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ABSTRACT Akkermansia muciniphila has evolved to specialize in the degradation
and utilization of host mucus, which it may use as the sole source of carbon and ni-
trogen. Mucus degradation and fermentation by A. muciniphila are known to result
in the liberation of oligosaccharides and subsequent production of acetate, which
becomes directly available to microorganisms in the vicinity of the intestinal mucosa.
Coculturing experiments of A. muciniphila with non-mucus-degrading butyrate-pro-
ducing bacteria Anaerostipes caccae, Eubacterium hallii, and Faecalibacterium prausnitzii
resulted in syntrophic growth and production of butyrate. In addition, we demonstrate
that the production of pseudovitamin B12 by E. hallii results in production of propi-
onate by A. muciniphila, which suggests that this syntrophy is indeed bidirectional.
These data are proof of concept for syntrophic and other symbiotic microbe-
microbe interactions at the intestinal mucosal interface. The observed metabolic in-
teractions between A. muciniphila and butyrogenic bacterial taxa support the exis-
tence of colonic vitamin and butyrate production pathways that are dependent on
host glycan production and independent of dietary carbohydrates. We infer that the
intestinal symbiont A. muciniphila can indirectly stimulate intestinal butyrate levels in
the vicinity of the intestinal epithelial cells with potential health benefits to the host.

IMPORTANCE The intestinal microbiota is said to be a stable ecosystem where
many networks between microorganisms are formed. Here we present a proof of
principle study of microbial interaction at the intestinal mucus layer. We show that
indigestible oligosaccharide chains within mucus become available for a broad range of
intestinal microbes after degradation and liberation of sugars by the species Akkerman-
sia muciniphila. This leads to the microbial synthesis of vitamin B12, 1,2-propanediol, pro-
pionate, and butyrate, which are beneficial to the microbial ecosystem and host epithe-
lial cells.
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The mammalian intestinal tract harbors complex microbial ecosystems that have
been forged by millennia of coevolution between microbes and hosts. It is sug-

gested that the evolution of metabolic interdependencies has led to strong determin-
istic processes that shape the composition of the microbiota during development (1).
The diversity and richness of the gut microbiota within individuals, as well as the
similarity in composition between individuals, are governed by several selective pres-
sures within host habitats, such as diet (2, 3). Recent extreme interventions have
illustrated the importance of dietary carbohydrates on the intestinal microbial com-
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munity succession (4, 5). While dietary fibers affect substrate availability for the colonic
microbiota, the mucus lining that covers the epithelial cells forms a consistent factor
along its internal surface and is proposed to function as an endogenous prebiotic (6–9).
The mucosal layer of the intestine is characterized by specific microbiota communities
enriched with taxa affiliated with the family Lachnospiraceae (also known as Clostridium
cluster XIVa) and the phylum Verrucomicrobia (10–15).

Akkermansia muciniphila is a mucus-colonizing member of the gut microbiota that
has evolved to specialize in the degradation and utilization of host mucus, which it may
use as the sole source of carbon and nitrogen (16, 17). Its mucin degradation activity
leads to the production of 1,2-propanediol, propionate, and acetate (17). In addition, its
mucosal foraging results in the availability of sugars liberated from mucus glycans and
subsequent acetate production can stimulate coexistence of butyrogenic bacteria
within the same mucosal niche (16). Microbe-produced short-chain fatty acids are
described as major health-promoting compounds (18, 19). Because of its location close
to the host cells, a symbiotic mucobiome could therefore be particularly important in
fostering health in terms of nutrient exchange, communication with the host, regula-
tion of the immune system, and resistance against invading pathogens.

Dietary intervention studies (13), in vitro mucosal model studies (20), and microbiota
comparisons of gut lumen and epithelial biopsy specimens (11) have revealed strong
cooccurrence of specific mucolytic bacteria (A. muciniphila, Bacteroides spp., and Rumi-
nococcus spp.) and second-line butyrate producers (Anaerostipes caccae, Eubacterium
spp., Faecalibacterium prausnitzii, and Roseburia intestinalis). This cooccurrence may be
indicative of shared metabolic networks among the different microbial groups. In vitro
isotope labeling has identified lactate and acetate as important precursors of butyrate
production in human fecal samples (21). On top of this, kinetic modeling showed the
likelihood for the dominant butyrate producers, such as Anaerostipes coli and Eubac-
terium hallii, to use short-chain fatty acids for butyrate production by utilizing lactate
and acetate via the butyryl coenzyme A (CoA):acetate CoA transferase route, the main
metabolic pathway for butyrate synthesis in the human colon (22).

