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Introduction

A greater understanding of molecular biology has led to 
major breakthroughs in medical treatment for patients 
with renal cell cancer (RCC). Vascular endothelial growth 
factor (VEGF), platelet-derived growth factor, and mam-
malian target of rapamycin (mTOR) signaling pathways 
have become recognized as rational targets for targeted 
therapy [1]. Angiogenesis inhibitors, which include 
sorafenib (Nexavar®, Bayer), sunitinib (Sutent®, Pfizer), 
bevacizumab (Avastin®, Genentech/Roche), pazopanib 
(Votrient®, Novartis), and axitinib (Inlyta®, Pfizer) [2–6]; 
and two mTOR inhibitors, temsirolimus (Torisel®, Pfizer) 
and everolimus (Afinitor®, Novartis) [7, 8], are all currently 
available as a result of the first breakthrough in metastatic 
RCC therapy, although bevacizumab has not been approved 
in Japan.

We are currently on the verge of the second break-
through. Nivolumab (Opdivo®, Ono/Bristol-Myers Squibb) 
is a novel targeted agent that has just been launched for 
clinical practice in the treatment of metastatic RCC [9]. 
Nivolumab, which is a fully human immunoglobulin (Ig) 
G4 programmed death 1 (PD-1) antibody, selectively 
inhibits the interaction between PD-1 (which is expressed 
on activated T cells) and PD-1 ligand 1 (PD-L1) and 2 
(PD-L2) (which are expressed on antigen-presenting cells 
[APCs] and cancer cells) [9]. Its promising anti-tumor effi-
cacy and manageable safety profile were demonstrated in 
the phase III Checkmate 025 trial. Nivolumab therapy is 
thus being rapidly introduced in metastatic RCC clinical 
practice in Japan. Recently, excellent treatment results for 
the phase Ia study of atezolizumab (Roche/Genentech), 
which is a humanized anti-PD-L1 monoclonal IgG1 anti-
body, were also demonstrated [10]. The identification of 
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biomarkers to predict the response and side-effects for 
checkpoint inhibitor therapy is urgently needed.

Previously, we reviewed the candidate biomarkers of 
angiogenesis inhibitor therapy in terms of clinical vari-
ables, genetic factors, and circulating proteins and endothe-
lial cells [11]. Regarding biomarkers of RCC patients 
treated with checkpoint inhibitors, however, the role of 
potential predictive biomarkers to benefit the PD-1/PD-L1 
blockade remains controversial and is still under investiga-
tion. Most of the ongoing clinical trials have established 
exploratory biomarker sub-analyses to attempt to identify 
predictive biomarkers of response to PD-1/PD-L1 inhibi-
tion, including PD-L1 expression. Rodriguez-Vida et  al. 
reviewed them comprehensively [12]. Research on other 
malignancies may also shed light on biomarker analyses in 
metastatic RCC therapy. Here, we provide a brief overview 
of biomarkers in terms of the tumor immune microenvi-
ronment and clinical factors of RCC and other malignant 
tumor studies.

Tumor immune microenvironment

Cancer cells are recognized by APCs in which cancer cells 
are processed to peptide antigens; cancer cells are then pre-
sented on major histocompatibility class I (MHC-I) or class 
II (MHC-II) molecules as cancer-specific neoantigens [13, 
14]. When CD8-positive cytotoxic T lymphocytes (CTLs) 
recognize these neoantigens presented on the MHC mol-
ecules, the CTLs are activated and proliferate, leading to 
an antigen-specific immune response that kills neoantigen-
bearing cancer cells [13, 14]. However, negative regulators 
exist, namely, the complex of PD-1 and PD-L1/PD-L2. 
PD-L1 and PD-L2, which are known to be expressed on 
the surface of APCs and cancer cells, engage PD-1, which 
expresses on CD8-positive CTLs [13, 14]. When these 
PD-1 and PD-L1/L2 complexes are complete, they trig-
ger an inhibitory signal to the downstream of the T-cell 
receptor (TCR), and block effector and CTL functions [13, 
14]. Here, immune tolerance is achieved. Destruction of 
this immune tolerance using immune checkpoint inhibi-
tors forms the basis for the current novel immune therapy 
(Fig. 1a). In this scenario, the number of neoantigens and 
the expression of MHC molecules (Fig.  1b) and PD-1/
PD-L1 expression (Fig.  1c) can be considered potential 
biomarkers for immune checkpoint inhibitor therapy.

