binary supertree for a set P of multrees and that M (b) is one of the multrees in

P. To compute the RF distance between T and M, we extend T with respect to M, producing Ext(T, M) (c). Note that Ext(T, M) has the same non-trivial edges (shown in blue)

and the same trivial edges (shown in orange) as T, and for every leaf label (species), it has the same number of leaves with that label as multree M. The trivial edges in Ext(T,

M) exist in any possible singly-labeled, binary tree on S; thus, these edges do not impact the solution to the RFS-multree problem. Similarly, multree M has edges (shown in

red) that will be incompatible with an extended version of any possible singly labeled, binary tree on S; thus, these edges do not impact the solution to the RFS-multree prob-

lem. An edge is incompatible with every possible singly-labeled supertree if and only if it fails to induce a bipartition (i.e. deleting an edge e splits the leaf labels into two non-

disjoint sets). Thus, we collapse all internal edges in M that fail to induce a bipartition, producing XðMÞ (d). Furthermore, because all leaves with the same label are now on

the same side of every bipartition in XðMÞ, we can delete all but one leaf with each label, producing RðXðMÞÞ (e). The resulting tree is a non-binary, singly-labeled tree on S,

so we can compute the RF distance between T and RðXðMÞÞ using Equation (1) when searching for the solution to the RFS-multree problem. These observations are formal-

ized in Lemma 13 (Appendix), and it follows that an RFS-multree supertree for P is an RF supertree for PX ¼ fRðXðMÞÞ : M 2 Pg, as summarized in Theorem 2
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In the Supplementary Material (Algorithm 1), we show how to

compute the set PX from P in O(mnk) time, where

n ¼ jSj; k ¼ jPj, and m is the largest number of leaves in any

multree in P.
• Step 2: We run ASTRAL given the set PX of single-copy gene

trees to produce the set R of allowed bipartitions. The default

technique for constructing R uses every bipartition in every

single-copy gene tree on the complete label set S. In this case, it is

easy to see that jRj � jfCðMXÞ : MX 2 PXgj � ðn� 3Þk.

Additional bipartitions may be included to guarantee that at least

one fully resolved tree T satisfies CðTÞ � R and to improve ac-

curacy (by expanding the space of allowed solutions); however,

ASTRAL-III (Zhang et al., 2018) enforces jRj ¼ OðnkÞ. While

the total running time of ASTRAL-III is OðnkjRj1:726Þ, we run

ASTRAL-III to construct R and then exit.
• Step 3: We run FastRFS on the pair ðPX;RÞ.

In summary, FastMulRFS runs in Oðmnkþ nkjRj2Þ time, where
n is the number of species, k is the number of multrees and m is the
largest number of leaves in any of the multrees. The default tech-
nique for constructing the set R of allowed bipartitions enforces
jRj ¼ OðnkÞ and, as we will show in the next section, suffices for
proofs of statistical consistency under some generic GDL models.

3 Species tree estimation using FastMulRFS

Generic GDL models. Our generic GDL models are similar to the
No Common Mechanism models described in Tuffley and Steel
(1997), in that there is a common rooted binary model species tree,
but each gene evolves down the tree with its own duplication and
loss parameters. We make natural assumptions that every gene has
duplication probability and loss probability strictly <1 on every
edge, and note these probabilities can depend on the gene and on the
edge. Thus, our generic models contain the GDL models of Arvestad
et al. (2009) as sub-models.

Adversarial GDL. We define adversarial GDL to be when the
gene evolution process produces a gene family tree with a bipartition
p that is not compatible with the true species tree T� (see Section 2.1
for the definition of compatibility). Adversarial GDL requires a se-
quence of events (a duplication followed by a carefully selected set
of losses) that coordinate to produce such a bipartition. Figure 2d
illustrates a scenario that produces adversarial GDL: the gene dupli-
cates on the edge above Y in the species tree (shown in Fig. 2a), so
that Y has two copies of the gene. Then the first copy of the gene is
lost on the edge above B, whereas the second copy of the gene is lost
on the edge above A and the edge above C. As a result, the gene fam-
ily tree shown in Figure 2d is singly labeled, but the gene family tree
induces a bipartition (A;CjB;D) that is incompatible with the spe-
cies tree; by definition, this is adversarial GDL. Alternatively, sup-
pose the first copy of the gene had been lost on the edge above A
and on the edge above (B, C), then not only is there no adversarial
GDL, but also the gene family tree induces a bipartition (A;DjB;C)
that is compatible with the species tree.

