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Abstract: Relationships between genes are best represented using networks constructed from information of different 
types, with metabolic information being the most valuable and widely used for genetic network reconstruction. Other 
types of information are usually also available, and it would be desirable to systematically include them in algorithms for 
network reconstruction. Here, we present an algorithm to construct a global metabolic network that uses all available en-
zymatic and metabolic information about the organism. We construct a global enzymatic network (GEN) with a total of 
4226 nodes (EC numbers) and 42723 edges representing all known metabolic reactions. As an example we use microarray 
data for Arabidopsis thaliana and combine it with the metabolic network constructing a final gene interaction network for 
this organism with 8212 nodes (genes) and 4606,901 edges. All scripts are available to be used for any organism for 
which genomic data is available. 
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INTRODUCTION 

 One of the major goals in systems biology is to under-
stand how functional relationships between genes under spe-
cific conditions determine changes in the organism's behav-
ior and cell physiology. Co-expression networks and ge-
nome-scale metabolic models, have been successfully ap-
plied to advance this kind of biological knowledge [1-4]. 
 There are many strategies which allow the construction 
of such co-expression networks [1-3], however, only a few 
of those are designed to integrate more than one type of ge-
nomic data [4-8], namely: gene expression, sequence homol-
ogy, cell location, vicinity of chromosomal genes, sites bind-
ing to transcription factors, fusion events and phylogenetic 
profiles. Although all these types of data provide information 
for the construction of networks, the most valuable type are 
metabolic networks, since they directly give information on 
the relationship between cellular entities (enzymes) and me-
tabolites. Moreover, metabolic reactions are global for all 
organisms and therefore a global metabolic network contain-
ing all known metabolic reactions is of special interest for 
biological network reconstruction of any kind. 
 One technique that has been implemented for the recon-
struction of metabolic networks, and one that integrates vari-
ous types of genomic data is Kernel Canonical Correlation 
Analysis (KCCA) [6, 8, 9]. One major difficulty with KCCA 
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occurs, however, in the necessary tuning of arbitrary parame-
ters (for example thresholds) for the network construction. 
Methodologies have also been developed for integrating ge-
nomic data types into partially known networks [10], gener-
ating networks of lesser genomic coverage. Similarly, other 
proposed methodologies are able to add similarity results on 
networks established previously as gold standards [9]. Other 
techniques rely on probabilistic approaches such as Boolean 
or Bayesian networks [11] or fully probabilistic descriptions 
[4], which however, have the drawback of being computa-
tionally non-practical for databases with a large number of 
genes. New and effective methodologies that integrate dif-
ferent types of genomic data are therefore needed.  
 Of particular interest would be novel approaches that do 
not depend on arbitrary parameters and that are applicable to 
a large number of organisms. Such flexible and relatively 
simple methods will help advance biological knowledge of 
both model and less studied organisms through the genera-
tion of functional gene predictions leading to the formulation 
of new biological hypotheses. 
 In this work we propose a general methodology for con-
structing gene networks using information on metabolic re-
actions and gene expression data. Our strategy follows the 
following basic steps: i) construction of the global enzymatic 
network (GEN); ii) construction of the organismic enzymatic 
network (OEN) using a gene similarity matrix based on ex-
pression data of an organism of interest; iii) integration of 
both networks in order to obtain a final weighted organismic 
enzymatic network (WOEN). The implementation of the 
methodology is available under request as Perl scripts. 
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 To illustrate the proposed methodology, we consider the 
model organism Arabidopsis thaliana and construct WOEN 
using microarray data and the GEN constructed separately. 
The used GEN has a total of 4226 nodes (EC numbers) and 
42723 edges, and the final WOEN of Arabidopsis thaliana 
has 8212 nodes (genes) and 4606,901 edges, the increase in 
the number of nodes between the GEN and the WOEN, is 
explained by the fact that in an organism more than one en-
zyme can have the same enzymatic activity. The GEN we 
construct here can be used in combination with gene expres-
sion data from the same or any other organism in order to 
construct the associated gene interaction networks. In that 
sense, we are using the GEN as a starting point in order to 
obtain WOENs representing gene coregulations that will 
depend on the microarray data used. Moreover, any other 
genomic data type that is also representable as a similarity 
matrix can be included in the construction by combination 
with the GEN and could therefore enrich the obtained 
WOEN. 

