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Abstract: Concrete exhibits a complex mechanical behavior, especially when approaching failure.
Its behavior is governed by the interaction of the heterogeneous structures of the material at the
first level of observation below the homogeneous continuum, i.e., at the mesoscale. Concrete is
assumed to be a three-phase composite of coarse aggregates, mortar, and the interfacial transitional
zone (ITZ) between them. Finite element modeling on a mesoscale requires appropriate meshes that
discretize the three concrete components. As the weakest link in concrete, ITZ plays an important role.
However, meshing ITZ is a challenging issue, due to its very reduced thickness. Representing ITZ
with solid elements of such reduced size would produce very expensive finite element meshes.
An alternative is to represent ITZ as zero-thickness interface elements. This work adopts interface
elements for ITZ. Damage plasticity model is adopted to describe the softening behavior of mortar
in compression, while cohesive fractures describe the cracking process. Numerical experiments are
presented. First example deals with the estimation of concrete Young’s modulus. Experimental tests
were performed to support the numerical test. A second experiment simulates a uniaxial compression
test and last experiment simulates a uniaxial tensile test, where results are compared to data from
the literature.
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1. Introduction

Concrete is a very versatile material, applied in different types of constructions around the world.
Some advantages of this material are its ability to mold complex shapes, its fire resistance, and resistance
to atmospheric conditions. Economic factors also contribute to the wide use of concrete structures.
However, its mechanical behavior is complex. One difficulty in modeling concrete structures is
the definition of constitutive laws that are able to describe its nonlinear behavior and the process
of cracking.

Concrete exhibits a complex mechanical behavior, especially when approaching failure. Its behavior
is mainly governed by the interaction of the heterogeneous structures of the material at the first level of
observation below the homogeneous continuum, i.e., at the mesoscale at which concrete is assumed to be
a three-phase composite composed of coarse aggregates, mortar, and the interfacial transitional zone (ITZ)
between them [1].

Macroscopic material models, where concrete is considered as continuous and homogeneous,
are able to reproduce aspects of phenomenological behavior, but are not sufficient to establish
cause-effect relationships between geometrical and physical properties of the heterogeneous

Materials 2020, 13, 4585; doi:10.3390/ma13204585 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-8407-5955
https://orcid.org/0000-0001-9994-5546
http://dx.doi.org/10.3390/ma13204585
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/13/20/4585?type=check_update&version=2


Materials 2020, 13, 4585 2 of 14

components and its mechanical response. For this reason, with the increasing capacity of computers,
mesoscale modelling has been developed in recent decades [1–12].

Finite element modeling on a mesoscale requires appropriate meshes that discretize the three
concrete components. Zhou et al. [13] investigated the influence of aggregate shape on concrete
mechanical properties. Chen et al. [14] studied the influence of both distribution and geometrical
shape of aggregates using 2D planar models. As the weakest link in concrete, it has been recognized
that ITZ plays an important role in the macroproperties of concrete because of its higher porosity,
lower elastic modulus, and lower tensile strength compared with mortar [6]. However, meshing ITZ
is a challenging issue, since ITZ is only 10–50 µm thick. Representing ITZ with solid elements of
such reduced size would produce very expensive finite element meshes. In the literature, the ITZ
structure is represented by either zero-thickness interface elements [1,5] or oversized solid elements [2].
Maleki et al. [15] investigated the influence of ITZ thickness when modelled as solid elements. In this
work, zero-thickness interface elements are adopted.

The concrete mechanical behavior is strongly influenced by the initiation and propagation of
internal microcracks. The laws for crack initiation and evolution follow the concepts and principles
of Fracture Mechanics. A well-recognized fracture approach for concrete is the cohesive crack
implemented in the Fictitious Crack model (FCM) proposed by Hillerborg et al. [16]. Zero-thickness
interface elements with appropriate constitutive laws formulated in terms of shear and normal stress
and the corresponding relative displacements provide the means to extend the FCM into a modern
numerical analysis of fracture in a Finite Element context [1].