Another interesting case to consider is when the gene duplicates
on the edge above Y, and then the first copy is lost on the edge above
B and the second copy is lost on the edge above C. As a result, the
gene family tree shown in Figure 2c does not induce any biparti-
tions. Now suppose A, B and C were clades (rather than leaves),
then every edge in the two A clades (and the edges connecting the
two A clades) would fail to induce a bipartition (assuming no other
loss events). In contrast, every edge in the B clade and the C clade
would induce a bipartition compatible with the species tree (assum-
ing no other duplication events). In some sense, duplication events
hide bipartitions, while losses (following a duplication event) can re-
veal bipartitions. A carefully selected pattern of losses (after the du-
plication) can result in adversarial GDL (i.e. a particular bipartition
p that is not in the species tree), but small changes to that pattern
may well produce bipartitions that are in the true species tree or are
incompatible with p. Thus, overall, while adversarial GDL may
occur, it may not have high impact on tree estimation based on the
RFS-multree criterion.

In this section, we will discuss model conditions under which ad-
versarial GDL cannot occur: the duplication-only case, where all

(a) (b)

(c) (d)

Fig. 2. Impact of gene duplications and losses (GDL) on species tree estimation using RFS-multree methods. (a) Shows a species tree and (b) through (d) show three gene family

trees that evolved within the species tree. (b) Shows gene family tree with a duplication event in species Y (i.e. the most recent common ancestor of species A, B and C). All

edges below the duplication (shown in red) fail to induce bipartitions and so will be contracted, and will therefore not impact the solution space for the RFS-multree criterion.

(c) Shows gene tree with a duplication event in species Y followed by the first copy of the gene being lost from species B and the second copy of the gene being lost from species

C. Because one of the species that evolved from Y retains both copies of the gene, the non-trivial edges below the duplication node fail to induce bipartitions, and so these edges

also do not impact the solution space for RFS-multree. (d) Shows gene family tree with a duplication event in species Y followed by the first copy of the gene being lost from

species B and the second copy of the gene being lost from both species A and C. None of the species that evolved from Y retain both copies of the gene, so all edges below the

duplication node induce bipartitions and hence will not be contracted; we refer to this situation as ‘adversarial GDL, because it produces bipartitions in the singly-labeled trees

in PX that conflict with the species tree (shown in blue). Such a scenario leads to the possibility that the true species tree may not be an optimal solution to the RFS-multree

problem
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genes evolve with duplication but no loss, and the loss-only case,
where all genes evolve with loss but no duplication. To prove that a
model condition prohibits adversarial GDL, we need to establish
that any bipartition that appears in a gene family tree is compatible
with the species tree; equivalently, if it appears in full in any gene
family tree then it must also appear in the species tree, while any in-
complete bipartition that appears in any gene family tree can be
extended (by adding the missing species) to become a bipartition
that is in the species tree. It is trivial to see that if a gene evolves only
with losses, then there is no adversarial GDL for that gene (Lemma
3), but the proof for duplication-only evolution is more interesting
(Lemma 4).

Lemma 3. Let P be a set of true gene trees that evolved within the rooted

species tree T� under a stochastic loss-only model of gene evolution.

Then for p 2 fCðMÞ : M 2 Pg, p is compatible with T�. Hence, loss-

only models have no adversarial GDL.

Lemma 4. Let P be the set of true gene trees that evolved within the

rooted species tree T� under a stochastic duplication-only model of gene

evolution. Then for every multree M 2 P; CðMÞ � CðT�Þ. Equivalently,

for any M 2 P, every edge e in MX (Definition 1) defines a bipartition pe

in CðT�Þ. Hence, duplication-only models have no adversarial GDL.

Proof. Let M be an unrooted gene family tree, and let e be an internal

edge in E(M). We will show that an internal edge e is collapsed in pro-

ducing XðMÞ if and only if e lies below at least one duplication node in

the rooted version of M. Hence, the singly-labeled tree MX ¼ RðXðMÞÞ
will only retain the edges in M that have no duplication nodes above

them in the rooted version of M. To see why, consider any edge e that

has no duplication node above it in the rooted gene family tree: no spe-

cies appears on both sides of e and hence e will not be collapsed.