In this study, we test the hypothesis that A. muciniphila can serve as the keystone
species supporting a syntrophic network in a mucosal environment. Therefore, we
studied the metabolic interactions between A. muciniphila and representative intestinal
butyrate-producing bacteria; F. prausnitzii (representative of the family Ruminococ-
caceae also known as Clostridium cluster IV) and A. caccae and E. hallii (representatives
of Lachnospiraceae also known as Clostridium cluster XIVa). The results indicate the
existence of trophic chains on mucus between A. muciniphila and the butyrate-
producing F. prausnitzii and A. caccae, while true bidirectional metabolic cross-feeding
dependent on vitamin B12 was observed between A. muciniphila and E. hallii, indicative
of a mutualistic symbiosis.

RESULTS
Growth and metabolism of intestinal butyrate producers on mucus or mucus-

derived sugars. In order to test whether Akkermansia muciniphila can serve as a
keystone species in an environment where mucus is the main nutrient source, we first
tested the ability of butyrate-producing mucosal colonizers to grow on mucus and
mucus-derived sugars in the absence of A. muciniphila. When incubated in culture
media with mucus as the sole carbon and nitrogen source, none of the butyrate-
producing strains tested, Anaerostipes caccae, Eubacterium hallii, and Faecalibacterium
prausnitzii, were able to grow or produce metabolites (see Table S2A in the supple-
mental material).

The mucin sugars D-galactose, D-mannose, GlcNAc, GalNAc, and L-fucose and the
non-mucin sugar glucose were subsequently tested as possible carbon sources for each
butyrate-producing species. Minimal media used for the bacteria differed as a result of
different minimal requirements for protein and spore elements (see Materials and
Methods for details on the composition of the media). F. prausnitzii is known to be able
to grow on GlcNAc and galactose (23). In addition, we tested the growth of F. prausnitzii
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on mannose and GalNAc, but no growth was observed (Table S2B). A. caccae was
observed to use glucose, D-mannose, D-galactose, and GlcNAc for growth, and the main
fermentation products were acetate, butyrate, and lactate (Fig. 1). The highest A. caccae
cell numbers and acetate production were reached with GlcNAc, possibly due to the
fact that fermentation of this amino sugar can replace the need for acetate in the

FIG 1 Metabolic activity of A. caccae on mucin-derived sugars. A. caccae was grown on monosaccharide present in the glycan chain of mucin. The OD600 values
and HPLC profiles are shown for the sugars that resulted in positive growth. The sugars that gave positive test results were also used to perform experiments
with the addition of 10 mM acetate. The graphs show the mean values for the experiments performed a minimum of three times in duplicate. Values that are
significantly different (P � 0.05) in the presence of 10 mM acetate or absence of acetate are indicated by an asterisk. GlucNac, N-acetylglucosamine.
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medium (Fig. 1). E. hallii showed the same preference for sugars as A. caccae did,
resulting in growth on glucose, D-mannose, D-galactose, and GlcNAc (Fig. 2). The main
fermentation products of E. hallii were observed to be acetate, butyrate, and formate.
Again GlcNAc resulted in the highest production of acetate and butyrate compared to

FIG 2 Metabolic activity of E. hallii on mucin-derived sugars. E. hallii was grown on monosaccharide present in the glycan chain of mucin. The OD600 value
and HPLC profiles are shown for sugars that resulted in positive growth. The sugars that gave positive test results were also used to perform experiments
with the addition of 10 mM acetate. The graphs show the mean values for the experiments performed a minimum of three times in duplicate.
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the other sugars, but this was not accompanied with increased cell numbers of E. hallii
(Fig. 2).

Acetate enhances growth of A. caccae but not E. hallii on mucin-derived sugars.
The average production of 10 mM acetate by A. muciniphila grown in medium
containing mucin could serve as the substrate for growth of butyrogens. Therefore, we
added 10 mM acetate to cultures growing on glucose, D-mannose, D-galactose, and
GlcNAc. In the case of A. caccae, this did indeed lead to the production of butyrate,
acetate, lactate, and formate as measured in a minimal medium. Furthermore, these
butyrate production levels were significantly higher than the observed butyrate pro-
duction without added acetate (Fig. 1).