Neoantigens and MHC antigens

Neoantigens, which constitute between 8 and 10 peptides, 
are generally established from tumor-specific mutations, 
presented by MHC class I or MHC class II molecules on 

the surface of APCs, and recognized by CD8-positive 
CTLs that may be able to destroy cancer cells (Fig. 1b) [13, 
14]. Although all of the non-synonymous mutations do not 
always constitute neoantigens, it is probable that the more 
non-synonymous mutations are affected, the more neoan-
tigens develop. Lawrence et  al. investigated the heteroge-
neity across patients with 27 cancer types, and revealed 
that the median frequency of non-synonymous mutations 

Fig. 1   Tumor microenvironment and immune checkpoint inhibi-
tors (Fig. 1a). Cancer cells are recognized by APCs in which cancer 
cells are processed to peptide antigen; cancer cells are then presented 
on MHC-I/II as cancer-specific neoantigens. After recognizing these 
neoantigens, the CTLs are activated and proliferate, and kill neo-
antigen-bearing cancer cells (Fig.  1b). When a complex of PD-L1 
expressed by APCs and cancer cells engage PD-1 expressed on CD8-
positive CTLs is complete, immune tolerance is achieved. Destruc-
tion of this immune tolerance using immune checkpoint inhibitors is 
the current novel immune therapy (Fig.  1c). MHC major histocom-
patibility, CTL cytotoxic T lymphocytes, PD-1 programmed death-
1, PD-L1 programmed death-ligand 1, APC antigen-presenting cell, 
TCR T cell receptor
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varied by >1000-fold across cancer types [15]. Melanoma 
and lung cancer showed the highest mutation frequen-
cies, exceeding 100/Mb [15]. These may be attributable 
to extensive exposure to well-known carcinogens, such as 
ultraviolet radiation in the case of melanoma and tobacco 
smoke in the case of lung cancers [15]. Among the can-
cers, RCC (including clear cell cancer and papillary can-
cer) were in the middle position and demonstrated a low 
frequency of mutation burden compared with lung cancer 
and melanoma [15]. Mutation frequencies, however, varied 
markedly across patients within a cancer type. In clear cell 
renal cancer, the frequency ranged from 0.1−10/Mb [15]. 
Rizvi et  al. examined the association between the muta-
tion burden and the response of the immune checkpoint 
inhibitor in non-small cell lung cancer (NSCLC) patients 
treated with pembrolizumab (Keytruda®, MSD), which is a 
humanized antibody for PD-1 [16]. In this study, they used 
whole-exome sequencing and reported that higher non-syn-
onymous mutation burden in tumors was associated with 
improved objective response, durable clinical benefit, and 
longer progression-free survival (PFS) [16]. In addition, 
the efficacy was also correlated with the molecular smok-
ing signature, higher neoantigen burden, and DNA repair 
pathway mutations [16]. Interestingly, although the efficacy 
was significantly correlated with the molecular smoking 
signature, self-reported smoking history did not signifi-
cantly discriminate those most likely to benefit from pem-
brolizumab [16].

