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Abstract

Chytridiomycosis, a disease caused by Batrachochytrium dendrobatidis, has contributed to worldwide amphibian population
declines; however, the pathogenesis of this disease is still somewhat unclear. Previous studies suggest that infection
disrupts cutaneous sodium transport, which leads to hyponatremia and cardiac failure. However, infection is also correlated
with unexplained effects on appetite, skin shedding, and white blood cell profiles. Glucocorticoid hormones may be the
biochemical connection between these disparate effects, because they regulate ion homeostasis and can also influence
appetite, skin shedding, and white blood cells. During a laboratory outbreak of B. dendrobatidis in Australian Green Tree
Frogs, Litoria caerulea, we compared frogs showing clinical signs of chytridiomycosis to infected frogs showing no signs of
disease and determined that diseased frogs had elevated baseline corticosterone, decreased plasma sodium and potassium,
and altered WBC profiles. Diseased frogs also showed evidence of poorer body condition and elevated metabolic rates
compared with frogs showing no signs of disease. Prior to displaying signs of disease, we also observed changes in appetite,
body mass, and the presence of shed skin associated with infected but not yet diseased frogs. Collectively, these results
suggest that elevated baseline corticosterone is associated with chytridiomycosis and correlates with some of the
deleterious effects observed during disease development.
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Introduction

Emerging infectious diseases (EIDs) of wildlife can have

profound effects on animal biodiversity [1,2]; however, little is

known about the pathogenesis of most wildlife EIDs [3]. Since

wildlife EIDs are often associated with anthropogenic and

environmental stressors, pathogenesis is likely influenced by the

host’s response to stressors [3–6]. The evolutionarily conserved

stress response is one of the mechanisms by which vertebrates

modulate responses to these stressors [7]. The stress response is of

interest in a disease context, because it is mediated by

glucocorticoid (GC) hormones that are known to affect suscepti-

bility to infection [8].

GCs influence a suite of physiological functions in vertebrates,

including reproduction, development, blood ion homeostasis,

metabolism, appetite, growth, and, importantly in the context of

disease, immunity [9]. While much is known about how GCs

influence physiological function in non-diseased animals, much

less is known about how GCs influence the same physiological

functions in diseased animals. To our knowledge only one such

study has been conducted in wild vertebrates. Warne et al. [10]

exposed Rana sylvatica to ranaviruses and observed an increase in

corticosterone (CORT; the most abundant amphibian GC)

concentration and accelerated developmental changes consistent

with the effects of endogenous and exogenous elevations of CORT

in non-diseased amphibians.

Chytridiomycosis, a disease caused by the amphibian chytrid

fungus Batrachochytrium dendrobatidis (Bd) [11] has contributed to

worldwide amphibian population declines. It is considered to be a

significant threat to global amphibian biodiversity [2,12–14].

Chytridiomycosis, like CORT, influences blood ion homeostasis,

appetite, skin shedding, and immunity. Specifically, Bd disrupts

sodium transport in the host’s epidermis, which leads to

hyponatremia and cardiac failure [15]. Bd also suppresses appetite

[15,16], disrupts normal skin shedding [15,16], and causes

alterations in white blood cell (WBC) abundance [17,18]. Yet

there are no studies that have attempted to document what

hormones may be mediating these changes in blood ions,

behavior, shedding, and WBC abundance.
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GCs may mediate the aforementioned effects of Bd infection. In

amphibians, GCs are critical regulators of blood ion homeostasis

[19–24], appetite [25,26], skin shedding [27–30], and WBC

numbers and immune function [31–37]. A normal, adaptive,

regulatory mechanism to maintain sodium homeostasis is likely a

moderate, transitory elevation in CORT secretion to increase

cutaneous uptake of sodium as well as digestive uptake (facilitated

by increased appetite) [23,24,26]. Because Bd infection directly

compromises cutaneous sodium transport, a sustained elevation of

CORT could occur to maintain ion homeostasis. However, high

concentrations of GCs may become maladaptive, altering immune

responses [36–39], increasing metabolic rate [40], as well as

actually suppressing appetite [41]. The suppression of appetite

may further exacerbate ion imbalance, leading to unsustainable

blood sodium levels and cardiac failure. Thus, CORT, in its

regulatory role of maintaining ion homeostasis, may be elevated in

response to disease caused by infection, and could contribute to

Bd-induced mortality.