This work addresses the mechanical behavior of concrete in a 3D mesoscale finite element model.
Softening behavior is represented differently in compression and tension. It proposes to combine
damage plasticity to account for compressive softening behavior and interface cohesive fracture
elements to account for tensile softening and cracking. The simulations are implemented using
the public finite element library PZ. Section 2 presents the governing equations and constitutive
laws. Numerical experiments are presented in Section 3. First example deals with the estimation of
concrete Young’s modulus. Experimental tests were executed to support the numerical test. A second
experiment simulates a uniaxial compression test and last experiment simulates a uniaxial tensile
test. Results are in good agreement confirming the strategy of combining damage plasticity and
cohesive fractures.

2. Governing Equations

The mesoscale simulation requires the description of the three components: coarse aggregate,
mortar, and the interfacial transitional zone (ITZ). Coarse aggregate is considered as an elastic material
for simplicity because its resistance is much higher than that of mortar for the concretes analyzed in
this work. Mortar is described as an elastoplastic material where damage controls the softening of
the material in compression. In tension, mortar may crack. For that, cohesive fractures are adopted.
The ITZ is described as a zero-thickness interface between aggregate and mortar elements. Thus,
the mesh consists of 3D solid elements and 2D interfaces between mortar elements and between mortar
and aggregate elements.

2.1. Elasticity Problem

The elasticity problem is given by the equilibrium equation:

div(σ) +
→

b =
→

0 , in Ω

where σ is the Cauchy stress tensor,
→

b =
{
bx, by, bz

}T
are body forces, and Ω ⊂ R3 is a bounded

domain with boundary ∂Ω. Each component of
→

b is a function in L2(Ω), the space of square-integrable
functions. The stress tensor is given, in linear elasticity, by the constitutive law σ = Ce : εwhere ε is
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the infinitesimal strain tensor and Ce is the standard isotropic elasticity tensor. Boundary conditions
can be prescribed displacements (Dirichlet type) or external forces (Neumann type).

2.2. Coarse Aggregates

Coarse aggregate is considered as an elastic material for simplicity because its resistance is much
higher than that of mortar for the concretes simulated in this work.

2.3. Mortar

Mortar is described as an elastoplastic material. The Mohr-Coulomb yielding criterion is adopted.
Softening behavior is represented differently in compression and tension. For compression, a damage
model is adopted. For tension, cohesive fractures are adopted.

2.3.1. The Mohr-Coulomb Yielding Criterion

Mortar may exhibit some plastic deformation. Even when simulating a uniaxial test, the stress
state of mortar elements is not uniaxial. Thus, an appropriate yielding criterion is necessary. The classic
Mohr-Coulomb criterion [17] states that plastic yielding begins when, on plane in the body, the shearing
stress τ and the normal stress σn reach the critical combination

τ = c− σn tanφ

where c is the cohesion and φ is the angle of internal friction of the material. In terms of the principal
stresses σ1 > σ2 > σ3 the yield surface is given by

Φ = (σ1 − σ3) + (σ1 + σ3) sinφ− 2 c cosφ ≤ 0

For the Mohr–Coulomb criterion to fit a given uniaxial tensile strength ft and a given uniaxial
compressive strength fc, the parameters φ and c are chosen as:

φ = sin−1
( fc − ft

fc + ft

)
c =

( fc ft

fc − ft

)
tanφ

2.3.2. Compressive Damage Plasticity Model

The Mohr-Coulomb model is simulated, in the numerical tests of this work, without hardening.
Thus, in a uniaxial test, the compressive stress would remain constant after yielding. Softening is
described by means of a damage plasticity model where damage is function of plastic deformations.

