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Triple-negative breast cancer (TNBC) is a widely prevalent breast cancer, with a mortality rate of up to 25%. TNBC has a lower
survival rate, and the significance of N7-methylguanosine (m7G) modification in TNBC remains unclear. Thus, this study is
aimed at investigating m7G-related miRNAs in TNBC patients through in silico analysis. In our research, RNA sequencing
and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. The miRNAs targeting typical m7G
modification regulators Methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4) were predicted on the
TargetScan website. A miRNA risk model was built, and its prognostic value was evaluated by R soft packages. Single-sample
gene set enrichment analysis was used to assess immune infiltration, and further expression of immune checkpoints was
investigated. As a result, miR-421, miR-5001-3p, miR-4326, miR-1915-3p, miR-3177-5p, and miR-4505 were identified to
create the risk model. A nomogram consisting of the stage N and risk model predicted overall survival effectively among
TNBC patients. Treg and TIL were shown to be strongly linked to the risk model, and the high-risk group had higher levels of
four immune checkpoints expression (CD28, CTLA-4, ICOS, and TNFRSF9). A risk model consisting of m7G-related miRNAs
was constructed. The findings of the current study could be used as a prognostic biomarker and can provide a novel
immunotherapy insight for TNBC patients.

1. Introduction

Breast cancer has become the first killer threatening women’s
health recently. Triple-negative breast cancer (TNBC) is con-
sidered an independent clinicopathological type, accounting
for 15% to 20% of all breast cancers, with a mortality rate of
up to 25% [1]. It has the clinical characteristics of early-onset
age, large primary tumor size, high pathological grade, strong
invasiveness, early recurrence, and metastasis [2–4]. In addi-
tion, regardless of tumor stage, TNBC patients have the poor-

est prognosis of any kind of breast cancer [5]. Therefore,
appropriate prognostic strategies for TNBC are considered of
vital importance in disease management [6]. A thorough anal-
ysis of publicly available genetic data to discover novel and dis-
tinctive gene prediction signals might assist patients with
prognostic categorization and precise treatment.

N7-methylguanosine (m7G) modification is a type of
posttranscriptional regulation base modification, which exists
on tRNA, rRNA, and eukaryotic mRNA 5′caps [7–9], and is
essential for the biological functions of RNA [10]. Unlike
m6A regulators, the studies of m7G modification regulators
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influencing cancer are limited. Methyltransferase-like 1
(METTL1) and WD repeat domain 4 (WDR4) are the most
typical regulators, and they form the methyltransferase com-
plex, where the former is the m7G catalytic enzyme, while
the latter stabilizes that complex [11]. Several studies showed
that m7G modification was associated with lung cancer, squa-
mous cell carcinoma of the head and neck, acute myeloid leu-
kemia, and esophageal squamous cell carcinoma in tumor
proliferation and progression [12–15], which indicated the
key impact of METTL1 and WDR4 on m7G modification in
tumors. Williams-Beuren syndrome chromosome region 22
(WBSCR22) is also a type of methyltransferases and mediates

m7Gmodification in rRNA [16]. Several studies indicated that
WBSCR22 overexpressed in glioma and colon cancer [17, 18],
while downregulated in pancreatic cancer [19], similarly
affected tumor occurrence and invasion. To our knowledge,
only one research has involved regulators of m7G modifica-
tion in breast cancer. In their study, they discovered that
METTL1 was overexpressed in the MCF7 cell line [20]; how-
ever, further researches about the influence on tumor biologi-
cal functions have not been performed.

MicroRNA (miRNA) is a form of RNA molecule found
in eukaryotes that is 21 to 23 nucleotides in length. The miR-
NAs are noncoding RNAs that cannot be translated further
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Figure 1: The expression of METTL1 and WDR4 in TNBC patients from TCGA database. (a, b) METTL1 and WDR4 upregulated in
TNBC. (c) Correlation between METTL1 and WDR4. (d) Putative METTL1 and WDR4 PPI network.
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into proteins. They are involved in gene expression, cell pro-
liferation and apoptosis, and fat metabolism [21, 22]. Many
miRNAs could promote or inhibit TNBC occurrence and
metastasis [23]. Previous studies have revealed that RNA
modification, especially N6-methyladenosine (m6A), exists
on miRNAs [24]. In addition, the study by Pandolfini et al.
demonstrated that METTL1 mediated m7G modification
of miRNA and participated in the progression of lung cancer
[25]. However, the possible involvement of METTL1/
WDR4-related miRNAs in TNBC progression needs further
investigation. So, the current study was designed to explore
this mechanism.
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Figure 2: DEmiRNAs targeting METTL1 or WDR4. (a) Heatmap of top 20 DEmiRNAs between normal breast (N) tissues and TNBC (T)
tissues. (b) The volcano plot of 126 DEmiRNAs.