A small fraction of advanced colorectal cancer occurs 
as a result of mismatch-repair (MMR) deficiency. Uram 
et  al. investigated the efficacy of immune checkpoint 
inhibitors for colorectal and non-colorectal gastrointesti-
nal cancer patients who have MMR deficiency treated with 
pembrolizumab [17]. In this study, whole-exome sequenc-
ing revealed that a mean of 1782 somatic mutations per 
tumor in MMR-deficient tumors was much greater than in 
MMR-proficient tumors, which had a mean of only 73 per 
tumor (p = 0.007) [17]. The median PFS and overall sur-
vival (OS) periods, and objective response rate of patients 
with MMR-deficient colorectal cancer were significantly 
superior to those of patients with MMR-proficient colorec-
tal cancer [HR for PFS and OS, 0.10 (p < 0.001) and 0.22 
(p  =  0.05), respectively] [17]. In addition, patients with 
MMR-deficient non-colorectal gastrointestinal cancer had 
responses similar to those of patients with MMR-deficient 
colorectal cancer [17].

Regarding the receiver of the neoantigen, the expres-
sion of MHC antigen might play a role in the efficacy 
of immune checkpoint inhibitors (Fig.  1b). Using two 
independent cohorts of anti-PD-1-treated melanoma 
patients, Johnson et  al. reported that MHC-II positivity 
on cancer cells is associated with therapeutic response, 
PFS, and OS, as well as CD4 and CD8 tumor infiltration 

[18]. They concluded that MHC-II expression on cancer 
cells can be identified by melanoma-specific immunohis-
tochemistry using commercially available antibodies for 
HLA-DR in order to improve anti-PD-1 patient selec-
tion [18]. In addition, in an in  vivo study using murine 
lung cancer cells and anti-mouse PD-1 antibodies, Wang 
et al. reported that MHC class I and II were significantly 
downregulated in anti-PD1-resistant tumors compared 
with anti-PD1-sensitive tumors [19].

PD‑L1 expression

Before describing PD-L1 expression, we must note that 
there are various factors that influence the PD-L1 expres-
sion and clinical efficacy of immune checkpoint inhibi-
tors (Table  1). There are also various assays, including 
antibodies and cut-off points. There might be a difference 
between newly collected specimens and archival tumor 
samples. Furthermore, PD-L1 expression is dynamic and 
is affected by many factors, including prior therapy and 
the presence of tumor-infiltrating immune cells, which 
lead to intra-tumor differences of PD-L1 expression 
among primary tumors and individual metastatic sites.

Regarding the difference between PD-L1 expression 
and the characteristics of RCC, the Mayo Clinic pub-
lished interesting reports. Thompson et  al. reported that 
PD-L1 expression was demonstrated in both clear cell 
RCC tumor cells (present in 66% of specimens) and 
tumor-infiltrating mononuclear cells (present in 59% of 
specimens) by immunohistochemical analysis [20, 21]. 
High levels of PD-L1 within the tumors were signifi-
cantly more likely to exhibit aggressive pathologic fea-
tures, including higher nuclear grade (p < 0.001), positive 
lymph node metastases (p < 0.001), and distant metasta-
ses (p =  0.022) [20, 21]. In addition, they reported that 
both metastatic RCC cells and infiltrating lymphocytes 
express PD-L1 at rates similar to those observed in pri-
mary clear cell RCC tumor lesions [20, 21].

Taube et  al. investigated PD-L1 and PD-L2 expres-
sion of cancer cells and infiltrating immune cells in 

Table 1   Various interference factors for programmed death-ligand 1 
(PD-L1) expression