MATERIALS AND METHODS 

Genomic Databases 

 The Genome Expression Omnibus at NCBI (http:// 
www.ncbi.nlm.nih.gov/geo/) was queried for microarray 
datasets of the model plant Arabidopsis thaliana. A total of 
sixteen experiments from Arabidopsis in response to several 
pathogens were used (accession numbers: GSE28800, 
GSE26973, GSE5513, GSE28800, GSE5752, GSE5513, 
GSE8319, GSE5752, GSE12856, GSE8319, GSE13739, 
GSE12856, GSE14961, GSE13739, GSE15236, GSE14961, 
GSE16472, GSE15236, GSE16497, GSE16472, GSE17382, 
GSE16497, GSE17875, GSE17382, GSE19273, GSE17875, 
GSE20188, GSE19273, GSE21920 and GSE20188). 
 In addition to the gene expression data, information on 
all known metabolic reactions was obtained from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG). The KEGG 
API was used to download the list of up to date EC numbers, 
enzymes related to each EC number and enzyme sequence. 
Perl scripts were developed to connect to the REST based 
KEGG API service, and download all metabolic information 
required for the global metabolic network; this ensures that 
any future users of the scripts will use up to date informa-
tion. 

Preprocessing of Microarray Data and Gene-gene Simi-
larity Matrix 

 The downloaded datasets were independently pre-
processed for noise reduction, quantile normalization and 
log2 transformation. The RMA (Robust Multiarray Average) 
method was applied to Affymetrix data using R affy library 
[12, 13]. Probe IDs were converted to gene IDs. Single 
probes that matched more than one gene were removed [14]. 
For those multiple probes that matched a single gene, the 
maximum expression among the multiple probes was as-
signed to the gene as suggested in Dozmorov [15]. Genes 
common to all databases were used for construction of the 
gene-gene similarity matrix. Microarrays expression data 
was used to assess the gene expression similarity matrix 
(GESM). The similarity in GESM for gene pairs was ob-
tained using the mutual information coefficient [16].  

Global Enzymatic Network Construction 

 Using the names, codes and reactions of biochemical 
activities performed by enzymes, which are defined by the 
Enzyme Commission (EC) [17], a global enzymatic network 
(GEN) was constructed, in which the nodes are enzymatic 
activities (EC numbers), and two activities are connected by 
an edge if they share at least one metabolite, either as sub-
strate or product [18]. 
 For the construction of the GEN the following strategy 
was applied, for which several Perl scripts (Table 1) were 
developed (see Fig. 1, GEN construction): 

1. Enzymatic Reactions File Construction 

 A list of all currently known EC numbers was retrieved 
from the KEGG API, and for each one of the EC numbers, 
all metabolites involved in the reactions catalyzed by the 
enzymes annotated with that EC number were downloaded, 
so that a file with EC numbers and associated metabolites 
was created. The Perl script used to accomplish this was 
called “1_Fetch_EC_met.pl” and does not need any input; it 
connects directly to the KEGG database and retrieves all 
information needed. 

 Scripts “1_metabolite_name-code_hash.pl” and 
“2_reactions_metID.pl” were created for construction of 
GEN from ftp KEGG data: i) “1_metabolite_name-
code_hash.pl” uses as input one file with the identification 
code, name and alternative names of all biological com-
pounds to build a list of equivalences ("dictionary") relating 
names and alternate names of metabolites with an identifica-
tion code (used in KEGG). The goal of this step is to create 
the metabolic network with a less complex and easy to un-
derstand nomenclature for future users; ii) using the equiva-
lence list, the metabolic reactions were converted into reac-
tions with codified metabolites. Furthermore, as each EC 
number can have many reaction variants in different organ-
isms, we summarized this information relating each metabo-
lite to one EC number using the main reaction as handle. 
This step is achieved with the script “2_reactions_metID.pl”, 
that uses information of each known enzymatic activity 
(names of the activity, reaction and involved metabolites) 
and the list containing information on names and codes of 
metabolites. 

2. Filtering of Metabolites 

 As some metabolites, for example H2O or NADH, are 
very common and used in many enzymatic reactions, they 
have to be withdrawn to avoid an overconnected network. 
Following Kharchenko [18], the forty most common me-
tabolites were filtered (Supplementary Table 1). This filter-
ing was done with the perl script “3_filter_reactions 
_slim.pl”, which allows filtering the first n most common 
metabolites. 