Table 1: Six m7G-related miRNAs identified from univariate Cox
regression analysis.

miRNA HR (95% CI) p

miR-421 1.2387 (1.0312, 1.4878) 0.0221

miR-5001-3p 1.3397 (1.0363, 1.7318) 0.0256

miR-4326 1.3298 (1.0145, 1.7432) 0.0390

miR-1915-3p 2.1104 (1.1069, 4.0237) 0.0233

miR-3177-5p 2.2276 (1.0612, 4.6758) 0.0343

miR-4505 5.4048 (1.9407, 15.0528) 0.0012

HR: hazard ratio; CI: confidence interval.
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2. Materials and Methods

2.1. Data Source. The miRNA and mRNA sequencing data of
TNBC were acquired from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/). The related
clinical data were obtained from TCGA and UCSC Xena web-
site (https://xena.ucsc.edu/). TNBC patients with unknown
OS information were excluded. Out of those, 104 normal
breast tissues and 154 TNBC tumor tissues were included. In
addition, based on previous researches, METTL1/WDR4-
mediated m7G RNA methylation was demonstrated; thus,
the miRNAs targeting METTL1 or WDR4 were predicted
from the TargetScan database (http://www.targetscan.org/).

2.2. METTL1/WDR4 Expression and Protein-Protein
Interaction Network. To make the gene expression analysis
more reliable, the expression data of METTL1 andWDR4 were
normalized from counts to TPM. Moreover, the association
between METTL1 and WDR4 in TNBC patients was investi-
gated. An assumed protein-protein interaction (PPI) network
forMETTL1 andWDR4 was created by the online analysis tool
GeneMANIA (http://genemania.org/).

2.3. Construction and Validation of m7G-Related miRNA
Prognostic Signature. TNBC patients were further divided
into training set (n = 116) and testing set (n = 38) randomly,
using the 3 : 1 ratio. The differentially expressed miRNAs
(DEmiRNAs) targeting METTL1 or WDR4 were identified
between TNBC and normal tissues by the R software package
“limma” (jlog2FCj > 0:5, p < 0:05). Firstly, prognostic DEmiR-
NAs were assessed by univariate Cox regression analysis. miR-
NAs with p < 0:05 were then selected to build a risk model for
TNBC patients. The risk score was calculated with the “pre-
dict” function in the R software package:

Risk score = h0 tð Þe
〠
n

i=1
Coef i×xi

: ð1Þ

To determine the predictive capability of the risk score
model, the areas under the receiver operating characteristic
(ROC) curve (AUC) were computed by the “timeROC” pack-
age. TNBC patients were grouped depending on the risk score
median, and then, risk-related survival curves were plotted.
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Figure 3: The PCA plots of two groups in the (a) training, (b) testing, and (c) total sets.
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Figure 4: Prognostic value of the risk model in the training, testing, and total sets. (a–c) OS analyses of the risk model. (d–f) ROC curves for
TNBC survival rates at 1, 3, and 5 years. (g–i) The distribution of patients’ risk scores. (j–l) Survival time and status of patients.
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Furthermore, principal component analysis (PCA) was used
to estimate the accuracy of grouping. Subsequently, uni- and
multivariate Cox regression analyses including clinicopatholo-
gical factors and the risk score were performed. The final
model predicting the OS of TNBC was shown by a visualized
nomogram. The concordance index (C-index) assessed the
final model’s discriminant capacity, followed by calibration
plots.

2.4. Enrichment Analyses. Gene Ontology (GO) enrichment
analysis was carried out to reveal the association of the GO
terms and differentially expressed mRNAs (DEmRNAs), which
were identified between two groups, with jlog2FCj > 1 and p
< 0:05. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis was performed to reveal the associated signal-
ing pathways. The analyses were performed by “org.Hs.eg.db,”
“clusterProfiler,” and “enrichplot” packages of R.