Weak growth of A. caccae on L-fucose was observed after the addition of acetate but
without detected metabolite production. Acetate alone did not support growth (Ta-
ble S2C). The addition of acetate to the growth media of E. hallii did not result in
differences in growth or metabolite profile, possibly due to its own production of
acetate (Fig. 2).

The overall fermentation efficiency was determined by calculating the carbon
balance at each monosaccharide condition. The recovery of carbon atoms varied in
between 70 and 100%, depending on the biomass produced that explains the loss
(Tables 1 and 2).

Mucus-induced trophic chains of A. muciniphila and butyrate producers A.
caccae, E. hallii, and F. prausnitzii results in butyrate production After the mon-
oculture experiments, a series of cocultures of approximately equal amounts of A. mu-
ciniphila and butyrate producers were set up to test whether sugars and acetate
produced as a result of mucin degradation by A. muciniphila would enable butyrate
production of the chosen isolates. Remarkably, this coculturing on mucin-containing

TABLE 1 Carbon balance of A. caccae on mucin-derived sugars with or without acetate

Sugar

No. of carbons (mM)
Carbon
recovery (%)Substrates Products

Sugar Acetate Lactate Acetate Butyrate Formate CO2 Avg SD

Glucose 110 60 26 24 101 13
Glucose � 10 mM acetate 136 8 8 62 2 82 71 0

Mannose 121 55 27 27 85 12
Mannose � 10 mM acetate 140 8 10 73 2 76 78 8

Galactose 99 38 26 22 88 10
Galactose � 10 mM acetate 144 11 11 75 2 59 77 12

GlcNAc 162 7 26 98 27 98 2
GlcNAc � 10 mM acetate 192 5 31 84 3 34 81 11

TABLE 2 Carbon balance of E. hallii on mucin-derived sugars with or without acetate

Sugar

No. of carbons (mM)
Carbon
recovery (%)Substrates Products

Sugar Acetate Lactate Acetate Butyrate Formate CO2 Avg SD

Glucose 122 14 55 7 27 87 30
Glucose � 10 mM acetate 133 8 56 12 29 79 18

Mannose 106 19 66 12 24 117 24
Mannose � 10 mM acetate 115 9 49 12 26 85 21

Galactose 74 0,1 50 5 16 96 29
Galactose � 10 mM acetate 106 0,1 64 13 24 93 14

GlcNAc 147 57 76 11 25 116 40
GlcNAc � 10 mM acetate 160 44 61 11 27 90 19
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media supported growth and butyrate production for all three tested species (Fig. 3).
A. caccae produced butyrate in levels comparable to those found in the monoculture
conditions that were supplemented with acetate. Similarly, F. prausnitzii also produced
butyrate in coculture with A. muciniphila and also produced 5 mM formate indicative
of acetate consumption. Butyrate levels produced by E. hallii were in the range of what
was seen in the monocultures growing on single sugars. The pH was monitored in all
experiments and stayed around pH 6.5 throughout the experiments. Determination by
quantitative PCR (Q-PCR) and qualitative presence (fluorescent in situ hybridization
[FISH]) of the butyrate-producing species within the cocultures indicated a difference in
abundance of the butyrate producers of several log units compared to the abundance
of A. muciniphila (Fig. 3 and Table S1). The abundance of A. caccae increased 100-fold
over the first 8 days of incubation based on the increase in its 16S rRNA gene copy
number. Maximum butyrate levels were reached after 11 days of incubation. In contrast
to the results for cultures, no lactate was measured during the cross-feeding experi-
ments with A. caccae. Both Q-PCR and FISH results indicated a ratio of A. muciniphila to
A. caccae of approximately 100:1.