3. Comparison of Enzymatic Activities and Construction of 
the GEN 

 Once the n(=40) most common metabolites were filtered, 
the GEN was constructed, connecting two nodes (EC num-
bers) if they share at least one metabolite. This step is 
achieved using the script “4_network_construction.pl”. 
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Table 1. Description of all the scripts used for the GEN, OEN and WOEN reconstruction. ^scripts written in italics are for users 
that want to use KEGG ftp database downloaded data; *input and output files names written in quotations marks for easy 
differentiation with running text, names used can change depending of the user preferences. 

Script  
Abbreviation 

Script^ Description Input Files* Output Files* 

GEN Construction 

1.2SGEN 1-2_Fetch_EC_met.pl 
Downloads EC numbers and 

reactions data and prints a 
simplified reaction 

NA "reactions_slim" 

-
1_metabolite_name-

code_hash.pl

Creates a equivalence list of 
complete names and codes for 

metabolites 

Compound information file from 
KEGG ftp 

"metabolite_name_code" 

- 2_reactions_metID.pl Prints a simplified reaction "metabolite_name_code" "reactions_slim" 

3SGEN 3_filter_reactions_slim.pl 
Filter n most common metabo-

lites 
"reactions_slim" "reactions_slim.filter_n" 

4SGEN 4_network_constuction.pl 
Prints the GEN as a list of node 

pairs 
"reactions_slim.filter_n" 

"network.reactions_slim.filter_n";
"eclist" 

OEN Construction 

1SOEN 1_Fetch_genes.pl 
Downloads all GSE and 

BLAST them against genome 
of interest 

"eclist" "Blasted_genes.list" 

2SOEN 2_DataBase_network.pl 
Assigns edges within genes 
comparing associated enzy-

matic activities in GEN 

"Blasted_genes.list";"network.rea
ctions_slim.filter_n" 

"Gen-Gen.list" 

-
3_Gen-

gen_adjacency_matrix.pl 
Prints the OEN as an adjacency 

matrix 
"Gen-Gen.list" "Gen-Gen_adjacency.matrix" 

WOEN Construction 

1SWOEN 
4_Weight_adjacency_matr

ix.pl 
Weights the OEN using the 

GESM 
"Gen-Gen_adjacency.matrix"; a 

GESM valid file 
"Gen-Gen_similarity.matrix" 

Organismic Enzymatic Network Construction 

 In the organismic enzymatic network (OEN) nodes are 
genes from the genome of the organism of interest, and two 
genes are connected by an edge if the EC numbers associated 
to each one of the genes share a metabolite. The following 
strategy was designed to construct the OEN (Fig. 1, OEN 
construction): 

1. Match of Enzymatic Activities to Genes in the Genome 
of Interest 

 The first step, is to assess sequence homology between 
all known enzymes assigned to each one of the EC numbers 
(Gold Standard Enzymes (GSE)) [18] present in the GEN 
and all protein-coding genes in the genome of the organism 
of interest (Fig. 1). This step is achieved with the Perl script 
“1_Fetch_genes.pl”, which downloads from KEGG amino-
acid (aa) sequences of all known GSE. Then, this script per-
forms a BLASTP homology search comparing these aa se-
quences and all known protein-coding genes of the organism 
of interest. The E-value threshold can be chosen, and for this 
implementation we used 1x10-5

. Because this search is com-
putationally expensive, the script was developed to run the 

BLASTP for subsets of EC numbers, providing therefore the 
option of parallel running over different subsets, and finally 
combine the results into a single file. The result is a file with 
a list of protein coding genes and associated EC numbers. 

2. Construction of the OEN 

 Once the list of enzymes of the organism of interest has 
been obtained and related to the corresponding EC numbers 
of the GEN, the OEN can be constructed (Fig. 1). The Perl 
script “2_DataBase_network.pl” does this by searching in 
the GEN, and linking up genes to define the edges in the 
OEN, if the associated EC numbers are linked by an edge in 
the GEN. 