The overall aims of our study were to determine whether Bd

infection influences CORT levels and whether CORT profiles are

associated with previously undescribed, as well as previously

described effects of Bd infection. We documented the relationship

of Bd infection to plasma CORT, sodium, and potassium

concentrations; food intake; skin shedding; and WBC profiles

during an outbreak of Bd in a laboratory colony of Australian

Green Tree Frogs (Litoria caerulea). Because both CORT and

disease influence energy balance, we also monitored resting

metabolic rate (RMR), body condition, and body mass.

Results

Evaluation of Pre-diseased Frogs
Individuals that eventually displayed clinical signs of disease

(e.g. listlessness, odd body posture, and skin discoloration)

consumed significantly less food one week prior to displaying

clinical signs of disease compared to individuals that displayed no

signs of disease (ANOVA, P = 0.022, F1,21 = 6.16; Fig. 1). During

the week prior to sacrifice, shed skin was found on significantly

more days within bins of frogs that eventually became diseased

than within the bins of non-diseased frogs (ANOVA, P,0.001,

F1,21 = 38.11; Fig. 1). Frogs that eventually became diseased also

lost significantly more weight than frogs that remained non-

diseased in the weeks prior to sacrifice (Repeated measures

ANOVA, Disease status: P,0.001, F1,21 = 38.06, Time: P,0.001,

F1,42 = 12.25, Disease status 6Time: P = 0.2; Fig. 2).

Evaluation of Diseased Frogs
Approximately 24 hours prior to sacrifice, frogs that displayed

clinical signs of chytridiomycosis had significantly lower body

conditions (ANCOVA, Disease status: P,0.001, F1,20 = 19.02;

Total body length: P,0.001, F1,20 = 273.43). There was no disease

status by total body length interaction (P = 0.22). For ease of

interpretation, these data are visually presented as average

residuals from a regression of body mass by total body length

(Fig. 3). Diseased individuals also consumed significantly more

oxygen compared to non-diseased frogs (ANCOVA, Disease

status: P,0.001, F1,20 = 24.52, Body mass: P = 0.010, F1,20 = 7.99;

Fig. 3). There was no disease status by body mass interaction

(P = 0.3).

When sacrificed, swabs taken from diseased frogs contained

significantly more Bd zoospore equivalents than swabs taken from

non-diseased individuals (ANOVA, P,0.001, F1,35 = 19.66; Fig. 3).

Although non-diseased individuals all had detectable levels of Bd,

they contained approximately 1,000 times fewer zoospore

equivalents than diseased individuals, on average.

Blood parameters determined at sacrifice also differed with

disease status. Diseased frogs contained significantly fewer plasma

electrolytes (ANOVA, Sodium: P = 0.049, F1,28 = 4.24, Potassium:

P = 0.049, F1,28 = 4.24; Fig. 3) and significantly greater concen-

trations of plasma CORT (ANOVA, P = 0.001, F1,34 = 18.73;

Fig. 3) compared with non-diseased frogs. Additionally, WBC

profiles differed significantly between diseased and non-diseased

individuals (MANOVA, P,0.001, F1,20 = 12.26; Fig. 4). Blood

smears from diseased frogs contained significantly fewer lympho-

cytes and eosinophils and significantly more neutrophils among

100 WBCs counted than smears from non-diseased frogs (Sheffe’s

range tests, P#0.002).