Conversely, if internal edge e is collapsed, then there must be at least one

species on both sides of e, and so e must be below at least one duplica-

tion node in the true rooted gene family tree. Finally, consider a biparti-

tion defined by an edge that is not collapsed, and hence has no duplica-

tion nodes above it. This bipartition appears in the true species tree T�,

since the only events that cause the gene family tree to differ from the

true species tree are duplications. h

We now prove that FastMulRFS is statistically consistent under generic

GDL models if no adversarial GDL occurs.

Theorem 5. The true species tree T� is an RFS-multree supertree for any

input P for which no adversarial GDL occurred.

Proof. The optimization problem seeks a binary tree T that minimizes

the sum of the RF distances to the input multrees; this is equivalent to

maximizing the sum of the number of compatible bipartitions in the in-

put multrees. If no adversarial GDL occurs, then by definition, every

bipartition in the input multrees is compatible with the true species tree

T�, and so T� is an optimal solution to the RFS-multree problem. h

Theorem 6. FastMulRFS is statistically consistent under any GDL model

for which adversarial GDL is prohibited.

Proof. Let T� be the true species tree. By Theorem 5, T� is an optimal so-

lution to the RFS-multree problem for any input P for which no adver-

sarial GDL occurred. Since our generic GDL models assume that the

probability of no duplication or loss occurring on an edge is always

strictly positive for every gene, the true species tree has strictly positive

probability of appearing in the set P of gene family trees. Therefore, as

the number of genes increases, R (as constructed by the default setting

within FastMulRFS) will converge to CðT�Þ with probability converging

to 1, and T� will be the unique tree that is optimal under the RFS-

multree problem for input P. FastMulRFS finds an optimal solution to

RFS-multree problem subject to the tree T it returns satisfying

CðTÞ � R, by Theorems 2 and 3 in Vachaspati and Warnow (2016).

Since R converges to CðT�Þ as the number of genes increases, the prob-

ability that FastMulRFS will return T� converges to 1. h

We finish this section with a conjecture.

Conjecture 7. FastMulRFS is statistically consistent under a generic

model of GDL for probabilities of GDL, so that adversarial GDL has

sufficiently low probability.

4 Experimental study

4.1 Materials and Methods
We evaluated FastMulRFS in comparison to ASTRAL-multi,
DupTree and MulRF on biological and simulated datasets, consider-
ing species tree topological accuracy and running time. All simulated
datasets are available on the Illinois Data Bank (https://doi.org/10.
13012/B2IDB-5721322_V1), and the commands necessary to repro-
duce this study are provided in the Supplementary Material.

Biological dataset. We analyzed a fungal dataset with 16 species
and 5351 genes from Rasmussen and Kellis (2012), who provided
gene family trees estimated from their nucleotide alignments. In a
prior study, Butler et al. (2009) estimated species trees from this
same dataset (specifically the concatenated amino acid alignment of
putatively orthologous sequences) using MrBayes (Ronquist and
Huelsenbeck, 2003), constrained to enforce the out-grouping of S.
castellii with respect to S. cerevisiae and C. glabrata. The other
reported trees differed with respect to this group (i.e. not all analyses
returned this as a clade) and differed in the placement of K. waltii.
According to their study, none of these resolutions are clearly
correct.

Simulation study. We generated a collection of 100-species data-
sets (each with 1000 model gene trees) under the DLCoal model
(Rasmussen and Kellis, 2012), which is a unified model of GDL and
ILS. The easiest model condition was based on parameters estimated
from the 16-species fungal dataset (Du et al., 2019; Rasmussen and
Kellis, 2012), and then we increased the GDL rates and ILS levels
(by increasing population size) to make more challenging model
conditions. We used RAxML (Stamatakis, 2014) to estimate gene
trees under the GTRþC model from the simulated alignments, with
sequence lengths varied to produce four different levels of GTEE.
Finally, we estimated species tree giving methods the first 25, 50,
100 and 500 gene family trees, either true or estimated, as input.
This created 120 model conditions (3 GDL rates, 2 levels of ILS, 5
levels of GTEE and 4 numbers of genes), each with 10 replicates, for
a total of 1200 datasets. Importantly, none of the model conditions
prohibits adversarial GDL, allowing us to explore method perform-
ance when adversarial GDL may occur.