3. Representation of the OEN as an Adjacency Matrix 

 Finally, the script “3_Gen-gen_adjacency_matrix.pl” 
represents the OEN in terms of an adjacency matrix. This 
matrix is a matrix containing 1 if an edge exists between 
enzymes coded by the genes of the organism and 0 else-
where. All protein-coding genes, for which a metabolic ac-
tivity could not be associated by the BLAST search, are not 
included in the matrix. 
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Fig. (1). Workflow of the procedure for the GEN and OEN construction. * 1.2SGEN, 3SGEN, 4SGEN, 1SOEN and 2SOEN represent the corre-
sponding abbreviation for the scripts in (Table 1). Black boxes marked with ^ represent examples of the files generated by the related scripts; 
ECM: first column are EC numbers and the other columns are codified metabolites associated to each EC number; ECMF: ECM after applying 
the filter for the most common metabolites; ECEC: each line is a pair of EC numbers representing an edge in the GEN; ECG: first column are EC 
numbers and second column are the genes assigned to each EC number; GG: each line is a pair of genes representing an edge in the OEN. 

Weighted Organismic Enzymatic Network Construction 

 At this point a final network (weighted organismic en-
zymatic network (WOEN)) is obtained combining the OEN 

and the GESM. This WOEN is represented as an adjacency 
matrix (Fig. 2, WOEN construction). Edges could be 
weighted using the script “4_Weight_adjacency_matrix.pl”. 

6.4.1.36.4.1.7

6.4.1.8
6.4.1.4

6.4.1.5

6.5.1.1

6.5.1.26.5.1.4

6.5.1.5

Retrieve all EC numbers 

Download all metabolites involved in the 
reactions associated to each EC number 

Print EC numbers and 
related Metabolites 

Codes 

1.1.1.3  C00003  C00004  C00005  C00006  C00080  C00263  C00441 
1.1.1.4  C00003  C00004  C00080  C00810  C03044 
1.1.1.6  C00003  C00004  C00080  C00116  C00184 
1.1.1.7  C00003  C00004  C00080  C03505  C03894 
1.1.1.8  C00003  C00004  C00080  C00093  C00111 
1.1.1.9  C00003  C00004  C00080  C00310  C00379 
1.1.1.10  C00005  C00006  C00080  C00312  C00379 

Filtering Most Common Metabolites (3SGEN*) 

Enzymatic Activities Data (1.2SGEN*) 

Deletes the n more common metabolites 
(recommended value for n is 40) 

1.1.1.3  C00263  C00441   
1.1.1.4  C00810  C03044   
1.1.1.6  C00116  C00184   
1.1.1.7  C03505  C03894   
1.1.1.8  C00093  C00111   
1.1.1.9  C00310  C00379   
1.1.1.10  C00312  C00379 

Print EC numbers and 
related Metabolites 

Codes 

Enzymatic Activities Comparison and GEN 
construction (4SGEN*) 

Search EC numbers that share at least 1 
metabolite 

Print the GEN by 
writing all edges as 

node pairs (EC 
numbers sharing one or 

more metabolites) 

GEN Construction 

6.4.1.3  6.4.1.7   
6.4.1.3  6.4.1.8   
6.4.1.4  6.4.1.5   
6.4.1.4  6.4.1.7   
6.4.1.4  6.4.1.8   
6.4.1.5  6.4.1.7   
6.4.1.5  6.4.1.8   
6.4.1.7  6.4.1.8   
6.5.1.1  6.5.1.2   
6.5.1.4  6.5.1.5   

Print a list of all EC 
numbers present in the 

GEN 

Download all GSE related to each EC 
number in GEN 

BLASTP of GSE against protein-coding 
genes in the genome of interest 

Print genes and 
assigned EC number 

Assignment of EC numbers to genes in the 
genome of interest (1SOEN*) 

Assigns the corresponding EC numbers to 
genes that match GSE 

1.1.1.9  AT2G21730.1 
1.1.1.9  AT5G43940.2 
1.1.1.9  AT1G72680.1 
1.1.1.9  AT1G23740.1 
1.1.1.9  AT5G51970.1 
1.1.1.9  AT3G19450.1 
1.1.1.9  AT4G21580.1 

Connects genes between them if the 
assigned EC numbers are connected by an 

edge in the GEN 

Print the OEN by 
writing all edges as 
node pairs (genes 

whose assigned EC 
numbers shared one or 

more metabolites) 