FIG 3 A. muciniphila degradation and fermentation of mucus enables cross-feeding by the butyrate-producing gut isolates. (A to C) Cocultures of A. muciniphila
with butyrate-producing isolates were performed and measurements of product formation and consumption (A), FISH staining (B), and Q-PCR (C) were
performed. (D) Measurement of A. muciniphila metabolites on mucus-containing media without the addition of vitamin B12 or with vitamin B12 from E. hallii
or pseudovitamin B12 from E. hallii. The graph shows the mean values for the experiment performed a minimum of three times in duplicate. Asterisks indicate
a significant difference (P � 0.05) compared to the condition without vitamin B12 added.
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In the F. prausnitzii-A. muciniphila cocultures, F. prausnitzii 16S rRNA gene copy
numbers decreased, and a small amount of butyrate appeared after 8 days of incuba-
tion. FISH staining revealed the presence of F. prausnitzii cells within the cocultures but
confirmed its slow growth. Finally, within the E. hallii-A. muciniphila cocultures, low
levels of butyrate started to build up after 8 days. This was associated with an increase
in 16S rRNA gene copy numbers of E. hallii on day 8. Q-PCR and FISH staining showed
an A. muciniphila-to-E. hallii ratio of 100:1 after 8 to 24 days (Fig. 3 and Table S1).

Vitamin B12-dependent syntrophy between E. hallii and A. muciniphila. Analy-
ses of the metabolites produced in cocultures showed that in the A. muciniphila-E. hallii
coculture, the proportion of succinate to propionate had shifted compared to the
proportion in monocultures of A. muciniphila (Fig. 3). This was not observed in the other
cocultures. Notably, 1,2-propanediol, found as a result of fucose degradation by A. mu-
ciniphila in monocultures, was not detected in the coculture with E. hallii.

Conversion of propionate to succinate involves vitamin B12-dependent methyl-
malonyl-CoA mutase. Detailed mass spectroscopy analysis confirmed that E. hallii is
capable of synthesizing a B12 vitamer in monocultures as described previously (24). Our
analyses show that the structure of this vitamer (Fig. 4) is pseudovitamin B12, as the
lower ligand contained adenine instead of 5,6-dimethyl benzimidazole (DMBI). No
effect of DMBI addition was observed on the structure of the produced B12 vitamer.

To test the hypothesis that A. muciniphila can use the pseudovitamin B12 produced
by E. hallii for the conversion of succinate to propionate, the effects of both purified
E. hallii and commercially available vitamin B12 on A. muciniphila growth were tested.
Indeed, the addition of pseudovitamin B12 and vitamin B12 resulted in significant lower
succinate levels and significant higher propionate production. The addition of either
vitamin B12 resulted in a profile identical to the profile observed for A. muciniphila-
E. hallii coculture (Fig. 3).

These observations provide evidence for bidirectional metabolic cross-feeding be-
tween A. muciniphila and E. hallii. A. muciniphila liberates sugars from mucus and
produces 1,2-propanediol for growth support of E. hallii. In return, A. muciniphila is
provided with a vitamin B12 analogue used as a cofactor for the conversion of succinate
to propionate via methylmalonyl-CoA synthase (Fig. 5). Apparently both vitamin B12

and pseudovitamin B12 can be used as a cofactor by A. muciniphila to activate the
methylmalonyl-CoA synthase. Hence, the B12 vitamer produced by E. hallii is in the
pseudovitamin B12 form and can be used by other intestinal microorganisms, but it has
lower affinity than vitamin B12 for the human intrinsic factor (25).

DISCUSSION

In spite of the great interest in metabolic conversions in the human gut, there is
limited information on actual product sharing mechanisms and trophic dependencies
of individual members of the intestinal microbiota. One such syntrophic relationship
has been described for the species Bacteroides thetaiotaomicron and Faecalibacte-
rium prausnitzii (26). F. prausnitzii can metabolize acetate produced by B. thetaiotao-
micron to produce butyrate. This butyrate is then utilized by host epithelial cells
and regulates host immunity via epithelial cell signaling, colonic T regulatory cells, and
macrophages (19, 27). In addition, a few studies demonstrated the use of lactate and
acetate produced by Bifidobacterium spp. by colonic butyrate producers (28–30).
Specifically, this form of cross-feeding has been described for Bifidobacterium adoles-
centis and F. prausnitzii (30).