2.5. Immunological Analysis. Single-sample gene set enrich-
ment analysis (ssGSEA)was used to quantify the immune activ-
ity or enrichment levels of 29 immune signatures, including 13
types of immune-associated functions and 16 types of immune
cells in each patient. The internal correlation of various immune
signatures was investigated using the Pearson coefficient test,
and then, the Wilcoxon test was applied to analyze the differ-
ences between two groups in immune cells and functions. We
then performed correlation analyses between immune cells
and METTL1 and WDR4 by the Spearman coefficient test.
Finally, immune checkpoint-related genes acquired from prior

research were examined for differences in expression between
the two groups, in order to anticipate the effect of immune
checkpoint blocking treatment.

2.6. Statistical Analysis. R software was used to conduct all
analyses and plots (version 4.1.3). To compare the two groups’
differences, the Wilcoxon test was used. The statistical signifi-
cance level was set at p < 0:05.

3. Results

3.1. METTL1 and WDR4 Upregulated and Interplayed in
TNBC. Both METTL1 and WDR4 were overexpressed in
TNBC patients (Figures 1(a) and 1(b)), and their expression
correlation was positive (r = 0:36, p < 0:001) (Figure 1(c)). Fur-
thermore, we imported METTL1 and WDR4 into the Gene-
MANIA tool for establishing a PPI network. As Figure 1(d)
showed, a total of 22 genes and 128 links were contained in
the PPI network. These 22 genes were mostly involved in
RNA methylation modification and methyltransferase activity.

3.2. Construction and Validation of m7G-Related miRNA
Risk Model. A total of 760 miRNAs targeting METTL1 or
WDR4 were predicted from the TargetScan website. Among
them, 126 DEmiRNAs were identified between 154 TNBC
and 104 normal samples, with 84 upregulated and 42 down-
regulated (Figures 2(a) and 2(b)). Furthermore, six miRNAs
related to OS were identified from the DEmiRNAs (miR-
421, miR-5001-3p, miR-4326, miR-1915-3p, miR-3177-5p,
and miR-4505) using the univariate Cox regression analysis
(Table 1). Subsequently, we performed a multivariate Cox
analysis including six miRNAs and conducted the risk
model in the training set: Risk score = exp ð0:06813 ×miR‐
421 + 0:29448 × miR‐5001‐3p + 0:08756 × miR‐4326 +
0:38769 ×miR‐1915‐3p − 0:02726 ×miR‐3177‐5p + 1:65602
×miR‐4505 − 0:9681Þ. TNBC patients were categorized into
two groups by the risk score median. The risk scores of the
testing set and the total sample set were also calculated based
on the above formula. The cutoff point of grouping was the
same as the training set. PCA results revealed the accuracy in
grouping of the risk model (Figures 3(a)–3(c)). The survival
curves indicated longer OS among low-risk patients in the
three data sets (Figures 4(a)–4(c)). The risk model per-
formed well in predicting OS, as evidenced by ROC curves.
The AUCs of 1-, 3-, and 5-year OS in the training, testing,
and total sets were 0.718, 0.747, and 0.745, 0.738, 0.691,
and 0.602 and 0.737, 0.727, and 0.705, respectively
(Figures 4(d)–4(f)). Figures 4(g)–4(l) depicted the patients’
risk score distribution and their survival status in three data
sets.

3.3. Independent Prognostic Factors of Final Model. The clin-
ical characteristics of 154 TNBC patients were illustrated in
Table 2. The risk model was combined with age and clinico-
pathological factors for uni- and multivariate Cox regression
analyses. The univariate analysis showed that pathologic
stage (p < 0:0001), stage T (p = 0:001), stage N (p < 0:0001),
stage M (p = 0:0025), and risk score (p < 0:0001) were
related to the OS of TNBC patients (Figure 5(a)). However,
only stage N (p < 0:001) and the risk score (p = 0:0184) were

Table 2: Characteristics of TNBC patients.

Clinical characteristic N (154)

Age (years) 54:29 ± 11:71
Stage

I 28

II 93

III 29

IV 2

Unknown 2

T stage

T1 39

T2 94

T3 15

T4 5

TX 1

N stage

N0 96

N1 36

N2 14

N3 8

M stage

M0 133

M1 2

MX 19
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Figure 5: Nomogram construction of the prognostic model. (a, b) Cox regression analysis with the risk score and clinicopathological
covariates. (c) The nomogram of prediction model.
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Figure 6: Continued.
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retained as independent factors for OS after the multivariate
Cox analysis (Figure 5(b)).