GEN comparison with genes and assigned EC 
numbers to OEN construction (2SOEN*) 

AT1G01050.1   AT5G54570.1 
AT1G01050.1   AT2G44460.1 
AT1G01050.1   AT5G24540.1 
AT1G01050.1   AT4G29710.1 
AT1G01050.1   AT4G39120.1 
AT1G01080.2   AT5G59150.1 
AT1G01080.2   AT3G53260.1 

GEN 

AT1G01140

AT1G01120

AT1G01190

AT1G01200

AT1G01080

AT1G01250
AT1G01040

AT1G01280

AT1G01390

OEN 

Nodes are EC numbers 
Nodes are connected by edges if a 
metabolite is shared between them 

C
assi

OEN Construction 
Nodes are genes, these are connected by 

edges if a metabolite is shared between the 
assigned EC numbers 

ECM^ 

ECMF^ 

ECEC^ 

ECG^ 

GG^ 

ECM^̂ 

ECMF^̂̂ 

ECEC^ 

ECG^ 

1 
1
1 GG^̂  
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Topological Analysis of Networks 

 Different topological properties of the obtained network 
were computed in order to reveal changes in the network con-
figuration at each step of our methodology. We consider the 
networks: GEN, OEN and WOEN; and the following topo-
logical properties: number of nodes, number of edges, cluster-
ing coefficient, average path length and centralization [19]. 
This analysis was performed using the R library igraph [20]. 

Validation of Edges Linking Immunity Related Genes 
(IRGs) 

 The WOEN was mined to validate some functional rela-
tionships between immunity related genes (IRGs). Given 
their importance on immune processes, four IRGs were se-
lected (FLS2, CLV1, RPS2 and RPS4), their edges were 
filtered and compared with interactions previously reported 
in literature. 

RESULTS AND DISCUSSION 

GESM for Arabidopsis thaliana Microarray Data 

 After calculating the similarity measurements between all 
gene pairs, we obtained a GESM of 8,212x8,212 genes for 
the microarray data of Arabidopsis thaliana. This similarity 
represents the amount of coordinated activity between all 
pairs of genes and contains all known genes of the organ-
isms, regardless whether their products participate or not in 
enzymatic activities. Similarities between genes on this ma-
trix strongly depend on the gene expression data used.  

GEN Construction 

 Using all enzymatic activities data known to date, a GEN 
(Table 2) was constructed (representing 4,226 enzymatic 

activities, with a final number of 2’043,335 associated GSE 
in a GEN constructed after filtering for the 40 most common 
metabolites). The GEN was drawn using Gephi [21] (Fig. 3). 
This network is available at, as a list of connected pairs of 
enzymatic activities. 

OEN and WOEN Construction for Arabidopsis thaliana

 Using the proposed methodology a OEN and subse-
quently a WOEN (Table 2) was constructed for Arabidopsis 
thaliana in order to illustrate the methodology. These net-
works do not aim to represent overall genetic networks, al-
though if very general gene expression data is used (repre-
senting many different conditions), a more general network 
could be achieved. Nevertheless, a detailed analysis of the 
network allowed us to retrieve several interesting relation-
ships between genes previously reported in the literature (see 
section on validation). 

Topological Analysis of Networks 

 One way of identifying the effect of the different steps of 
the proposed algorithm is to track the changes in topological 
properties of the obtained networks (Table 2). It was found, 
for example, that GEN is a small graph compared to the sub-
sequent constructed OEN and WOEN. After the BLASTP 
homology search was performed on GEN, a huge amount of 
hits per enzyme was revealed. Consequently, the number of 
edges increased drastically when passing to OEN. 
 Due to the high number of edges, we expected the OEN 
to have a higher clustering coefficient; however, during the 
BLASTP step, the number of nodes augmented simultane-
ously. As a consequence, both networks exhibit approxi-
mately the same degree of clustering. This result supposes 
that modules of highly connected nodes can be observed 

Fig. (2). Workflow of the procedure for the WOEN construction. * 1SWOEN represents the corresponding abbreviation for the script in 
(Table 1). Black box marked with ^ represent an example of the files generated by the related script; WGG: each line is a pair of genes repre-
senting an edge with the assigned weight in the WOEN. 