Damage can be defined as a collection of permanent microstructural changes concerning material
mechanical properties, such as presence (and development) of microcracks and cavities. Not only is
the withstanding capacity of the material affected, but also its stiffness. In this context, the elasticity
law is given by

σ = (1−D)Ce : εe

where σ is the stress tensor, D is a scalar value in the range from zero (undamaged material) to one
(fully damaged material) representing the current damage of the material, Ce is the standard isotropic
elasticity tensor, εe = ε− εp is the elastic strain tensor, and εp the plastic strain. The term (1−D)Ce is
the damaged stiffness of the material.
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There are several possibilities for coupling plasticity and damage effects [18]. In this work,
the concept of effective stress is adopted. The plastic yield function is no longer written in terms of the
Cauchy stress σ, but it is a function of the effective stress:

σeff =
σ

1−D

This approach provides a simple way to separate the damage and plastic processes. Plastic effects,
driven by the effective stresses, can be described independently from damage ones and vice versa [18].

In this work, damage is split into tensile (Dt) and compressive (Dc) damages according to
(1−D) = (1−Dt)(1−Dc). Damage is adopted as a function of characteristic strains based on plastic
deformations. The characteristic strains ε̃t and ε̃c are given in terms of principal plastic strains
ε

p
1 > ε

p
2 > ε

p
3 as:

ε̃t = r εp
1

ε̃c = −(1− r) εp
3

where

r (σ̂) =


0 ifσ̂ = 0∑3

i=1 〈σ̂i〉+∑3
i=1 |σ̂i |

otherwise

is a weight factor (0 ≤ r ≤ 1) as proposed by Lee and Fenves [19]. The Macauley bracket is defined as
〈ϑ〉+ = 1

2 (|ϑ|+ ϑ), and σ̂i are the principal stresses. If all σ̂i are positive, then r = 1, and if they are all
negative, then r = 0. The damage functions Dt(ε̃t) and Dc(ε̃c) are computed in order to describe the
uniaxial stress–strain curves, which are input data to the simulations.

2.3.3. Cohesive Fractures

In the discrete crack modeling, cracks are modeled as displacement discontinuities between
elements. The fictitious crack model [16,20] or cohesive zone model describes the fracture process zone
as a discrete crack (fictitious) where softening effects are expressed by cohesive zones in the interface
of elements. The crack formation is considered as a gradual phenomenon. After reaching a certain
tension stress value, crack starts to open. Then, an inelastic process takes place until the crack reaches
a critical value and the crack faces are completely separated. The cohesive stress is defined as function
of the relative displacement. Due to tensile stresses, the crack opens perpendicular to the interface
element (usually called Mode I fracture). The crack aperture is defined as

[
→
u ] ·

→
n = [

→
uright −

→
u left] ·

→
u

where
→
u left and

→
uright are the displacement fields of solid elements neighbor to the interface element

and
→
n is the vector normal to the interface, pointing from left to right neighbor. The cohesive tension

stress is a function of the crack aperture. In this work, the mortar cohesive law is defined using
Hordijk’s analytical equation [21]:

σcohesive =

 ft

((
1 +

(
3 w

wlt

)3
)
e−6.93 w

wlt − 28 w
wlt

e−6.93
)

for w ≤ wlt

0 for w > wlt

where w = [
→
u ] ·

→
n is the crack aperture, wlt = 5.136 GF

ftc
, ft is the mortar tension strength, and GF

is the apparent fracture energy, corresponding to the amount of energy per unit area required for
the complete separation of the two fracture faces. The implementation follows the description in
Forti et al. [22].
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2.4. Interfacial Transition Zone (ITZ)

The interfacial transition zone (ITZ) is the weakest link between the aggregate and the mortar
matrix. The properties of the ITZ are not fully understood yet, however it is well accepted that it
has large heterogeneity and high porosity and its strength is lower than the mortar [4]. The elastic
modulus of ITZ is about 50–70% of the mortar matrix [6] and ITZ is only 10–50 µm thick. Its strength
is also very reduced. Zhou and Hao [4] adopts ITZ strength in both compression and tension as
40% of mortar strength. Shuguang and Qingbin [6] adopts tensile strength of ITZ as 2/3 of mortar
strength. Huang et al. [7] adopts Young’s modulus and strength of the ITZ as approximately 75% of
mortar strength.