Used antibody

Immunohistochemistry procedure

Cut-off point of stained sample

Newly corrected specimen or archival tumor sample

Heterogeneity between primary and metastatic sites

Heterogeneity among metastatic sites

Past treatment history
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various cancer types. Cell surface PD-L1 expression by 
cancer cells and immune-infiltrating cells varied signifi-
cantly by tumor type, and the most abundant expression 
was demonstrated in melanoma, NSCLC, and RCC [22]. 
Expression of PD-L1 by cancer cells and infiltrating 
immune cells was significantly associated with expres-
sion of PD-1 on lymphocytes [22]. PD-L2 expression was 
also associated with PD-L1 expression [22]. In addition, 
PD-L1 expression on cancer cells demonstrated a signifi-
cant correlation with an objective response to anti-PD-1 
therapy [22]. Daud et  al. also investigated the relation-
ship between anti-PD-1 activity and PD-L1 expression in 
patients with advanced melanoma who were treated with 
pembrolizumab in the phase Ib KEYNOTE-001 study 
[23]. In this study of 451 patients with evaluable PD-L1 
expression, 344 (76%) demonstrated PD-L1 expression. 
High PD-L1 expression demonstrated a significant corre-
lation with a high response rate and long PFS (HR 0.76; 
95% confidence interval [CI] 0.71–0.82, p  < 0.001) and 
long OS (HR 0.76; 95% CI 0.69–0.83, p  <  0.001) [23]. 
Expression of PD-L1 is thus a potential predictive bio-
marker for response and outcome following treatment 
with PD-L1/PD-1 immune checkpoint inhibitor therapy.

From the viewpoint of immune checkpoint inhibitor 
therapy, Hodgkin’s lymphoma is very interesting. In all 
cases of classical Hodgkin’s lymphoma, Hodgkin Reed−
Sternberg cells have copy number alterations of 9p24.1, a 
region that includes PD-L1 and PD-L2, and contributes to 
robust expression of these PD-1 ligands [24]. Amplifica-
tion of 9p24.1 is more common in patients with advanced-
stage Hodgkin’s lymphoma. Like a driver gene mutation, 
amplification of PD-L1 and PD-L2 plays an important 
role in pathogenesis and treatment resistance in this dis-
ease. Before the checkpoint inhibitor therapy era, PD-L1 
and PD-L2 amplification was associated with poor prog-
nosis [24]. Therefore, checkpoint inhibitor therapy was 
warranted. In fact, in the phase I study of nivolumab, 23 
patients with relapsed or refractory Hodgkin’s lymphoma, 
who had already been heavily treated, received nivolumab 
[25]. An excellent objective response rate of 87% was 
obtained, including 17% with a complete response and 70% 
with a partial response [25]. In December 2016 in Japan, 
nivolumab received approval for treatment of patients with 
classical Hodgkin’s lymphoma that had relapsed or pro-
gressed after initial treatment.

Clinical factors

In the cytokine era, prognostic factors that could predict 
outcome in patients with metastatic RCC treated with inter-
feron (IFN)-α as initial systemic therapy were defined by 
the Memorial Sloan Kettering Cancer Center (MSKCC) 

study group [26]. The MSKCC group extracted five vari-
able risk factors for short survival—low Karnofsky per-
formance status (PS), high serum lactate dehydrogenase 
(LDH), low blood hemoglobin (Hb), high corrected serum 
calcium (Ca), and time from initial RCC diagnosis to start 
of IFN-α therapy of <1 year (26). Later, the MSKCC group 
reported the prognostic factors of previously treated RCC 
patients who had received new agents as salvage therapy 
[27]. Three factors, including low Karnofsky PS, low Hb 
level, and high corrected serum Ca level, were extracted as 
the MSKCC prognostic factors for patients treated by the 
second-line therapy [27]. In the molecular targeted therapy 
era, Heng et  al. first reported results from a large, multi-
center study of 645 patients with anti-VEGF therapy-naive 
metastatic RCC [28]. In this study, four of the five adverse 
prognostic factors according to MSKCC score (low Hb, 
high corrected Ca level, low PS, and time from diagnosis 
to treatment of <1 year) emerged as independent predictors 
of poor OS [28]. In addition, high levels of neutrophils and 
platelets emerged as independent adverse prognostic fac-
tors [28]. Later, these prognostic factors were applied to 
patients previously treated with targeted therapy, in addi-
tion to previously validated populations in first-line tar-
geted therapy [29]. These six risk factors are now widely 
used and are known as the International Metastatic RCC 
Database Consortium (IMDC) criteria. In the immune 
checkpoint inhibitor era, these known and widely used cri-
teria must be re-evaluated.