Changes in CORT, RMR, and Lymphocyte Abundance at
different Bd Burdens

Because all individuals in the study contained different Bd

burdens and were, thus, apparently at different points in infection

we used segmented regression to estimate the zoospore intensity at

which CORT, RMR, and lymphocyte abundances changed

significantly (the zoospore breakpoints). The zoospore breakpoints

for CORT, RMR, and lymphocytes were 4,940; 4,066; and

10,778 zoospores, respectively (Fig. 5). Linear regressions suggest-

ed significant relationships between Bd burden and CORT

(R2 = 0.25, P = 0.002, F1,35 = 11.40), RMR (R2 = 0.46, P,0.001,

F1,22 = 18.16), and lymphocytes (R2 = 0.20, P = 0.022,

F1,25 = 5.96).

Figure 1. Evaluation of pre-diseased frogs. Average food intake
(Fig. 1A) and skin presence frequency (Fig. 1B) +1 standard error of
Litoria caerulea that eventually became diseased or remained non-
diseased at one week prior to sacrifice (Fig. 1A) and within the week
leading up to sacrifice (Fig. 1B). Disease states were statistically different
(Food intake: ANOVA, P = 0.022, F1,21 = 6.16; skin presence frequency:
ANOVA, P,0.001, F1,21 = 38.11).
doi:10.1371/journal.pone.0062146.g001

Figure 2. Change in body mass throughout infection. Average
change in body mass (61 standard error) of Litoria caerulea that
eventually became diseased (n = 9) or remained non-diseased (n = 14)
for chytridiomycosis between dates leading up to sacrifice on 12/12/09.
Disease states were statistically different (Repeated measures ANOVA,
Disease status: P,0.001, F1,21 = 38.06, Time: P,0.001, F1,42 = 12.25,
Disease status 6 Time: P = 0.2).
doi:10.1371/journal.pone.0062146.g002

Stress Response and Deadly Amphibian Disease

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e62146



Discussion

Individuals that displayed clinical signs of chytridiomycosis had

significantly elevated baseline CORT, decreased plasma sodium

and potassium, altered WBC profiles, increased RMR, and

decreased body condition compared with non-diseased individu-

als. WBC profiles and RMR changes in diseased frogs parallel

those observed following treatment with glucocorticoids in other

studies (e.g. increased neutrophils and oxygen consumption and

decreased lymphocytes and eosinophils in relation to total WBC)

[31–35,40,42]. It is important to note that non-diseased individ-

uals were also infected, but released thousands of Bd zoospores

while diseased individuals released millions of zoospores, on

average. When we plotted this broad range of Bd burdens

(regardless of disease status) against CORT, RMR, and lympho-

cytes, segmented regressions indicated these three variables

changed significantly at similar breakpoints (4,000–10,000 zoo-

spores; Fig. 5).

Appetite suppression likely contributed to other effects we

observed. For example, appetite suppression likely exacerbated

hyponatremia because amphibians take up sodium via digestive as

well as cutaneous routes [43]. Additionally, amphibians usually

Figure 3. Evaluation of diseased frogs. Mean body condition (Fig. 3A), resting metabolic rate (RMR, Fig. 3B), log transformed Bd zoospore
equivalents +1 (Fig. 3C), plasma corticosterone (CORT, Fig. 3D), plasma sodium (Fig. 3E), and plasma potassium (Fig. 3F) 61 standard error for Litoria
caerulea that displayed clinical signs of disease (diseased) or did not display clinical signs of disease (non-diseased). Disease states were significantly
different for all measures (ANOVA/ANCOVA, P,0.05). Sample sizes vary among measures because of sampling limitations.
doi:10.1371/journal.pone.0062146.g003

Figure 4. White blood cell counts of diseased frogs. Average
relative abundance of neutrophils, lymphocytes, eosinophils, and
monocytes per 100 white blood cells (WBC) +1 standard error from
Litoria caerulea displaying clinical signs of chytridiomycosis (diseased,
n = 7) or not displaying clinical signs of disease (non-diseased, n = 19).
WBC abundance profiles were significantly different between disease
states (MANOVA, P,0.001, F1,20 = 12.26). Blood smears from diseased
frogs contained significantly fewer lymphocytes and eosinophils and
significantly more neutrophils than smears from non-diseased frogs
(Sheffe’s range test, P,0.001). Disease states had similar numbers of
monocytes (NS) and basophils (not shown).
doi:10.1371/journal.pone.0062146.g004
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consume their shed skin, so appetite suppression also could explain

why we observed shed skin more often in the containers of frogs

that eventually became diseased [43]. Finally, appetite suppres-

sion, coupled with an increased RMR, may have contributed to

the weight loss and poor body condition observed in frogs that

eventually became diseased. With no input of food, sick frogs must

catabolize body tissues to meet their elevated respiratory demand,

which results in weight loss and reduced body condition.