In this work, ITZ is simulated as a zero-thickness interface element. The stress response of the
interface element is given as σ ·

→
n = γ [

→
uright −

→
u left] where γ = EITZ/tITZ, EITZ is the Young’s modulus

of ITZ, and tITZ is its thickness.
Two crack models are implemented for ITZ: a cohesive model (as described in Section 2.3.3) and a

brittle crack model. The cohesive model is adopted in the simulation of uniaxial tension test and the
brittle model is used in the simulation of the uniaxial compression test in Section 3.

2.5. Brittle Crack Model

Bitouri et al. [23] identified that the shear behavior of the interface mortar aggregate follows a
linear trend as Mohr-Coulomb model. Motivated by their results, the normal stress is limited by a
Mohr–Coulomb yield criterion:

τITZ ≤ c− σn,ITZ tanφ

where σ ·
→
n = γ [

→
uright −

→
u left], σn,ITZ =

→
n · σ ·

→
n and τ2

ITZ =
∣∣∣∣σ ·→n ∣∣∣∣2 − ∣∣∣σn,ITZ

∣∣∣2 Once the normal stress

σ ·
→
n reaches the Mohr-Coulomb condition, the integration point is set as cracked, and the resulting

stress in next load steps is zero.

3. Numerical Experiments

The simulations were implemented in C++ language using the object-oriented scientific
computational environment PZ (http://github.com/labmec/neopz). PZ is a general finite element
approximation software, which incorporates a variety of element geometries, variational formulations,
and approximation spaces. It contains modules for a broad-classes of technologies such as
system resolution, finite element geometric approximation, finite element approximation spaces
(e.g., continuous, discontinuous, H(div), and others), and mesh adaptivity. The library allows the
implementation of specific finite element formulations, such as those required for this work, namely,
damage plasticity model and cohesive fractures.

3.1. Estimating the Young’s Modulus of Concrete

The first numerical experiment describes the estimation of the Young’s modulus of concrete.
Experimental tests were performed to provide input material data and reference results. The particle
size distribution of coarse aggregates is used to construct the finite element mesh.

3.1.1. Experimental Tests

Materials were characterized by experimental tests. Fine and coarse aggregates were characterized
following Brazilian standards. Figure 1 shows the particle size curve of coarse aggregates with their
respective limits, as defined by Brazilian Standard NBR NM 248 [24].

http://github.com/labmec/neopz
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Figure 1. Particle size curve of coarse aggregate. Figure 1. Particle size curve of coarse aggregate.

The concrete mix is 400 kg/m3 of Portland cement (Brazilian type CP V [25]), 809 kg/m3 of
fine aggregate, 1002 kg/m3 of coarse aggregate, and 200 kg/m3 of water. A polycarboxylic based
superplasticizer was added. Concrete is composed of 57.5% of mortar and 42.5% of coarse aggregate in
volume. Mortar samples were also prepared.

Tests indicate an average concrete Young’s modulus of 36, 360 MPa and compressive strength of
34.83 MPa. Mortar presented an average Young’s modulus of 28,060 MPa.

3.1.2. Mesh Generation

Mesh generation plays an important role in the mesoscale simulation. Different techniques to
construct 2D and 3D mesoscale meshes can be found in the literature [6,7,9–13,26]. We did not have
access to tools, such as X-ray computed tomography, which are able to recreate exactly the laboratory
specimen in a computational environment. Instead, we opted to create a new concrete mesh for the
purpose of this study, using the aggregate-to-cement ratio and the particle size curve from the original
test mix.