Evaluation criteria. On the fungal biological dataset, we eval-
uated accuracy with respect to established evolutionary relation-
ships, and on the simulated datasets, we quantified error using the
RF error rate, with respect to the true (model) species tree. We also
recorded empirical running time; however, it should be noted that
all experiments were performed on the Campus Cluster at the
University of Illinois at Urbana-Champaign, which is a heteroge-
neous system (i.e. compute nodes do not have the same specifica-
tions; see here: https://campuscluster.illinois.edu/resources/docs/
nodes/).

4.2 Results
Results on biological dataset. We analyzed the fungal dataset using
ASTRAL-multi, FastMulRFS, DupTree and MulRF. All produced
trees that are very similar to the MrBayes concatenation tree
(Supplementary Fig. S1), and the differences are minor given (i) the
variability in the trees found by Butler et al. (2009), (ii) the use of a
topological constraint in their MrBayes analysis and (iii) the uncer-
tainty about the placement of specific taxa in the tree. For further
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information on these analyses, see Section 5 in the Supplementary
Information from Butler et al. (2009).

Given that the topological differences are minor, we report the
running time differences. FastMulRFS and DupTree completed in
under a minute each, ASTRAL-multi completed in 18 min, and
MulRF completed in 40 min. Hence, FastMulRFS is much faster
than MulRF and ASTRAL-multi. While all four of these methods
are relatively fast on 16 taxa, we expect the difference between
methods to increase on datasets with larger numbers of species and
higher rates of gene duplication. The improvement in running time
over MulRF and ASTRAL-multi is due in part to the fact that both
MulRF and ASTRAL-multi use the original gene family trees, while
FastMulRFS uses the reduced singly-labeled trees; hence, as the
number of leaves or the duplication rate increase, the advantage in
running time for FastMulRFS should also increase.

Results on the simulated datasets. DupTree had poorer accuracy
than the other tested methods (Section 4.1 in Supplementary
Material). Hence, we focus on comparing MulRF, FastMulRFS and
ASTRAL-multi. The fastest method was FastMulRFS, MulRF was
the slowest and ASTRAL-multi was intermediate. All methods
improved in accuracy with larger numbers of genes and degraded in
accuracy with higher GTEE levels, ILS levels and/or GDL rates. The
relative accuracy between methods was consistent across all model
conditions, although the degree of difference depended on the model
conditions, with bigger differences for smaller numbers of genes and
higher GTEE levels, ILS levels and GDL rates. When given 500 gene
trees, error levels were low and differences between methods were
(usually) small, so that the main difference was running time. We
present results in Figure 3 for MulRF, FastMulRFS and ASTRAL-
multi under the highest GDL rate, the highest level of ILS and the se-
cond highest level of GTEE (about 53%). We note that high GTEE
(such as in this setting) is consistent with the generally low bootstrap
branch support values reported for several phylogenomic datasets
(e.g. about 25% for exon and 45% for intron datasets from Jarvis
et al., 2014; also see Table 1 in Molloy and Warnow, 2018). See
Supplementary Material for additional results.

FastMulRFS versus MulRF. Both try to solve the RFS-multree
problem but use different approaches; they were essentially tied for
accuracy across all tested conditions, but FastMulRFS was dramat-
ically faster (Fig. 3; Supplementary Tables S3 and S4). In addition,
FastMulRFS nearly always returned trees with better RFS-multree
scores than MulRF (Section 4.2 in Supplementary Material).

FastMulRFS versus ASTRAL-multi. Figure 3 shows results for
the second highest GTEE level, where FastMulRFS was much more
accurate than ASTRAL-multi for all numbers of genes. FastMulRFS
was always at least as accurate as ASTRAL-multi (often more accur-
ate) across the other model conditions (Supplementary Table S3),
with larger differences between methods for the higher GTEE condi-
tion and smaller differences for the lower GTEE conditions. The
running times for ASTRAL-multi and FastMulRFS increased with
the number of genes, but FastMulRFS was always much faster
(Fig. 3, Supplementary Table S4). For example, on the 500-gene
model conditions, FastMulRFS typically completed in 1–2 min (and
always in under 5 min), but ASTRAL-multi used between 10 min
and 1.2 h.

