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Intrinsic disorder is everywhere and is 
inevitable. The non-folding propen-

sity is inherent for numerous natural 
polypeptide chains, and many functional 
proteins and protein regions are intrinsi-
cally disordered. Furthermore, at partic-
ular moments in their life, most notably 
during their synthesis and degradation, 
all ordered proteins are at least partially 
unfolded (disordered). Also, there is a 
widely spread phenomenon of condi-
tional (functional or transient) disorder, 
where functions of many ordered pro-
teins require local or even global unfold-
ing of their unique structures. Finally, 
extrinsic disorder (i.e., intrinsic disorder 
in functional partners of ordered pro-
teins) should be taken into account too. 
Therefore, even if a protein is completely 
devoid of intrinsically disordered regions 
in its mature form (which is a rather 
exceptional situation), it faces different 
forms of disorder (intrinsic, extrinsic, or 
induced disorder) at all the stages of its 
functional life, from birth to death. The 
goal of this article is to briefly introduce 
this concept of disorder in the lifetime of 
a protein.

Last decade and a half in protein sci-
ence clearly represents a triumphal pro-
cession of the protein intrinsic disorder 
phenomenon.1-5 The scale and rate of pen-
etration of the intrinsic disorder concept 
to the modern protein science are really 
astonishing. What started as a set of anec-
dotes and obscure exceptions with purely 
academic interest suddenly metamorphed 
to the extremely exciting field, which is 
completely transforming our understand-
ing of protein structure and function. 
The exceptionality of intrinsic disorder 

is changing. It is clear now that intrinsi-
cally disordered proteins (IDPs) and pro-
teins with long IDP regions (IDPRs) are 
not rare exceptions, but are exceptionally 
common in nature, with the abundance 
of IDPs/IDPRs being typically correlated 
with the evolutionary complexity of the 
organisms.6-12 Curiously, even in the pro-
tein data bank (PDB), this preeminent 
source of protein structural knowledge, the 
information about IDPRs is exceptionally 
common, since only ~7% of proteins in 
the corresponding PDB structures contain 
complete sequences, and only ~25% of the 
total data set have > 95% of their lengths 
observed in the corresponding PDB struc-
tures, with the remaining proteins possess-
ing unobserved regions of various length 
that frequently correspond to IDPRs.13 
IDPs possess exceptional structural het-
erogeneity, ranging from completely 
structure-less, coil-like conformational 
ensembles to compact molten globule-like 
structural ensembles of whole proteins, to 
proteins with a mosaic or hybrid structure 
containing both ordered and disordered 
regions.5,14-17 The functional repertoire of 
these proteins is exceptionally broad and 
complements activities of ordered pro-
teins and domains.18-34 Exceptional bind-
ing plasticity and promiscuity of IDPs/
IDPRs,35,36 where a single IDPR can bind 
to multiple partners gaining very different 
structures in the bound state,33,37,38 define 
the abundance of intrinsic disorder among 
hub proteins and their binding partners 
in various protein-protein interaction 
networks.27,39-43

Therefore, there is no doubt that intrin-
sic disorder is abundant and functionally 
important. However, it appears that all 
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proteins (even those rare exceptions that 
are completely ordered in their functional 
state) face intrinsic disorder at all the 
stages of their functional lives. In fact, the 
protein birth place is the ribosomal exit 
tunnel, which is 100 Å long, extending 
from the peptidyl transferase center to the 
solvent side of the large ribosomal subunit, 
and ranges in diameter from:10 to 28 Å 
along its length.44 When a nascent poly-
peptide chain enters the world, it faces a 
ring around the tunnel exit site of the ribo-
some that comprises of L4, L17, L22, L23, 
L24, L29, and L32 ribosomal proteins, 
of which L22 is known to interact with 
specific nascent chains to regulate transla-
tion.45 Therefore, the first encounter of the 
newly synthesized protein with the outside 