The first step was to develop an aggregate shape generator, to create a variety of polyhedrons
by randomly tweaking geometric parameters such as the number of vertices and their coordinates.
This was an empirical stage, and the parameters range were set based on the visual resemblance
between the resulting shapes and actual aggregates. The product of this step is shown in Figure 2,
which depicts 8 example aggregates.
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Fifty shapes were generated and scaled accordingly to match the actual concrete mix. The reference
concrete was the one used in the laboratory tests. From the test mix, we obtained the aggregate-to-cement
ratio and the particle size curve (Figure 1).

A cube of side length of 46.4 mm was created, with the dimensions required to accommodate the
50 aggregates with the restriction of the aggregate-to-cement ratio. To determine the scaling factor of
the aggregates, their minimum dimension was compared to the nominal aperture size of the desired
sieve. For every sieve of the granulometric curve, new shapes were created until their correspondent
aggregate volume was reached. After all the shapes were created, they were manually inserted inside
the cube specimen and checked for noncolliding objects. It created the single block mesh, as shown in
Figure 3.
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linear features described in Section 2. Thus, a linear elastic simulation takes place. Coarse aggregate 
is simulated with Young’s modulus between Eୟ୥୥ = 50 and Eୟ୥୥ = 60 GPa and Poisson’s ratio of 0.17, which are similar to values adopted by Shuguang and Qingbin [6], Huang et al. [7], Grote et al. 
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The single block mesh is used to construct a larger mesh. The set of aggregates was multiplied
(8 blocks) and disposed into a cube twice the original side length, i.e., 92.8 mm, that ended up with
400 aggregates objects. At every insertion, the set of aggregates was rotated in a different way to
eliminate symmetry as much as possible. The positions of the aggregates that were originally close to
the boundary were tweaked once they were inserted into the bigger cube. This was necessary to avoid
having sections planes with no aggregate in middle of the bigger cube. The obtained 8-blocks mesh is
shown in Figure 4. The FEM mesh, which is composed of tetrahedra elements and triangle elements for
boundary condition, was created using the software Gmsh [27]. Gmsh is a free, open-source program
capable of generating meshes of different geometry and with various advanced options to enhance
element quality.

Materials 2020, 13, x FOR PEER REVIEW 7 of 15 

 

 
Figure 3. Case #1 simulation. Single block mesh. (a) mesh view; (b) view of aggregate elements. 

The single block mesh is used to construct a larger mesh. The set of aggregates was multiplied 
(8 blocks) and disposed into a cube twice the original side length, i.e., 92.8 mm, that ended up with 
400 aggregates objects. At every insertion, the set of aggregates was rotated in a different way to 
eliminate symmetry as much as possible. The positions of the aggregates that were originally close to 
the boundary were tweaked once they were inserted into the bigger cube. This was necessary to avoid 
having sections planes with no aggregate in middle of the bigger cube. The obtained 8-blocks mesh 
is shown in Figure 4. The FEM mesh, which is composed of tetrahedra elements and triangle elements 
for boundary condition, was created using the software Gmsh [27]. Gmsh is a free, open-source 
program capable of generating meshes of different geometry and with various advanced options to 
enhance element quality. 

 
Figure 4. Case #4 simulation; 8-blocks mesh. (a) mesh view; (b) view of aggregate elements 

3.1.3. Simulations 

In order to estimate the Young’s modulus of concrete, it is not necessary to consider all the non-
linear features described in Section 2. Thus, a linear elastic simulation takes place. Coarse aggregate 
is simulated with Young’s modulus between Eୟ୥୥ = 50 and Eୟ୥୥ = 60 GPa and Poisson’s ratio of 0.17, which are similar to values adopted by Shuguang and Qingbin [6], Huang et al. [7], Grote et al. 