5 Discussion

To date, only two methods have been proven statistically consistent
under any GDL model—ASTRAL-multi and FastMulRFS—but the
conditions under which these two methods have been proven statis-
tically consistent are different. ASTRAL-multi is established consist-
ent under a gene evolution model that allows both gene duplication
and loss to occur for each gene, but requires that all the genes evolve
i.i.d. In contrast, FastMulRFS has been proven consistent under a
generic model that does not require the genes to evolve i.i.d. (and in-
deed allows for a very broad no-common-mechanism model); this is
a relative strength for the theoretical result for FastMulRFS, as genes
do not evolve i.i.d. down a species tree, as discussed in Dondi et al.
(2019). On the other hand, FastMulRFS has only been proven con-
sistent when no adversarial GDL occurs; this is a relative weakness
of the theoretical result for FastMulRFS (although see Conjecture
7). Thus, from a theoretical perspective, there are advantages and
disadvantages for both methods.

We now consider the empirical performance of the methods eval-
uated in this study, focusing on the simulated datasets (since differ-
ences on the biological dataset were minor, except for running
time). Under most of the model conditions we examined,
FastMulRFS was more accurate and more robust to GTEE than
ASTRAL-multi. Furthermore, the only conditions in which the two
methods achieved similar accuracy were characterized by low GTEE
and large numbers of genes, where both methods achieved very high
accuracy. In addition, FastMulRFS was much faster than ASTRAL-
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multi, with large improvements in speed, especially for large num-
bers of genes and high GTEE. Thus, FastMulRFS had superior per-
formance compared to ASTRAL-multi, the only previous method to
date established statistically consistent under a stochastic GDL
model.

A comparison between FastMulRFS and MulRF is also interest-
ing. Both methods attempt to solve the same NP-hard optimization
problem, and neither is guaranteed to find an optimal solution.
However, FastMulRFS is guaranteed to find an optimal solution
within a constrained search space within polynomial time, whereas
MulRF uses a local search strategy that is not guaranteed to find op-
timal solutions and is not guaranteed to complete in polynomial
time. Furthermore, the way that FastMulRFS constrains its search
space is sufficient to ensure that it is statistically consistent, but this
statement is not guaranteed for MulRF. From a theoretical perspec-
tive, therefore, FastMulRFS is superior to MulRF. In terms of empir-
ical performance in our study, the two methods were very close in
accuracy, but FastMulRFS was dramatically faster. Therefore, over-
all, FastMulRFS was superior to MulRF.

We note that FastMulRFS matched or improved on the other
methods under all conditions we explored, where gene trees evolved
under a unified model of ILS and GDL (which did not prohibit ad-
versarial GDL). Hence, our study suggests that FastMulRFS may
have good robustness and high accuracy, even under conditions
where it has not (yet) been proven statistically consistent. However,
future work is clearly needed to evaluate FastMulRFS and other
methods under a wider range of model conditions, including explicit
conditions where adversarial GDL occurs.

6 Summary and conclusions

FastMulRFS is a new method that can estimate species tree from
unrooted gene family trees, without needing to have any informa-
tion about orthology. FastMulRFS is provably statistically consist-
ent under a GDL model that allows genes to evolve under a no-
common-mechanism model [a more general model than the
Arvestad et al. (2009) i.i.d. model assumed in the proof of statistical
consistency for ASTRAL-multi], provided that adversarial GDL
does not occur. Prior to this study, ASTRAL-multi was the only
method proven to be statistically consistent for estimating species
trees in the presence of GDL.

FastMulRFS always matched or improved on the accuracy of
ASTRAL-multi (often substantially) in our simulation study, which
included three GDL, two ILS levels and five GTEE levels, and it was
also faster than ASTRAL-multi. Furthermore, these model condi-
tions do not prohibit adversarial GDL. This improvement in accur-
acy over ASTRAL-multi is significant, since our proof only
establishes statistical consistency under models where no adversarial
GDL, ILS or GTEE is present. Although accuracy is difficult to
evaluate on biological datasets, FastMulRFS produced trees that
were similar to those produced by other methods and did not violate
known relationships.