world is the ribosome-embedded cradle 
containing a significant number of IDPs 
or hybrid proteins composing ordered and 
disordered domains and regions. Figure 1 
illustrates this point by representing the 
proteinaceous constituent of the yeast 
Saccharomyces cerevisiae 60S ribosomal 
subunit (PDB ID: 3U5E). The crystal 
structure of the 60S ribosome is shown 
at the center of the plot as a gray mesh, 
whereas the aforementioned ribosomal 
proteins L4, L17, L22, L23, L24, L29, 
and L32 are depicted as surfaces (clouds) 
of different color. Individual structures 
of these proteins are shown around the 
central complex. Visual analysis of these 
structures indicates that almost all of these 
proteins (except for L22 and L23) possess 

very unusual shapes which are not consis-
tent with simple globular structure, which 
suggests that these and many other ribo-
somal proteins fold at binding.46 In fact, 
such peculiar non-globular shapes sug-
gest that many ribosomal proteins form 
the so-called 2-state (or disordered) com-
plexes, where the monomers unfold upon 
complex separation. Therefore, individual 
chains in such complexes are disordered in 
their unbound forms and fold at complex 
formation. This behavior is different from 
that of the so-called 3-state (or ordered) 
complexes, individual chains of which 
are independently folded even in the 
unbound state.47,48 Furthermore, although 
L22 possesses a globular shape within 
the ribosome, its N- and C-terminal tails 

Figure 1. Localization of the ribosomal proteins at a ring around the tunnel exit site of the ribosome. the proteinaceous constituent of the yeast 
Saccharomyces cerevisiae 60S ribosomal subunit is shown (pDB ID: 3U5e). the crystal structure of the 60S ribosome is shown at the center of the plot 
as a gray mesh, with the ribosomal proteins L4, L17, L22, L23, L24, L29, and L32 are depicted as surfaces of different color. Individual structures of these 
proteins are shown around the central complex.
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(residues 1–8 and 109–121) are so-called 
regions of missing electron density which 
correspond to protein segments that retain 
high conformational flexibility in their 
bound forms, precluding them from being 
detected in crystallography experiments.46 
Also, a very significant part of L24 (resi-
dues 99–155) is a long region of missing 
electron density. All this clearly shows that 
the mentioned cradle of a nascent poly-
peptide chain is fuzzy and fluffy, being 
enriched in IDPs/IDPRs.

At the next stage of the protein’s life, 
a newly synthesized polypeptide chain 
leaves the ribosome and meets chaper-
ones and nanny-proteins that guard and 
babysat this chain before it properly folds 
and matures. The major function of pro-
tein chaperones in relation to the newly 
synthesized proteins is to ensure proper 
folding of a target protein, whereas nanny-
proteins serve to protect newly synthesized 
proteins from degradation-by-default via 
the 20S proteasome pathway by transient 
binding and masking of the susceptible 
segments which inhibits their degrada-
tion.49 Many of the molecular chaperones 
and nanny-proteins are IDPs or hybrid 
proteins.49-54

Furthermore, many protein functions 
are dependent on intrinsic disorder, and 
activation and regulation of a myriad of 
proteins are controlled by various IDPs.18-

20,22,26-28,34,36,55,56 Of particular interest is 
an intriguing phenomenon of functional 
unfolding or transient disorder of origi-
nally ordered proteins.5,15,57,58 Here, func-
tions of some ordered proteins rely on the 
decrease in the amount of their ordered 
structure; i.e., these functions require local 
or even global functional unfolding of a 
unique protein structure. The important 
features of these functional alterations are 
their induced nature and transient char-
acter. In other words, the function-related 
changes in these so-called conditionally 
disordered proteins59 are induced by tran-
sient alterations in their environment or 
by modification of their structures. They 
are reversed as soon as the environment is 
restored or the modification is removed.58 
This cryptic disorder can be awoken by a 
wide spectrum of factors, which crudely 
can be grouped into 2 major classes, pas-
sive and active.58 Passive factors include 
environmental factors independent on any 