Moreover, cocultivation of amylolytic bacteria from the human colon, such as
Eubacterium rectale, B. thetaiotaomicron, or Bifidobacterium adolescentis, with Rumino-
coccus bromii L2-63 can lead to increased starch utilization (31). In addition, coculturing
of the non-starch-degrading species Anaerostipes hadrus with R. bromii has been shown
to result in the removal of the reducing sugars that accumulate in R. bromii monocul-
tures (32). Similarly, by stable isotope probing with 13C-labeled resistant starch has
revealed a butyrogenic trophic chain between R. bromii and E. rectale in an in vitro
human colon model (33, 34).
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Various studies have coupled cooccurrence networks of bacteria to their genome
content to model possible metabolic cross-feeding (22, 35). It should be noted that the
studies discussed above all focus on cross-feeding that relies on diet-derived colonic
sugars. However, mucin-derived sugars are the main source of energy for a group of
microbiota members that can directly impact host cross talk at the mucosa (26).
Mucus-dependent microbial networks at the mucosal layer would yield butyrate and
other components with health benefits to the host (26). Our study supports the
hypothesis that cross-feeding between microbiota members can take place when
mucus is the only carbon source to support growth. Such mucosal trophic networks
could determine host microbial cross talk in immune and metabolic regulation.

The mucosa-colonizing bacterium A. muciniphila is strongly correlated with a lean
phenotype and increased barrier function (36–38). The correlation between A. mucini-

FIG 4 UHPLC-UV chromatogram of E. hallii vitamin B12. (A) Immunoaffinity-purified cell extract of E. hallii (in arbitrary units
[AU]) is shown on the y axis, and time (in minutes) is shown on the x axis. Tr, retention time. (B) LC-MS/MS identified a peak
at 3.16 min. (C) Chemical structure of pseudovitamin B12 from E. hallii.
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phila and host might depend on an additional microbial player. Indeed, we have shown
that the mucus-degrading capacity of A. muciniphila may provide substrates to butyrate
producers tested.

Two distinct types of trophic chains between A. muciniphila and butyrate-producing
species were observed in this study. In the case of A. caccae, liberated sugars from
mucus could sustain growth but A. muciniphila-derived acetate increased growth and
metabolic production of butyrate even further, indicative of metabolic syntrophic interac-
tions. In the case of E. hallii, a specific metabolic and cofactor syntrophic interaction was
observed; pseudovitamin B12 affected the carbon flux within A. muciniphila, resulting in
propionate production.

It is known from human studies that propionate delivered to the colon has various
beneficial effects, including the regulation of satiety (39). Remarkably, E. hallii was able
to utilize mucus sugars, in agreement with an earlier report (40). However, E. hallii had
no clear advantage when acetate was present, possibly due to its own production of
acetate when grown on mucus-derived sugars that already reached levels comparable
to that of A. muciniphila monoculture.

Recently, it was reported that E. hallii is also able to use 1,2-propanediol for the
production of propionate. Our data show the lack of 1,2-propanediol in the A. mucini-
phila-E. hallii coculture and supports the previous suggested syntrophic possibilities
between intestinal microbes (24). 1,2-Propanediol is produced by A. muciniphila from
fucose. As such, the presence or absence of fucose in the intestinal mucosa (FUT2
polymorphism) may help explain microbial networks at the mucosal layer (41). Fur-
thermore, in coculture experiments with A. muciniphila and F. prausnitzii, low levels of
butyrate were measured accompanied by the presence of cells and 16S rRNA copies of
this butyrate producer as opposed to monocultures of the organism on the same
medium (Table S2A). These results further indicate that the association of butyrate
Clostridium cluster XIVa and IV species could indeed yield the production of butyrate as
a result of a microbial metabolic network in the mucosal layer, which is poor in usable
carbon sources.

The fact that a changed metabolic profile for A. muciniphila in the presence of
E. hallii was found is further evidence supporting a mutualistic syntrophic interaction.
The availability of pseudovitamin B12 in vivo can be of importance for the microbial
ecosystem as well as the host. Microorganisms are the only natural sources of the