3.4. Prognostic Model Construction and Detection. A nomo-
gram was created for predicting visually, including the stage
N and risk score, and the overall scores could predict the
likelihood of overall survival for TNBC patients
(Figure 5(c)). The nomogram model’s C-index was found
to be 0.868, which indicated the excellent discriminant per-
formance of the final model. Moreover, 1-, 3-, and 5-year
AUCs were 0.843, 0.878, and 0.886, respectively, which were
all better than clinicopathological characteristics in predic-
tive ability (Figures 6(a)–6(c)). The calibration curve dem-
onstrated good discrimination of the nomogram model
(Figures 6(d)–6(f)). In general, the nomogram model accu-
rately predicted the OS of TNBC patients.

3.5. Enrichment Analyses. Analyses of 658 DEmRNAs using
GO and KEGG were carried out (Figure 7). GO analysis
identified 97 biological processes (BP), 42 molecular func-
tions (MF), and 24 cellular components (CC). Under BP,
significant enrichments were observed in keratinization, epi-
dermis development, and skin development. For CC,
DEmRNAs were enriched in synaptic membrane, postsyn-
aptic membrane, and cornified envelope. The MF involved
in receptor ligand activity, channel activity, and signaling
receptor activator activity. In addition, KEGG analysis
revealed 8 related pathways and the results showed that the
DEmRNAs were mostly enriched in drug metabolism-
cytochrome P450 and neuroactive ligand-receptor
interaction.

3.6. Relationship between the Risk Model and Immune
Signatures. Since the treatment of TNBC patients is limited
and could only benefit from chemotherapy, immunotherapy
may provide new treatment strategies for TNBC patients.
Thus, we performed immunological analyses related to our
risk model. We used ssGSEA to calculate the enrichment

scores for the immune activity or enrichment level in each
sample (Figure 8(a)). The correlation analysis of immune
cells revealed that pDCs were positively and strongly corre-
lated with TIL (r = 0:91), while the correlations of
immune-related functions were all positive, where the T cell
coinhibition and checkpoint were found to have the stron-
gest correlation (r = 0:98) (Figures 8(b) and 8(c)). The box
plot revealed the differences in the immune cells, of which
Treg, TIL, Th1 cells, and T helper cells were upregulated in
high-risk patients. Similarly, the immune functions, of
which T cell costimulation/inhibition, MHC class I, check-
point, and APC costimulation, were also upregulated
(Figures 8(d) and 8(e)). Thus, the m7G-related miRNAs risk
model is envisaged to have a potential role in predicting the
immune response. Furthermore, the connection between
immune cells and METTL1 and WDR4 was investigated
using the Spearman coefficient test. It was discovered that
Treg, TIL, T helper cells, neutrophils, mast cells, macro-
phages, and B cells were negatively correlated with METTL1
and WDR4 (Figure 8(f)). The intersection of different
immune cells and m7G-related immune cells was taken to
obtain the significant m7G-related immune cells (Treg and
TIL). In addition, the high-risk group had higher levels of
CD28, CTLA-4, ICOS, and TNFRSF9 (p < 0:01), indicating
that these four immune checkpoints may be potential targets
of immune therapy for TNBC patients at high risk
(Figure 9).

4. Discussion

Unlike ER, PR, or Her-2 positive breast cancer, the treatment
strategies for TNBC patients are limited [26]. Thus, identifying
novel biomarkers could provide novel methods for TNBC
patients. In total, 154 TNBCpatients were obtained in this study
to assess the prognostic role of m7G-related miRNAs. The
patients were grouped depending on the risk score median,
where high-risk patients were found to have a shorter OS. A
multivariate Cox regression analysis was performed combining
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Figure 6: Assessment of the prognostic model. (a–c) ROC curves for 1-, 3-, and 5-year OS rate of nomogram and clinicopathological factors.
(d–f) Nomogram calibration curves for 1-, 3-, and 5-year OS prediction.
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clinicopathological parameters and the risk score, revealing the
independent prognostic effect of the risk model on OS.