The levels of CORT in plasma were determined after

development of several effects, so although infection was associated

with decreased food intake, increased presence of shed skin, and

weight loss, it is unclear whether increased CORT secretion was a

cause or consequence of these parameters. We happened to be

monitoring food intake, skin shedding, and weight loss as part of a

separate experiment when the outbreak occurred, thus we did not

monitor CORT along with these other variables. Although we

observed changes in CORT, RMR, and lymphocytes at similar Bd

burdens, future studies are needed to determine the timing of

when key physiological variables change during infection and

whether CORT manipulation can alter pathogenesis.

It is unclear whether infection-induced GC secretion is

beneficial or maladaptive in vertebrates. Few studies have tested

the effects of disease on GC levels in vertebrates [44–57]. Even

fewer have observed how this may then lead to beneficial or

deleterious physiological effects. To our knowledge, this is the first

study that has assessed the effects of disease on baseline CORT

levels in an adult amphibian (however CORT levels have been

assessed in tadpoles) [10,56,57]. Our data suggest that disease, at

least chytridiomycosis, may be a potent modulator of baseline

plasma CORT. Frogs displaying clinical signs of disease contained

eight times more plasma CORT than non-diseased frogs. Average

plasma CORT was 104 ng/ml in symptomatic frogs (maximum

level of 270 ng/ml), rivaling the highest average levels of CORT

observed in amphibians in response to other stressors [58–62].

Given these findings and the large number of emerging diseases in

wildlife, we suggest that more studies focus on post-infection stress

responses in wild animals.

Better understanding of the physiological effects of CORT,

and its involvement in mediating factors that threaten the

conservation status of amphibians (e.g. habitat destruction,

global climate change, pollution, etc.) is needed. Specifically,

there is a lack of data on how CORT influences metabolic rate

and appetite in amphibians [25,63]. Our study provides data to

suggest that CORT is associated with these factors, but

controlled laboratory data are needed to complement this

study. Understanding how amphibians respond to environmen-

tal change has become more urgent given recent amphibian

population declines [64]. Several perturbations that potentially

contribute to amphibian population declines have been linked to

stress physiology (e.g. anthropogenic contaminants [62,65–72],

disease [10,56,57], low habitat quality [73], and habitat

desiccation [74]). Though the influence of anthropogenic

contaminants on the stress axis has been relatively well studied

in amphibians, far less is known about how disease, habitat

destruction, invasive predators, and climate change may

influence stress physiology. Given the powerful and far reaching

effects of GCs on wildlife life histories, understanding how these

hormones mediate the interplay between environmental pertur-

bations and life histories is essential to future conservation

efforts.

Materials and Methods

Ethics Statement
All methods were approved by Auburn University Institutional

Animal Care and Use Committee (Permit Number: 2009-1620).

All surgery was performed following euthanasia and all efforts

were made to minimize suffering.

Laboratory Outbreak and Experimental Design
Ninety eight Litoria caerulea were obtained commercially from an

amphibian trader (Tri Reptile, Miami, FL) who imported the frogs

from Indonesia, in autumn of 2009. Within a month, the frogs

became ill and died at a rapid rate (i.e., 13 died within 13 days).

Shed skin from individuals showing clinical signs of chytridiomy-

cosis (e.g., listlessness, odd body posture, and skin discoloration)

[75] was viewed under a light microscope and Bd was detected by

visual inspection of the skin in all samples viewed. It is unclear

whether infection originated from the wild or from our laboratory.