Figure 4. Case #4 simulation; 8-blocks mesh. (a) mesh view; (b) view of aggregate elements



Materials 2020, 13, 4585 8 of 14

3.1.3. Simulations

In order to estimate the Young’s modulus of concrete, it is not necessary to consider all the non-linear
features described in Section 2. Thus, a linear elastic simulation takes place. Coarse aggregate is
simulated with Young’s modulus between Eagg = 50 and Eagg = 60 GPa and Poisson’s ratio of 0.17,
which are similar to values adopted by Shuguang and Qingbin [6], Huang et al. [7], Grote et al. [28],
and Contrafatto et al. [8]. Mortar has a Young’s modulus of 28,060 MPa, according to experimental tests,
and Poisson’s ratio of 0.2. The ITZ is simulated as a zero-thickness interface. The stress response of the
interface element is given as σ ·

→
n = γ [

→
uright −

→
u left] where γ = EITZ/tITZ EITZ is the Young’s modulus

of ITZ, and tITZ is its thickness.
First simulations were carried out with EITZ = 18706.7 MPa, which is 2/3 of mortar’s, tITZ = 50 µm

and Eagg = 60 GPa. Table 1 compares the obtained Young’s modulus of concrete Econcrete for different
finite element meshes. It aims to assess the quality of solution approximations. Cases #1, #2, and #3
simulated the single block mesh. Case #1 adopted approximation order p = 1. Case #2 improves the
approximation order to p = 2. Case #3 uses p = 1 and refine all mesh elements. Case #4 solves the
8-blocks mesh, with p = 1. It can be noted that the resulting Econcrete are very similar among them.
It can be considered that mesh used in simulation case #1 is adequate to simulate the linear elastic
behavior of the problem and calculate Econcrete. Thus, mesh of case #1 is adopted to next simulations.

Table 1. Calculated Young’s modulus of concrete. EITZ = 2/3 Emortar, tITZ = 50 µm, and Eagg = 60 GPa.
Experimental value is 36,360 MPa.

Case ID Mesh
Parameters

Number of
Equations

Number of Coarse
Aggregate Elements

Number of
Mortar Elements

Number of
ITZ Elements Econcrete(MPa)

#1 Single block,
p = 1 64,980 33,299 38,758 15,888 38,662

#2 Single block,
p = 2 400,398 33,299 38,758 15,888 38,285

#3
Single block,

p = 1,
refined mesh

400,398 199,794 232,548 63,552 38,392

#4 8-blocks,
p = 1 386,883 203,986 224,321 101,186 38,810

Table 2 compares the obtained Econcrete for different EITZ and tITZ, with Eagg = 60 GPa. As expected,
the higher EITZ, the greater the obtained Econcrete. Moreover, the thinner ITZ, the higher the Econcrete.
However, the dispersion of results is very small, the maximum value obtained for Econcrete being only
2% higher than the lowest. In addition, the numerical results are in good agreement with experimental
tests where the average modulus is Eexperimental

concrete = 36, 360 MPa.

Table 2. Calculated Young’s modulus of concrete with different ITZ data. Eagg = 60 GPa. Mesh: single
block, p = 1. Experimental value is 36,360 MPa.

Case ID EITZ
tITZ
(µm)

Young’s Modulus of
Concrete (MPa)

#1 2/3Emortar 50 38,662

#5 1/2Emortar 50 38,515

#6 1/3Emortar 50 38,228

#7 2/3Emortar 10 39,028

#8 1/2Emortar 10 38,997

#9 1/3Emortar 10 38,935
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Table 3 compares the obtained Econcrete for different EITZ and tITZ, with Eagg = 50 GPa. The results

of concrete Young’s modulus are slightly lower than experimental Eexperimental
concrete = 36, 360 MPa.

Table 3. Calculated Young’s modulus of concrete with different ITZ data. Eagg = 50 GPa. Mesh:
single block, p = 1. Experimental value is 36,360 MPa.