FIG 5 Schematic overview of mucus-dependent cross-feeding network. Keystone mucolytic bacteria,
such as A. muciniphila, degrade mucin glycans resulting in oligosaccharides (mainly galactose, fucose,
mannose, and GlucNac) and SCFAs (acetate, propionate, and 1,2-propanediol) that can be used for
growth, as well as propionates, butyrate, and vitamin B12 production by cross-feeding partners. Treg GPR,
regulatory T cell G-protein-coupled protein receptor.
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pseudovitamin B12 derivatives, and several intestinal microbes have been reported to
contribute to the pseudovitamin B12 levels in the intestine (42). The approximate
concentration of the cobalamin analogue adenine (as produced by E. hallii) is 164 ng/g
(wet weight) of feces (43), and this is also in the range of what we found to be needed
for A. muciniphila propionate induction (100 ng/ml). It is not clear whether pseudovi-
tamin B12 can be used by intestinal cells. While the affinity of human intrinsic factor for
pseudovitamin B12 is lower than that for vitamin B12, it is equally bound by transco-
balamin and haptocorrin human corroid factors (25) and is not antagonistic to vitamin
B12 (44), and it may be transported without intrinsic factor (45). Moreover, it has been
shown that pseudovitamin B12 produced by Lactobacillus reuteri, also an abundant
mouse intestinal bacterium, can alleviate vitamin B12 deficiency in mice (46, 47).

In summary, the present data indicate that pseudovitamin B12 is biologically active
in A. muciniphila propionate metabolism that involves methylmalonyl-CoA mutase (48).
Hence, the synthropic partners together produce a higher propionate-to-succinate
ratio, and this in turn is beneficial for host cell metabolism. It also implies that
stimulating or diminishing a keystone species, such as A. muciniphila, from the micro-
biota can have dramatic effect on a complete microbial network and associated
host-microbe homeostasis. In this case, stimulating or administrating A. muciniphila
within the intestine might benefit from addition of another organism or solely pseu-
dovitamin B12 to stimulate the organism’s production of propionate and a healthy
mucosal environment (Fig. 5).

Many gastrointestinal disorders have been associated with mucosal damage and
lower gut barrier function. The fact that intestinal bacteria may have an impact on both
these factors, either directly or via specific immune and metabolic stimulation, further
emphasizes the importance of having the right bacteria at the right place. Loss of
mucosal integrity and the associated mucobiome could be indicative of disease states
and its development. A. muciniphila has been positively associated with a lean pheno-
type and beneficial metabolic gene regulation in human cell types (36, 49). Its presence
might be essential for a mucosal adherent network of beneficial microorganisms that
together prompt these effects of the host. As a matter of fact, weight loss studies
usually report increased abundance of Verrucomicrobia (mainly A. muciniphila) as well
as several other microbial species (50–52). Taken together, these results further indicate
the possible importance of mucosa-associated microbial networks and their metabolic
cross-feeding for regulation of host health-related parameters and prevention of
disease.

MATERIALS AND METHODS
Bacterial growth conditions. Akkermansia muciniphila MucT (ATTC BAA-835) was grown as de-

scribed previously (17, 53). Purified mucin was prepared as follows. Ten grams of hog gastric mucin (type
III; Sigma-Aldrich) was dissolved in 500 ml of 0.1 M NaCl (pH 7.8) containing 0.02 M phosphate buffer
(0.02 M NaH2PO4 and Na2HPO4) (pH 7.8), stirring for 24 h at 4°C. After 1 h, the pH was adjusted to pH 7.2
using 1 M NaOH. After centrifugation, the supernatant was cooled on ice and precipitated with 60%
(vol/vol) prechilled ethanol. After centrifugation, the pellet was dissolved in 0.1 M NaCl. These last two
steps were repeated twice. After the last centrifugation step, the pellet was washed once with 100%
ethanol, dissolved in 100 ml Milli-Q, and dialyzed using Spectra/Por 6 8,000-Da MWCO (molecular weight
cutoff) protein dialysis with four changes. Last, the dialyzed mucin was freeze dried and dissolved in
Milli-Q at a concentration of 5% (wt/vol). Mucin was added to the medium after autoclaving. The
resulting purified mucin was tested for the absence of oligosaccharides. Incubations were performed in
serum bottles sealed with butyl rubber stoppers at 37°C under anaerobic conditions provided by a gas
phase of 182 kPa (1.5 atm) N2/CO2 (80/20 ratio). Growth was measured by a spectrophotometer as the
optical density at 600 nm (OD600).