Figure 5. Changes in variables at different Bd burdens. Segmented regressions of plasma corticosterone (CORT, Fig. 5A), resting metabolic rate
(RMR, Fig. 5B), and lymphocyte abundances (Fig. 5C) of Litoria caerulea during an outbreak of chytridiomycosis. Horizontal and vertical dotted lines
indicate X and Y axes, respectively. Vertical dashed lines indicate breakpoints at which the dependent variables changed significantly. Black lines
indicate the two segments fit to the data before and after the breakpoint. The zoospore breakpoints for CORT, RMR, and lymphocytes were 4,940;
4,066; and 10,778 zoospores, respectively. Data before and after the breakpoint were significantly different for all three variables (Segmented
regression, P,0.05). Linear regressions suggested significant relationships between Bd burden and CORT (R2 = 0.25, P = 0.002, F1,35 = 11.40), RMR
(R2 = 0.46, P,0.001, F1,22 = 18.16), and lymphocytes (R2 = 0.20, P = 0.022, F1,25 = 5.96).
doi:10.1371/journal.pone.0062146.g005
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At this point, disease status (i.e., individuals displaying clinical

signs of chytridiomycosis [diseased] or individuals not displaying

clinical signs [non-diseased]) was monitored daily and food intake

was assessed in all remaining non-diseased individuals (n = 79).

When an individual became diseased, the diseased frog and two

randomly selected non-diseased individuals were swabbed (to

quantify Bd zoospores), pithed, and bled (within 3 min of

handling). Several drops of whole blood were used to make blood

smears for enumeration of WBCs. The remaining blood was

centrifuged for 4 min at 3,5006g and the plasma was frozen and

stored at 220uC for later use in ion and CORT assays.

Animal Care
Amphibians were housed individually in plastic containers

(17617617 cm) in which paper towels saturated with well water

were used as substrate. Wet paper towels were replaced twice each

week for the duration of the study. Light was provided by full

spectrum light bulbs on a 12:12 light/dark cycle. Room

temperature was maintained by a thermostat at ,22uC.

Bd Zoospore Burden
Frogs were swabbed in a standardized fashion by lightly

brushing a sterile cotton swab (Medical Wire & Equipment,

MW113) 10 times over the sides, venter, and ventral surface of the

thighs and 5 times over the underside of each foot [76]. Zoospore

equivalents were determined by standard extraction and quanti-

tative PCR techniques [77,78]. Nucleic acids were extracted by

adding 60 ml of PrepMan Ultra (Applied Biosystems, Foster City,

CA) and 30–35 mg of Zirconium/silica beads (0.5 mm, Biospec

Products, Bartlesville, OK) to the tip of each swab. Samples were

homogenized for 45 s in a Mini Beadbeater (MP Bio, Solon, OH)

and centrifuged for 30 s at 15,0006g. After a second homogeni-

zation and centrifugation, the samples were boiled for 10 min,

returned to room temperature for 2 min, and centrifuged at

15,0006g for 3 min. Nucleic acids in the supernatant were

removed for real-time PCR. Samples were loaded into an

Mx3000P Real-Time PCR system (Stratagene, La Jolla, CA) for

40 cycles of 95uC for 10 min, 95uC for 30 s, 55uC for 1 min, and

72uC for 1 min. Zoospore equivalents were determined using a

standard curve and indicate Bd burden.

Ion Analyses
Plasma prepared by centrifugation of whole blood for 4 min at

3,5006g to remove red blood cells, was analyzed by Inductively

Coupled Plasma with Optical Emission Spectroscopy (ICP-OES,

Perkin Elmer 7100 DV, Waltham, MA) with simultaneous

measurement of Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, P, S, Zn

[79]. Equal volume of plasma was diluted into ultra-pure, metal-

free water (MilliQ, Millipore) then centrifuged at 13,0006g to

remove particulates and then introduced directly into the

instrument argon plasma using a cyclonic nebulizer. Metal

concentrations are determined comparing emission intensities to

a standard curve created from certified metal standards (SPEX,

Metuchen, NJ). Standard curves were confirmed by re-analysis of

standard solutions diluted in a matrix equivalent to the sample.