Case ID EITZ
tITZ
(µm)

Young’s Modulus of
Concrete (MPa)

#10 2/3Emortar 50 35,745

#11 1/2Emortar 50 35,628

#12 1/3Emortar 50 35,401

#13 2/3Emortar 10 36,033

#14 1/2Emortar 10 36,008

#15 1/3Emortar 10 35,960

Thus, predicted values are between 35,401 and 39,028 MPa while experimental testes indicate an
average concrete Young’s modulus of 36,360 MPa.

3.2. Modelling of Uniaxial Compression Test

The mesoscale model is applied to a uniaxial compression test and compared to the simulations of
Huang et al. [7]. The simulations are performed using the finite element mesh described in Section 3.1.2.
The mesh is not the same of Huang et al. [7]. The particle size distribution is different and their
concrete is about 46% of aggregates, whereas in this work, we have about 42% of aggregates. However,
adopting same material data, it is possible to compare results. No voids or initial cracks, which may
exist in concrete, were considered in the simulations of this work.

3.2.1. Material Data

In this 3D mesoscale model, concrete is assumed to be a three-phase composite composed of
coarse aggregates, mortar, and the interfacial transitional zone (ITZ) between them. The adopted data
for each phase is described, based on Huang et al. [7].

Coarse aggregate is considered as an elastic material. The elastic parameters are adopted with
Young’s modulus of 50 GPa and Poisson’s ratio of 0.17.

Mortar is described as an elastoplastic material. The nonassociative Mohr-Coulomb yielding
criterion is adopted with cohesion c = 6.27 MPa, angle of internal friction φ = 50.55◦, and material
dilatation angle of 31◦. These cohesion and internal friction angle fit the given uniaxial tensile strength
ft = 4.5 MPa and uniaxial compressive strength fc = 35 MPa. Softening behavior is represented
differently in compression and tension. For compression, a damage model is adopted, and for tension,
cohesive fractures are adopted. The prepeak compressive stress–strain curve is assumed linear elastic
for simplicity and the following equation [7] describes the postpeak softening curve:

σc = fc


ε
εc

α
(
ε
εc
− 1

)2
+ ε

εc


whereσc and ε are the compressive stress and strain, fc = 35 MPa is the compressive strength, εc = fc/E
is the compressive strain, E = 20 GPa is mortar’s Young’s modulus, and α = 0.157 f0.785

c − 0.905.
Figure 5 plots the uniaxial compressive stress-strain relation. Mortar’s tensile strength is assumed
as ft = 4.5 MPa. The cohesive curve adopts Hordijk’s curve with fracture energy of GF = 40 J/m2.
The cohesive tension stress curve is plotted in Figure 6.
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The interfacial transition zone (ITZ) is simulated as a zero-thickness interface element with a brittle
crack model. The stress response of the interface element is given as σ ·

→
n = γ [

→
uright −

→
u left] where

γ = EITZ/tITZ, EITZ = 15 GPa is the Young’s modulus of ITZ, and tITZ = 50 µm is its thickness. ITZ’s
uniaxial compressive and tensile strengths are adopted as 27 and 3.5 MPa. Thus, the Mohr–Coulomb
parameters cohesion c and the angle of internal friction φ are c = 4.86 MPa and φ = 50.40◦.

3.2.2. Results

Vertical displacement is applied to all nodes on the upper face of the mesh and the opposite face is
fixed vertically. The reaction force divided by the cross-section area provides an equivalent stress and
stress-strain curves are obtained. The vertical load was applied in the three axes directions (x, y, and z).
The predicted strength values are 27.2, 30.2, and 30.3 MPa, respectively. Huang et al. [7] also loaded in
the three axes directions obtaining strength values of 31.0, 29.0, and 28.2 MPa. Figure 7 compares the
obtained curves to the simulated curves of Huang et al. [7]. It can be observed that results are in good
agreement. The compression damage evolution for the case when load was applied in z-direction is
shown in Figure 8.
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3.3. Tensile Test

The 3D mesoscale model is applied to a uniaxial tension test. Input data is the same as the previous
compression test (Section 3.2), except from ITZ model. Here, ITZ is modelled as cohesive fractures.
Results are compared to those of Huang et al. [7].