This study suggests several directions for future work. In particu-
lar, we should explore additional simulation conditions to evaluate
the impact of higher GDL rates (including conditions that explicitly
have adversarial GDL) and larger numbers of genes, where the rela-
tive performance of species tree estimation methods might be differ-
ent. Simulations should also be performed to evaluate other
scenarios that produce multi-copy genes, for example whole genome
duplication events, which impact species tree estimation for many
major clades, including fungi (Butler et al., 2009) and plants
(Leebens-Mack et al., 2019). More complex simulations should also
be considered, including ILS, introgression, gene conversion, etc., in
order to better understand the conditions in which each method per-
forms well. Furthermore, it would be helpful to characterize bio-
logical datasets in understand realistic levels of ILS and GDL
(including the frequency of adversarial GDL).

A limitation of this study is that we only examined a few methods,
and future studies should also evaluate other methods, including gue-
nomu (discussed earlier) and MixTreEM (Ullah et al., 2015), to dis-
cover the places in the parameter space of model species trees where

each method outperforms the others. Furthermore, methods that op-
erate by making predictions of orthology could be used in a three-
phase approach: given inputs with sequence alignments and multrees,
predict orthology, reduce to datasets with just orthologous genes (and
hence singly-labeled gene trees) and then run a preferred species tree
estimation method. For example, in a recent preprint, Zhang et al.
(2019) presented another modification of ASTRAL, A-PRO and
proved it statistically consistent under a GDL model if given correctly
rooted and ‘tagged’ gene trees (i.e. each node in each gene tree is cor-
rectly identified as either a duplication or a speciation); however, this
assumption means that orthology can be inferred without error (an
assumption that is not made for ASTRAL-multi). Future studies
should evaluate A-PRO as well in estimating a species tree from
multrees. Such studies would enable biologists to select methods with
the best expected accuracy for their datasets.

An important direction for future work is to evaluate the theoret-
ical properties (such as statistical consistency) of FastMulRFS under
parametric GDL models, where adversarial GDL is possible. The
statistical consistency of DupTree and other methods (e.g.
MixTrEm, guenomu and even modifications to concatenation to en-
able such analyses on multi-copy gene family datasets) should also
be evaluated.

Overall, the recent advances in development of statistically con-
sistent methods for species tree estimation under GDL models is
exciting, and the good performance of many of these methods under
a range of model conditions suggests that novel combinations and
ideas may lead to even better methods that provide improved accur-
acy and scalability.
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Appendix

We begin with the following two additional definitions from

Ganapathy et al. (2006) and Chaudhary et al. (2013).

Definition 8 (Full Differentiation). We say that M0 ¼ ðm;/0; S0Þ is

a full differentiation of multree M ¼ ðm;/; SÞ if /0 : LðmÞ ! S0 is a

bijection. In other words, M0 is a singly labeled version of M.

Definition 9 (Mutually Consistent Full Differentiations). Let

M01 ¼ ðm1;/
0
1; S
0Þ and M02 ¼ ðm2;/

0
2; S
0Þ be full differentiations of

multrees M1 ¼ ðm1;/1; SÞ and M2 ¼ ðm2;/2; SÞ, respectively. For i

¼ 1, 2, we define RiðsÞ � S0 to be the set of labels given to the leaves

in M0i that are labeled s in Mi. We say that M01 and M02 are mutually

consistent full differentiations (MCFDs) of M1 and M2 if

R1ðsÞ ¼ R2ðsÞ 8s 2 S.

Ganapathy et al. (2006) showed that if M1 and M2 are both mul-

trees, then their RF distance can be computed as

MulRFðM1;M2Þ :¼ minfRFðM0
1;M

0
2Þ : M0i is an MCFD of Mig

which implies an exponential-time algorithm for computing the RF

distance between two multrees (Ganapathy et al., 2006), Later,
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Chaudhary et al. (2013) showed this problem is NP-complete and

introduced a special case, where one of the two multrees has the

property: every leaf with the same label is grouped together into

polytomy that is separated by an edge from the rest of the tree. A

multree with this property can be viewed as an extended version of a

singly-labeled tree.

Definition 10 (Extended Version). Let T ¼ ðt;/T ; SÞ be a singly-

labeled tree, and let M ¼ ðm;/M; SÞ be a multree. Let ks be the num-

ber of leaves with label s in M. The extended version of T with re-

spect to M, denoted Ext(T, M), is created by attaching ks new leaves

to the leaf labeled s in T, assigning label s to each of these new

leaves, and repeating this process for all s 2 S.