Faecalibacterium prausnitzii A2-165 was grown anaerobically at 37°C in YCFA medium supplemented
with 33 mM acetate and 25 mM glucose (53). Anaerostipes caccae L1-92 (54) was grown anaerobically at
37°C in either PYG medium (DSMZ) or minimal medium (55) containing 25 mM glucose. Eubacterium hallii
L2-7 was grown anaerobically at 37°C in YCFA medium without the addition of fatty acids (propionate,
isovaleric acid, valeric acid, isobutyrate, and butyrate). Mucin sugar utilization was performed in minimal
medium with or without the addition of 10 mM acetate. In some cases, the experiments were performed
with mucin-derived single sugars (mannose [Sigma-Aldrich]), fucose (Sigma-Aldrich), galactose (Bio-
chemika), N-acetylgalactosamine (Sigma-Aldrich), or N-acetylglucosamine (Sigma-Aldrich); these were
used at a concentration of 25 mM. Growth was monitored for 24 h, and samples were collected regularly
for OD600 and high-performance liquid chromatography (HPLC) analysis.
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Coculture experiments were performed in minimal medium supplemented with mucus (17), and the
medium was buffered to reduce pH changes due to fermentation products. Optimal coculture conditions
were established as follows. A. muciniphila was added to media containing mucin, and the media
containing bacteria were incubated for 8 h to reach measurable concentrations of acetate and liberate
sugars. Subsequently, 108 cells of A. caccae, E. hallii, or F. prausnitzii were added to the A. muciniphila-
containing cultures. All cells had been washed twice with phosphate-buffered saline (PBS) before being
added to the coculture to prevent carryover of products from the preculture. During the coculture, 0.15%
mucin was added to the medium every 48 h to maintain sufficient substrate availability for A. muciniphila.
All growth experiments were repeated a minimum of three times in duplicate.

High-performance liquid chromatography. For fermentation product analysis, 1 ml of bacterial
culture was centrifuged, and the supernatant was stored at �20°C for high-performance liquid chro-
matography (HPLC) analysis. Substrate conversion and product formation were measured with a Thermo
Scientific Spectrasystem high-performance liquid chromatography (HPLC) system equipped with a Varian
Metacarb 67H column (300 by 6.5 mm) kept at 45°C and with 0.005 mM sulfuric acid as the eluent. The
eluent had a flow rate of 0.8 ml/min, and metabolites were detected by determining the refractive index.
Carbon balances were calculated by the amount of carbon of the products/amount of carbon of the
substrate � 100%, using sugars and short-chain fatty acids (SCFAs) as measured by HPLC with biological
triplicate samples and technical duplicate samples. We used theoretical CO2 calculations: 6 mol glucose
yields 8 mol CO2, and 1 mol lactate yields 1 mol CO2.

Ultrahigh performance liquid chromatography-mass spectrometry (UHPLC-MS). For vitamin B12

analysis, E. hallii cells (0.2 g) were mixed with 10 ml of extraction buffer (8.3 mM sodium hydroxide and
20.7 mM acetic acid [pH 4. 5]) containing 100 �l of 1% NaCN. The vitamin was extracted in its cyano form
by subjecting the mixture to a boiling water bath for 30 min. After cooling, the extract was recovered by
centrifugation (6,900 � g for 10 min; Hermle, Wehingen, Germany) and finally purified by immunoaffinity
column chromatography (Easy-Extract; R-Biopharma, Glasgow, Scotland). The reconstituted extract was
analyzed for vitamin content using an HSS T3 C18 column (2. 1 by 100 mm; 1.8 �m) on a Waters Acquity
UPLC (ultraperformance liquid chromatography) system (Milford, MA) equipped with a photodiode array
detector (PDA) (210 to 600 nm) and interfaced to a high-resolution quadrupole time of flight mass
spectrometer (QTOF; Synapt G2-Si, Waters). The eluent was a gradient flow (0.32 ml/min) of water
(solvent A) and acetonitrile (solvent B), both acidified with 0.1% formic acid: 0 to 0.5 min (95 parts solvent
A to 5 parts of solvent B [95:5]), 0.5 to 5 min (60:40), 5 to 6 min (60:40), and 6 to 10 min (95:5). The column
was maintained at 30°C, and the UV detection was recorded at 361 nm. The MS analysis was done in
positive ion mode with electrospray ionization, using a scanning range set for m/z of 50 to 1,500. The
parent ions corresponding to the vitamin peak were further fragmented (tandem mass spectrometry
[MS/MS]) and analyzed.