Several researches have suggested that m7G modification
may have an essential role in carcinogenesis, but how it
functions in regulating miRNAs during TNBC remains
unknown. Only one research by Pandolfini et al. has success-
fully detected internal m7G mediated by METTL1 in miR-
NAs, demonstrating that m7G not only exists on tRNAs,

rRNAs, and mRNAs but also on miRNAs. Their study found
that m7G modifications showed features different from the
m6A and 5′-methyl phosphate features. The m7G affected
the pri-miRNAs’ secondary structure to promote miRNAs
processing and suppress cell migration [25]. miRNA m7G
modification mediated by METTL1 promotes lung cancer
occurrence and inhibits cancer metastasis; however, the
researchers did not rule out the effect of METTL1 onmRNA.
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Internal m7G inmiRNAs have been detected by another study
and they revealed that m7G inmiRNAs remained to be shown
[27]. In the current study, it was assumed that miRNAs may
participate in m7G modification by regulating their target
genes (m7G modification regulators METTL1 and WDR4).
Thus, the interaction ofm7Gmodification andmiRNAs needs
further research. The m7G modification might be a new func-
tion regulator of miRNA and could help find new therapeutic
strategies in cancer.

Additionally, six m7G-related prognostic miRNAs from
154 TNBC patients were identified. miR-421 upregulates in
cancer [28, 29], and it can promote disease progression
and shorten OS [30–32]. miR-4326 has a proliferative effect
in lung cancer and activates the Wnt pathway [33]. miR-
1915-3p has been demonstrated as a feasible biomarker for
liver cancer, immune diseases, and gastric and thyroid can-
cer [34–37]. A few miRNAs have been associated with tumor
progression. However, few reports have been published
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regarding TNBC, and reports on the correlation between
miRNAs and m7G-related genes have been even rarer. Thus,
this study may help identify the prognostic miRNAs that tar-
get m7G modifications to contribute ideas of potential value
in TNBC occurrence and progress.

In the last part of our study, we found two immune cells,
TIL and Treg, were closely associated with the m7G-related
miRNAs risk model. TIL and Treg were upregulated in high-
risk patients, while they were negatively correlated with

m7G regulators METTL1 and WDR4. Treg cells can inhibit
anticancer immunity and block the effective antitumor
immune response of tumor hosts; thus, they accelerate the
occurrence and development of tumors [38]. And immune
checkpoint inhibitors (ICIs) mainly affect Treg cells, for
example, ICIs targeting programmed cell death 1 could
strengthen the ability of Treg cells for immunosuppression,
which is the reason for the unsatisfactory efficacy of ICIs
on TNBC patients. However, Treg cells could be depleted
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by CTLA-4 inhibitors [39]. In this study, high-risk patients
had a higher level of Treg cell infiltration and CTLA-4
expression, so CTLA-4 inhibitors may treat high-risk TNBC
patients effectively. Among early TNBC patients receiving
adjuvant chemotherapy, the increase of TIL level meant a
prognosis improvement [40]. Another research about neo-
adjuvant therapy of TNBC revealed that patients with high
TIL level meant high pathological complete response so that
the patients could obtain a better prognosis [41]. The high-
risk patients had a higher level of TIL in our study, which
meant our risk model may not only predict the OS but also
predict the response of adjuvant therapy for TNBC patients.
For high-risk patients, their poor prognosis could be
improved after regular therapies. In recent years, TIL ther-
apy has been increasingly used in the treatment of cancers.
Like CAR-T therapy, TIL therapy is also a form of adoptive
immunotherapy. TILs are derived from tumor tissues and
could naturally target patients’ tumor-specific antigens,
while other cellular immunotherapies are mostly derived
from blood, which reduces the ability to recognize tumors.
Six patients with metastatic breast cancer were adopted
TIL therapy in a Phase II Pilot Clinical Trial, half of whom
experienced measurable tumor shrinkage [42]. Further
researches for TIL immunotherapy in TNBC patients are
needed, which could bring hope to cancer patients. Overall,
high-risk patients may benefit from CTLA-4 inhibitors and
TIL therapy. However, further understanding of the m7G-
related miRNAs and immune activity is needed to improve
the immunotherapy strategies for TNBC patients.

Nevertheless, the limitations of our study are that we
were unable to gather our own data to validate the model.
In addition, further verified experiments on the expression,
function, and mechanism of action of these miRNAs are
needed.

5. Conclusion

Genomics and clinical data from the public database using
bioinformatics and medical statistical analysis were gath-
ered. Six m7G-related prognostic miRNAs and established
prognostic risk signature for TNBC patients were identified.
Findings of the current study will give an insight towards the
role of miRNA m7G modification mechanisms in TNBC.
Moreover, this will also help in the early diagnosis of this
cancer.
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