specific interactions between the protein 
and its partners. These factors correspond 
to changes of some global parameters of 
the protein environment, such as changes 
in pH, temperature, the redox potential, 
application of mechanical force, or light 
exposure. On the contrary, active factors 
typically involve some specific interac-
tions of a protein with its environment 
and include interactions with membrane, 
ligands, other protein nucleic acids, or 
various posttranslational modifications 
or release of autoinhibition.58 Some of 
the illustrative examples of transiently 
or conditionally disordered proteins 
are: acid-activated chaperone HdeA,60-62 
many pH-sensors (e.g., sodium proton 
antiporters63-65 and inward rectifier K+ 
ROMK channels66-68), pH-sensing enve-
lope proteins of several viral families,68,69 
the temperature-activated Saccharomyces 
cerevisiae holdase Hsp26 and wheat hol-
dase Hsp16.9,69 oxidative stress-activated 
holdase Hsp33,70-75 mechanosensitive 
channels,76 photosensoring proteins (e.g., 
photoactive yellow protein),77,78 proteins 
translocating through the membrane (e.g., 
various colicines,79 ricin,80-82 and some 
transport proteins83), proteins interacting 
with various small molecules,84,85 proteins 
interacting with other proteins (e.g., tar-
gets of the mitochondrial import machin-
ery complex86), many post-translationally 
modified proteins, and proteins activated 
by the release of autoinhibition.87-89 For 
more information about these intrigu-
ing membres of the protein kingdom see 
recent comprehensive review.58

Finally, even on the deathbed, many 
proteins face intrinsic disorder. Here, 
intrinsic disorder plays a role in protein 
digestion by various proteases that are 
highly sensitive to the presence of disoder 
in target proteins,19,90-94 and also in the 
controlled degradation via proteasome, 
which acts as an active unfoldase. In fact, 
ATP-dependent proteases (proteasomes in 
eukaryotes and proteasome analogs such 
as the ClpAP, ClpXP, HslUV, Lon, and 
FtsH proteases in prokaryotes) are cru-
cial for the timely and controlled degra-
dation of regulatory proteins, as well as 
of misfolded or damaged polypeptides. 
Furthermore, they are responsible for the 
production of antigenic peptides. All of 
these ATP-dependent proteases are large 

protein assemblies, which are typically 
barrel-shaped. The proteolytic sites of 
these proteases are located within the cen-
tral core and are accessible only through a 
narrow translocation channel aligned with 
the long axes of the particles.95 A crucial 
functional step of these ATP-dependent 
proteases is the active unfolding of their 
protein substrates, as demonstrated for 
ClpAP,96 ClpXP,97 FtsH,97 Lon,98 the 
archaebacterial proteasome-regulatory 
ATPase complex PAN,99 and the eukary-
otic proteasome.100 It is likely that these 
proteases unfold their substrates mechani-
cally by pulling the polypeptide chain into 
their channel. This conclusion follows 
from the observation that during degrada-
tion of a protein by the ATP-dependent 
protease, unfolding occurs together with 
translocation of the polypeptide chain into 
the degradation channel.86 Also, it was 
pointed out that the proteolysis of tightly 
folded proteins by the proteasome is accel-
erated greatly when an unstructured 
region is attached to the substrate.101 Here, 
the disordered initiation site serves as a 
component of the targeting signal for deg-
radation, being recognized and degraded 
first, leading to the sequential digestion of 
the rest of the target protein.101

Concluding, it seems that there is no 
single protein that would escape one or 
another form of disorder during its life-
time. Obviously many proteins are intrin-
sically disordered through their entire 
lives. However, even fully ordered proteins 
have to be disordered during their birth 
and death. This disorder is due to either 
the under-folding of a nascent polypeptide 
chain or the proteasome-induced unfolding 
of the degradation target. Many proteins 
are known to fold into ordered structure 
between these events and several remain 
disordered during that time. However all 
proteins need to become disordered dur-
ing the exit from the ribosome tunnel and 
while entering the chamber of death, the 
proteasome tunnel. Furthermore, many 
ordered proteins undergo functional 
unfolding or possess transient disorder. 
Functions of these proteins require local 
or even global unfolding of their unique 
structures. Illustrative examples of such 
conditionally disordered proteins include 
protein translocating through a mem-
brane, some activated states, and local 



e26782-4 Intrinsically Disordered proteins Volume 1 

transient unfolding. Finally, many protein 
functions are dependent on intrinsic dis-
order in their partners, and activation and 
regulation of a myriad of proteins are con-
trolled by various IDPs. In other words, 
we are dealing here with extrinsic disorder 
(i.e., intrinsic disorder in functional part-
ners of ordered proteins). In summary, the 
protein lifetime is rather disordered, and 
any given protein constantly experiences 
disorder in one or another form.
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