Fluorescent in situ hybridization (FISH). The following rRNA-targeted oligonucleotide probes were
used: (i) Cy3-labeled universal EUB338 (5=-GCTGCCTCCCGTAGGAGT-3=), which is complementary to a
conserved region of the bacterial 16S rRNA molecule specific to most eubacteria except phyla of
Plantomycetales and Verrucomicrobia (17); and (ii) Cy5-labeled EUB338 III (5=-GCTGCCACCCGTAGGTGT-3=),
the supplementary probes for eubacteria to target Verrucomicrobia (56).

Cell fixation, in situ hybridization, DAPI staining, and microscopy. Bacterial cultures (0.5 ml) were
fixed overnight with 1.5 ml of 4% paraformaldehyde (PFA) at 4°C. Working stocks were prepared by
harvesting bacterial cells by 5 min centrifugation at 8,000 � g, followed by resuspension in ice-cold
phosphate-buffered saline (PBS) and 96% ethanol at a 1:1 (vol/vol) ratio. Three microliters of the
PBS-ethanol working stocks were spotted into 18 wells (round wells with a 6-mm diameter) on
gelatin-coated microscope slides. The slides were hybridized with the DNA probes by applying 10 �l of
hybridization mixture per well, which contained 1 volume of probe mixture (probe concentration of
20 �M) and 9 volumes of hybridization buffer (20 mM Tris-HCl, 0.9 M NaCl, 0.1% SDS [pH 7.2]). The slides
were hybridized for at least 3 h in a moist chamber at 50°C; this was followed by 30-min incubation in
washing buffer (20 mM Tris-HCl, 0.9 M NaCl [pH 7. 2]) at 50°C for washing. The slides were rinsed briefly
with Milli-Q and air dried. The slides were stained with a 4,6-diamine-2-phenylindole dihydrochloride
(DAPI) mixture containing 200 �l PBS and 1 �l DAPI dye (100 ng/�l) for 5 min in the dark at room
temperature, followed by Milli-Q rinsing and air drying. The slides were then covered with Citifluor AF1
and a coverslip. The bacteria on the slides were enumerated using an Olympus MT ARC/HG epifluores-
cence microscope. A total of 25 positions per well were automatically analyzed in three-color channels
(DAPI, Cy3, and Cy5) using a quadruple band filter.

Quantitative real-time PCR. The abundances of A. muciniphila and butyrate producers in coculture
were determined by quantitative real-time PCR. Bacterial cultures were harvested at 16,100 � g for
10 min. DNA extractions were performed using MasterPure Gram-positive DNA purification kit. The
DNA concentrations were determined fluorometrically (Qubit dsDNA HS [double-stranded DNA high-
sensitivity] assay; Invitrogen) and adjusted to 1 ng/�l prior to use as the template in quantitative PCR
(Q-PCR). Primers targeting A. muciniphila, A. caccae, and E. hallii based on specific variable regions of the
16S rRNA gene (Table 3) were used for quantification. Standard template DNA was prepared from the 16S
rRNA gene of each bacterium by amplification with primers 27F (F stands for forward) and 1492R (R
stands for reverse). Standard curves were prepared with nine standard concentrations of 100 to 108 gene
copies �l�1. PCRs were performed in triplicate with iQ SYBR green supermix (Bio-Rad) in a total volume
of 10 �l with primers at 500 nM in the wells on 384-well plates with the wells sealed with optical sealing
tape. Amplification was performed with an iCycler (Bio-Rad) and the following protocol: one cycle of 95°C
for 10 min; 35 cycles of 95°C for 15 s, 60°C for 20 s, and 72°C for 30 s each; one cycle of 95°C for 1 min;
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one cycle of 60°C for 1 min; and a stepwise increase of the temperature from 60 to 95°C (at 0.5°C per 5 s)
to obtain melt curve data. Data were analyzed using the Bio-Rad CFX Manager 3.0.

Statistics. Statistics were performed using t test and corrected for multiple testing using false-
discovery rate (FDR) correction for multiple comparisons. P values of �0.05 were considered significant.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00770-17.
TABLE S1, PDF file, 0.04 MB.
TABLE S2, PDF file, 0.1 MB.
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