Search each 
gene pairs 

representing 
and edge of the 

OEN in the 
GESM 

Assignment 
of edges 

weights to the 
OEN 

(1SWOEN*) 

Print the WOEN 
by writing all 
edges as node 
pairs and the 
assigned edge 

weight 

AT1G01140     AT1G01120     0.5856      
AT1G01190     AT1G01140     0.5614      
AT1G01200     AT1G01080     0.5133      
AT1G01200     AT1G01140     0.5577      
AT1G01200     AT1G01190     0.6137      
AT1G01250     AT1G01040     0.2892      
AT1G01280     AT1G01140     0.4008      
AT1G01280     AT1G01190     0.5714      
AT1G01280     AT1G01200     0.4833      
AT1G01390     AT1G01140     0.4199  

WOEN Construction 

Nodes are genes, these 
are connected by edges if 

a metabolite is shared 
between the assigned EC 
numbers, edge weight is 

set by the similarity score 
between two genes in the 

GESM 

     
     
 

Assign the 
similarity score 
in the GESM as 
the weight for 

each gene pairs 
representing and 

edge 

AT1G01140

AT1G01120

AT1G01190

AT1G01200

AT1G01080

AT1G01250
AT1G01040

AT1G01280

AT1G01390

0.586

0.562 0.558
0.614

0.513

0.289

0.401
0.571

0.483

0.420

WGG^ 
WOEN 
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indistinctly at the level of enzymes (GEN) or genes (OEN 
and WOEN). 
Table 2. Topological variables measured in the global net-

works. 

Variable GEN OEN WOEN 

Nodes 4,226 9,829 8,212 

Edges 42,753 6,444,453 4,606,901 

Clustering coefficient 0.52 0.48 0.49 

Average path length 4.22 2.03 2.02 

Centralization 0.05 0.01 0.01 

 Same clustering coefficients do not mean equal connec-
tivity in the process represented. To evaluate how edges im-
prove the graph global connectivity, we calculated the cen-
tralization and average path length for each network (Table 
2). The higher number of nodes in OEN generated a better 
connectivity as each pair of nodes is separated by 2 edges 
contrasting the 4 edges in GEN. The better connectivity 
found in OEN and WOEN also means that graphs are neither 
centralized nor hubs-dependent. Besides, in metabolic net-
works a low average path length is an indicative of more 
efficient transfer processes [22]. 
 The weighting step reduced the number of nodes and 
edges in the network. Despite this size reduction, the value 

of the topological properties of WOEN was about the same. 
We conclude that genes without expression data are not rele-
vant for the system representation. However, these genes 
could not be identified using just pathways data. It must be 
pointed out that expression data allowed us to weight the 
functional relationships, but also to drop irrelevant nodes 
from the final WOEN. Finally, our topological analysis re-
sults are comparable to those from other methodologies [23]. 

Validation of Edges Linking Immunity Related Genes 
(IRGs) Based on Previous Works 

 Four of the most important IRGs were searched on the 
WOEN and their edges were compared with literature (Table 
3). One of them, FLS2, was found linked toBAK1 and BRI1.
The protein FLS2 is a LRR receptor-like serine/threonine-
protein kinase that recognizes peptide from flagellin and 
triggers plant immunity [24]. On the other hand, BAK1can 
regulate the tradeoff between immunity and responses to 
hormones. While BRI1 is a receptor of the growth hormone-
brassinosteroid [25]. BAK1 is not only a co-receptor of 
FLS2 but alto interacts with BAK1 as reported previously 
[24, 26, 27]. 
 Some FLS2 edges are also verified by the work of Qi and 
Tsuda [28]. They propose that FLS2 forms a PTI (MAMP-
triggered immunity) signaling complex with RPM1, RPS2 
and RPS5 [28]. Lu, Lin, Gao, Wu, Cheng and Avila [29] 
indicate that PUB12 and PUB13 promote flagellin-induced 
FLS2 degradation. Besides, the protein PBL1 interacts with 
FLS2 and they are rapidly phosphorylated upon FLS2 activa-
tion by its ligand flg22 [27]. Finally, Mersmann, Bourdais, 

Fig. (3). Global metabolic network constructed with the proposed algorithm. Node size and color intensity represent the connectivity of the 
node. This network has total of 4226 nodes (EC numbers) and 42723 edges and shows a typical scale-free network topology, with a few 
number of largely connected nodes or hubs (these can be seen as dark grey and black colored nodes), and a large number of nodes with few 
connections (these can be seen as light grey and white colored nodes). This figure was constructed using Gephi.
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Rietz and Robatzek [30] validated the ETR1-FLS2 interac-
tion and suggest a requirement of ethylene signaling for 
FLS2 expression. 
Table 3. WOEN edges validated for a selection of IRGs. 