Individual readings are the average of two intensity measurements

varied by less than 5%. Repeated analysis of individual samples

showed less than 5% variability.

Radioimmunoassay
Plasma CORT concentrations were determined by radioim-

munoassay as described by Mendonça et al. [80]. All samples were

run in one assay. Extraction efficiency was 81% and intraassay

variation was 19.8%.

Food Intake and Body Mass
Frogs were weighed weekly from the time they arrived in the

laboratory. Once a week, for two weeks prior to sacrifice, each

animal was blotted dry, weighed, and fed approximately 10% of

their body weight with 2.5 week old crickets coated in vitamin

dust. All crickets not consumed were weighed after 24 hours. Food

intake was determined as the mass of the crickets not consumed

subtracted from the original mass of crickets given to the frog.

Shed Skin Collection
A subsample of frogs and bins were examined daily for the

presence of shed skin. Shed skin was removed if it was observed on

amphibians or within their containers. Dates in which skin was

found on a frog or within its container were recorded. When frogs

were sacrificed, the number of days, within the previous seven

days, the frogs had shed skin on their body or within their

container was determined. This value is referred to hereafter as

‘‘skin presence frequency’’.

Relative WBC Numbers
Dried blood smears were stained with a Hema 3 kit (Fisher

scientific, Kalamazoo, MI) and viewed under a light microscope.

Slides were read in a standard zig-zag fashion. One hundred

WBCs were observed and the number of neutrophils, lympho-

cytes, eosinophils, monocytes, and basophils were recorded.

Respirometry and Body Condition
Closed system respirometry was used to measure RMR (oxygen

consumption) 1 day prior to sacrifice following the methods of

Ward et al. [81]. Frogs were first acclimated in their respirometry

chamber (140 ml syringes served as the respirometry chambers,

Monoject, Sherwood Medical Industries, Ballymoney, UK) for at

least 45 min in a darkened incubator (22uC). For the respirometry

measurements, the frogs were then incubated for ,50 min in a

darkened incubator (22uC). Any frogs that urinated or defecated

during incubation were excluded from analyses. Frogs were

weighed and their total body length was determined following

respirometry to determine body condition [82].

Statistical Analyses
Bd burden; plasma CORT, sodium, and potassium; food intake;

and skin presence frequency were compared relative to disease

status with analyses of variance (ANOVAs). RMR was compared

between disease states (i.e. diseased or non-diseased) with an

analysis of covariance (ANCOVA) with disease status as the

independent variable, RMR as the dependent variable, and body

mass as the covariate. Since body mass influences RMR, RMR is

presented as least squared means, corrected for body mass. Body

condition was estimated as the residuals obtained by regressing

body mass against total body length. Body condition was

compared between disease states with an ANCOVA, with disease

status as the independent variable, body mass as the dependent

variable, and total body length as the covariate. Change in body

mass was compared relative to disease status with a repeated

measures ANOVA, because the same individuals were sampled

multiple times. Relative WBC numbers were compared relative to

disease status with a multivariate analysis of variance (MANOVA).

Sheffe’s range tests were conducted for all a posteriori compar-

isons. We were unable to monitor changes over time for several

variables; however, when diseased and non-diseased frogs were
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sacrificed Bd burden was highly variable across all frogs (ranging

from 0 to millions of zoospores per frog), suggesting that each frog

was at a different point within disease progression. We used

segmented regression to determine the threshold Bd burden at

which the trend of CORT, RMR, and lymphocytes changed

significantly (breakpoints), regardless of disease status [83]. We also

used linear regression to determine whether there were linear

relationships between Bd burden and CORT, RMR, and

lymphocytes. SAS (SAS institute, version 9.2) was used for the

RMR ANCOVA (PROC GLM) and all segmented regressions

(PROC NLIN). StatView for Windows (SAS institute, version

5.0.1) was used for all other statistical analyses. All data met the

assumptions of normality and significance was determined as

P#0.05.
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