ITZ is modelled as a cohesive fracture following Hordijk [21] equation with tensile strength
ft = 3.5 MPa and fracture energy of GF = 20 J/m2, according to Huang et al. [7]. The cohesive
tension stress curve is plotted in Figures 9 and 10 plots the obtained stress-strain curves and those
of Huang et al. [7]. It can be observed that results are similar and in good agreement. The predicted
tensile strength values are 4.34, 4.42, and 4.32 MPa, which are slightly higher than the predicted values
of Huang et al. [7] that are 3.78, 4.15, and 4.13 MPa. In the softening part, the obtained curves are also
similar to that of Huang et al. [7]. The deformed shape for the case when load was applied in z-direction
is plotted in Figure 11. It can be observed that cracks start in ITZ interface and then propagate through
mortar elements.
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4. Conclusions

A 3D mesoscale finite element model of concrete was developed. Concrete is assumed to be a
three-phase composite composed of coarse aggregates, mortar, and the interfacial transitional zone
(ITZ) between them. The constitutive laws for each of the three phases are described. A damage
plasticity model is adopted to describe the compressive behavior of mortar. In tension, mortar softening
is described by a cohesive fracture model. Coarse aggregates are modelled as a linear elastic material,
for simplicity, but the nonlinear framework developed for mortar could be applied to coarse aggregates.
Special attention is devoted to ITZ. ITZ is the weakest link between the aggregate and the mortar
matrix. The properties of the ITZ are not fully understood yet, however, it is well accepted that it has
large heterogeneity, high porosity, and its strength is lower than the mortar. Modeling ITZ as 3D solid
elements is a challenging issue, since ITZ is only 10–50 µm thick, what would produce very expensive
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finite element meshes. An alternative is to represent ITZ by zero-thickness interface elements, which is
adopted in this work. The ITZ thickness and Young’s modulus are taken into account when defining
the interface constitutive law. Two crack models are implemented for ITZ: a cohesive model (similar to
mortar’s) and a brittle crack model.

Numerical experiments are presented. First example deals with the estimation of concrete
Young’s modulus. Experimental tests were executed to support the numerical test. The mesh generation
process is described. The coarse aggregate size distribution is represented in the finite element mesh.
Simulations were carried out varying ITZ properties and mesh refinement. Predicted values are between
35,401 and 36,033 MPa, when aggregates are simulated with Young’s modulus of Eagg = 50 GPa,
and between 38,228 and 39,028 MPa for Eagg = 60 GPa. These results are in good agreement with the
experimental tests, which indicate an average concrete Young’s modulus of 36,360 MPa.

A second experiment simulates a uniaxial compression test from Huang et al. [7]. The predicted
strength values are 27.2, 30.2, and 30.3 MPa, which are similar to Huang et al.’s [7] obtained strength
values of 31.0, 29.0, and 28.2 MPa. The obtained stress-strain curve is compared to the simulated
curves of Huang et al. [7], from which it is possible to observe that the softening part of the uniaxial
stress-strain curves is also in good agreement.

Last experiment simulates a uniaxial tensile test, also from Huang et al. [7]. The predicted
tensile strength values are 4.34, 4.42, and 4.32 MPa, which are slightly higher than the predictions
of Huang et al. [7] that are 3.78, 4.15, and 4.13 MPa. In the softening part, the obtained stress-strain
curves are also similar.

The results confirm the numerical strategies and models proposed. The use of interface elements
for ITZ led to good results in simulating both the Young’s modulus problem and uniaxial strength tests.
Results also confirm the strategy of combining compressive damage plasticity and cohesive fractures.
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