IRG Prediction References 

BAK1 (AT4G33430) [24, 26] 

BIK1 (AT2G39660) [26, 27] 

PBL1 (AT3G55450) [27] 

ETR1 (AT1G66340) [30] 

PUB12 (AT2G28830) [29] 

PUB13 (AT3G46510) [29] 

RPM1 (AT3G07040) [28] 

RPS2 (AT4G26090) [28] 

FLS2 (AT5G46330) 

RPS5 (AT1G12220) [28] 

CLV1 (AT1G75820) PSY1 (AT1G72300) [32] 

ATSK41 (AT1G09840) [31] 
RPS2 (AT4G26090) 

FLS2 (AT5G46330) [28] 

RPS4 (AT5G45250) SGT1A (AT4G23570) [34] 

 In addition to the RPS2-FLS2 interaction, the complex 
between RPS2 and ATSK41or AtHIR1 was also reported 
[31]. RPS2 activates effector-triggered immunity (ETI) after 
recognizing the bacterial effector protein AvrRpt2. ATSK41 
is a hypersensitive protein that is enriched in the plasma 
membrane. It was identified to be a component of RPS2 
complexes [31]. Qi, Tsuda, Nguyen, Wang, Lin, Murphy, 
Glazebrook, Thordal-Christensen and Katagiri [31] showed 
that ATSK41 and RPS2 are physically associated and con-
tribute to ETI in presence of Pseudomonas syringa-
epv.tomatoDC3000. 
 Other edges predicted for CLV1 and RPS4 are referred in 
(Table 3). CLV1 controls shoot and floral meristem size. 
Equally, PSY1 is a tyrosine-sulfated peptide hormone. This 
hormone stimulates cellular proliferation and maintenance of 
root stem cells [32]. PSY1 and other secreted peptide hor-
mones such as CLE2, suffer post-translational modifications 
and could function as ligands of CLV1 [32]. Finally, the R 
protein RPS4 specifies resistance to Pseudomonas syringae 
pv. tomato expressing avrRps4. SGT1 is an ubiquitin ligase-
associated protein proved to have a role in host and non-host 
resistance [33]. The work ofLi, Li, Bi, Cheng, Li and Zhang 
[34] suggested that SGT1 conforms a complex that negatively 
regulates RPS4 accumulation. All in all, the functional predic-
tions for these Arabidopsis IRGs are well documented and 
therefore, the WOENs can be mined for potential IRGs. 

CONCLUSION 

 The proposed procedure allows obtaining a global enzy-
matic network and a gene network for any organism for which 
genomic data is available. Topological analyses showed the 

graph transformation at each step. The tendency of nodes to 
cluster remains constant along the process, while an im-
provement in connectivity and noise reduction was observed 
after the blast search and expression data integration. The 
WOEN edges are reinforced with the biological data found 
in literature. Furthermore, our results from the merging of 
immunity microarray data and the obtained metabolic net-
work, predict a strong relationship between some genes im-
mune processes in Arabidopsis. 

AVAILABILITY AND REQUIREMENTS 

 Pre-processing of microarray data and similarity meas-
urements between genes based on the gene expression pro-
files, can be obtained with the aid of several software pack-
ages. We recommend using R (R Development Core Team, 
2011). Perl is free software and the scripts described in this 
work can be run in any LINUX/UNIX operating system with 
a running installation of BLAST+. Scripts are available un-
der request at llopezk@unal.edu.co. 
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ABBREVIATIONS 

GESM = Gene Expression Similarity Matrix 
GEN = Global Enzymatic Network 
OEN = Organismic Enzymatic Network 
GSE = Gold Standard Enzymes 
aa = Aminoacid 
WOEN = Weighted Organismic Enzymatic Network 
IRGs = Immunity Related Genes 
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