Baseline clinical factors associated with OS after 
immune checkpoint blockade for melanoma patients 
treated by pembrolizumab have been reported [30]. Rela-
tive eosinophil count ≥1.5%, relative lymphocyte count 
≥17.5%, ≤2.5-fold elevation of LDH, and absence of 
metastasis other than soft tissue/lung were extracted as 
independent favorable prognostic factors (all p < 0.001). In 
terms of eosinophil count, however, another group reported 
that eosinophilia was a favorable prognostic factor inde-
pendent of therapeutic agents [31].

Other groups also reported serum LDH level as a prog-
nostic factor for advanced/metastatic melanoma patients 
treated with nivolumab or pembrolizumab [32]. After a 
median follow-up of 9  months, patients with an elevated 
baseline LDH had a significantly shorter OS compared to 
patients with normal LDH (6 month OS 60.8 vs 81.6% and 
12  month OS 44.2 vs 71.5% (p =  0.0292) [32]. In addi-
tion, patients with a relative increase of >10% from ele-
vated baseline LDH had a significantly shorter OS com-
pared to patients with a decrease or <10% increase (4.3 vs 
15.7 months, p = 0.00623) [32]. They concluded that LDH 
could be a useful marker at baseline as well as during treat-
ment to predict early response or progression in patients 
with advanced melanoma who received immune checkpoint 
inhibitor therapy [32]. Similarly, Nakayama et al. reported 
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pretreatment as well as on-treatment prognostic factors for 
patients with melanoma treated with nivolumab [33]. The 
Eastern Cooperative Oncology Group (ECOG) PS ≥1, 
maximum tumor diameter of ≥30  mm, elevated LDH, 
and elevated C-reactive protein (CRP) were significantly 
associated with poor OS [HR 0.29 (p  <  0.001), HR 0.40 
(p =  0.003), HR 0.29 (p < 0.001), HR 0.42 (p =  0.004), 
respectively] on univariate analysis [33]. Among these fac-
tors, PS and LDH were identified as independent variables 
by multivariate analysis [33]. In addition, for early treat-
ment responding markers, patients with absolute lympho-
cyte count ≥1000/μl [week 3, HR 0.40 (p = 0.004); week 
6, HR 0.33 (p  =  0.001)] and absolute neutrophil count 
<4000/μl [week 3, HR 0.46 (p = 0.014); week 6, HR 0.51 
(p = 0.046)] had significantly better OS [33].

The final topic in terms of clinical factors is adverse 
events. Are adverse events associated with the efficacy 
of immune checkpoint inhibitors? In melanoma patients 
treated with nivolumab, immune-related adverse events 
(irAEs) are reported to be associated with improved sur-
vival [34]. In this study, irAEs of any grade were observed 
in 68.2% of patients (101 of 148). A statistically significant 
OS difference was noted among patients with any grade of 
irAE versus those without (p < 0.001), and OS benefit was 
noted in patients who reported ≥3 irAE events (p < 0.001) 
[34]. In addition, rash and vitiligo correlated with statisti-
cally significant OS differences in patients with metastatic 
disease (p = 0.004 and p = 0.028, respectively) [34].

Conclusion

In this review, we introduced the current candidate bio-
markers of immune checkpoint inhibitor therapy. Based 
on the mechanism of efficacy, the number of neoantigens 
and expression of MHC molecules are strong candidate 
biomarkers (Fig. 1b). Despite the various interference fac-
tors (Table 1), PD-1/PD-L1 expression can be considered a 

potential biomarker (Fig. 1c). Regarding clinical factors in 
metastatic RCC patients, we already have two well-known 
criteria, including MSKCC and IMDC; however, these 
widely used criteria must be re-evaluated. Finally, we intro-
duced serum clinical factors and severity of adverse effects 
as candidate biomarkers of favorable efficacy (Fig.  2). 
Although further implementation in prospective studies is 
necessary, if validated, these biomarkers can be utilized to 
measure therapeutic response and design treatment strate-
gies for metastatic RCC.
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