Chaudhary et al. (2013) showed that the RF distance between a

multree M and (the extended version of) a singly-labeled tree T, both

on label set S, can be computed in polynomial time. Here, we provide

an alternative proof that further simplifies this problem. First, we pre-

sent two transformations that can be applied to a multree M ¼
ðm;/; SÞ or to its full differentiation M0 ¼ ðm;/0; S0Þ by using the func-

tion f : S0 ! S with property that f ð/0ðlÞÞ ¼ /ðlÞ for all l 2 LðmÞ.
Definition 11 (Contracted Version). The contracted version of M,

denoted XðMÞ, is created by contracting every edge e that fails to in-

duce a bipartition, because some species label appears on both sides of

e. Similarly, the contracted version of M0, denoted XðM0Þ, is created by

contracting every edge e with pe ¼ AjB such that f ðAÞ \ f ðBÞ 6¼1.

Definition 12 (Reduced Version). If all leaves with species

label s are on the same side of every edge in E(m), then they can

be represented by a single leaf labeled s. The reduced version of

M or M0, denoted RðMÞ or RðM0Þ, respectively, is created as fol-

lows. For every s 2 S with the aforementioned property, delete all

but one of the leaves in the set fl 2 LðmÞ : f ð/0ðlÞÞ ¼ /ðlÞ ¼ sg
(suppressing internal vertices of degree 2) and relabel the remain-

ing leaf s.

It is easy to see that RðXðM0ÞÞ is a singly-labeled tree that is iso-

morphic to RðXðMÞÞ, because after applying the function X to ei-

ther M0 or M, all the leaves with species label s will be on the same

side of every edge and thus can be replaced by a single leaf with spe-

cies label s by applying the function R. This observation holds for

all s 2 S.

Lemma 13. Let T be a singly-labeled, fully resolved tree on label

set S, let M ¼ ðm;/; SÞ be a multree, and let ExtðT;MÞ0 and M0 ¼
ðm;/0; S0Þ be MCFDs of Ext(T, M) and M, respectively. Then,

RFðExtðT;MÞ0;M0Þ ¼ RFðT;MXÞ þ K (4)

where MX ¼ RðXðMÞÞ and K is a constant that does not depend on

the topology of the singly-labeled tree T on S.

Proof. Let f : S0 ! S be a function with property that f ð/0ðlÞÞ ¼
/ðlÞ for all l 2 LðmÞ, and define X ¼ fAjB 2 CðM0Þ : f ðAÞ \ f ðBÞ 6¼
1g and R ¼ fAjB 2 CðM0Þ=X : jAj > 1; jBj > 1; and either

jf ðAÞj ¼ 1 or jf ðBÞj ¼ 1g. Thus, X contains bipartitions that cannot

exist in CðExtðT;MÞÞ for any singly-labeled tree T on S, and R con-

tains bipartitions that must exist in CðExtðT;MÞÞ for any singly-

labeled tree T on S. Let E0 denote ExtðT;MÞ0. Then,

jCðE0Þ \ CðM0Þj ¼ jCðE0Þ \ CðXðM0ÞÞj
¼ jCðRðE0ÞÞ \ CðRðXðM0ÞÞÞj þ jRj þ jLðmÞj � jSj
¼ jCðTÞ \ CðMXÞj þ jRj þ jLðmÞj � jSj
¼ 0:5½jEðMXÞj þ jEðTÞj � RFðT;MXÞ� þ jRj þ jLðmÞj � jSj
¼ 0:5½jEðMXÞj þ 2jSj � 3�RFðT;MXÞ� þ jRj þ jLðmÞj � jSj
¼ 0:5½jEðMXÞj � 3� RFðT;MXÞ� þ jRj þ jLðmÞj

Let c be the number of species in M that have multiple copies.

Then,

RFðE0;M0Þ ¼ jEðE0Þj þ jEðM0Þj � 2jCðE0Þ \ CðM0Þj
¼ ðjSj � 3þ cþ jLðmÞjÞ þ jEðmÞj � 2jCðE0Þ \ CðM0Þj
¼ RFðT;MXÞ þ jSj þ cþ jEðmÞj � jEðMXÞj � 2jRj � jLðmÞj

where S, c, E(m), EðMXÞ, R and L(m) are independent of T. h
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