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Dengue and Zika viruses are closely related mosquito-borne flaviviruses responsible

for major public health problems in tropical and sub-tropical countries. The genomes

of both, dengue and zika viruses encodes 10 genes that are translated into three

structural proteins (C, prM, and E) and seven non-structural proteins (NS1, NS2A,

NS2B, NS3, NS4A, NS4B, and NS5). The non-structural protein 1 (NS1) is a highly

conserved glycoprotein of approximately 48–50 KDa. In infected cells, NS1 is found as a

homodimer associated with intracellular membranes and replication complexes, serving

as a scaffolding protein in virus replication and morphogenesis. NS1 is secreted efficiently

from infected cells as a hexamer and is found in patient’s sera during the acute phase of

the disease. NS1 detection in sera is a valuable diagnostic marker and immunization with

NS1 has been shown to protect animal models from lethal challenges with dengue and

Zika viruses. Nevertheless, soluble NS1 has been associated with severe dengue and

anti-NS1 antibodies have been reported to cross-react with host platelets and endothelial

cells and thus presumably contribute to pathogenesis. Due to the implications of NS1

in arbovirus pathogenesis and its relevance as vaccine candidate, we discuss the dual

role that anti-NS1 antibodies may play in protection and disease and the challenges that

need to be overcome to develop safe and effective NS1-based vaccines against dengue

and Zika.

Keywords: dengue, Zika, flavivirus, NS1 protein, arbovirus, vaccines against flavivirus, immuno-pathogenesis,

molecular mimicry

INTRODUCTION

Dengue is the most important mosquito-borne viral disease in humans. It is endemic in over 100
countries and it is estimated that nearly 2/3 of the world’s population lives in risk areas for this
disease. The dengue virus (DENV) is classified as part of the genus Flavivirus within the family
Flaviviridae and is transmitted to humans mainly by twomosquito species,Aedes aegypti andAedes
albopictus (1). Other mosquito-borne flaviviruses causing disease in humans are the Yellow fever
virus, the West Nile virus, the Japanese encephalitis virus and the Zika virus.
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There are four DENV serotypes circulating around the world
and all can cause disease. Whilst most DENV infections are
asymptomatic, they can present clinical signs such as high-
degree fever, headache, muscle, joint pain, and rash; clinical
signs are usually fully resolved within 5–7 days in dengue fever
(DF). However, DF can evolve in a fraction of the patients
to a life-threatening form of the disease, severe dengue (SD),
characterized by bleeding, plasma leakage and organ impairment
(2). DENV infection confers life-long protection against the
homologous serotype. However, a secondary infection with a
heterologous serotype is a risk factor for the development of
severe dengue (3, 4). The antibody-dependent enhancement
(ADE) has been pointed as a major mechanism underlying the
increased risk of severe dengue during secondary infections (4).
Despite the great burden associated with dengue, so far there
is no specific treatment for this disease (5) and, unfortunately,
the current licensed tetravalent live-attenuated vaccine has been
associated with predisposition to severe dengue when applied to
DENV-naive people (6).

The DENV virion is enveloped with ∼50 nm in diameter
and the genome consists of a single-stranded RNA molecule
of positive polarity of approximately 11Kb (7). The DENV
genome encodes for 3 structural proteins (capsid, C; precursor
membrane and membrane prM/M; envelope, E) and for 7 non-
structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5),
all derived from a polyprotein of around 3,400 amino acids
by proteolytic processing (7). Viral replication occurs in the
cytoplasm in association with the rough endoplasmic reticulum
(RER) and involves both viral NS proteins and cellular proteins,
for replication, translation, and encapsidation of the genome
(7). Finally, in vertebrate cells, mature virions are secreted to
the extracellular media, along with the NS1 protein, following
a classical secretory route that involves the Golgi complex and
the previous cleavage of the prM protein by the host protease
furin (8).

THE MULTIPLE PROPERTIES OF THE
FLAVIVIRUS NS1 PROTEIN

The DENV NS1 is a glycoprotein of around 46–50 KDa, that
shows high conservation among the 4 DENV serotypes and
even among various other arthropod-borne flaviviruses (9–11).
Mature monomeric NS1 is released into the lumen of the ER after
cleavage from E and NS2A. In the infected cell, NS1 is found
mainly associated to intracellular membranes and organelles
induced by the virus infection. However, a fraction of NS1 can
also be found associated with lipid rafts on the plasma membrane
or soluble, secreted into the supernatant (12, 13). Membrane-
associated NS1 is dimeric, with well-defined hydrophobic and
hydrophilic faces, facing the ER membrane and the ER lumen,
respectively (14). Secreted NS1 is an open barrel hexamer
associated with lipids (14, 15). Three distinct domains have
been identified along the structure of NS1; a β-roll domain
comprising the first 29 amino-terminal residues, followed by
a “wing” domain, comprising positions 30–180 and finally a
β-ladder domain, constituted by the carboxy-terminal residues

181–352. While the wing and β-ladder domain are basically
hydrophilic in nature, the β-roll domain is hydrophobic and
likely to interact with cell membranes (13). NS1 has been found
as an organizational protein of the viral replication complexes
essential for viral viability, even though its exact role in DENV
the replication is not yet fully understood. It has been suggested
that intracellular NS1 is a necessary cofactor for viral RNA
replication and virion morphogenesis and may also play a role
in the modulation of the innate immune response (13, 14).

NS1 is found at high levels (in the order of µ/ml) in the
sera of infected patients early during infection and extensive
evidence suggests that NS1 is related to SD pathogenesis (9–11).
Fundamental characteristics that distinguish SD from the more
benign forms of the disease are hemorrhage, coagulopathy, and
a sharp increase in vascular permeability (2). Disease severity
have been found to correlate with high levels of circulating NS1
in patient’s sera (16–18). To explain the direct participation
of NS1 in SD, several mechanisms, such as the capacity of
NS1 to form complexes with prothrombin/thrombin, have been
proposed (17). More recent evidence indicates that DENV NS1
has the capacity to directly induce glycocalyx degradation as well
as destabilization of tight junctions in a tissue-specific manner,
suggesting a direct participation of NS1 in the endothelial plasma
leakage observed in patients with SD (19, 20). Soluble NS1 has
also been shown to activate key cell components of vascular
homeostasis such as macrophages, mononuclear peripheral cells
and platelets via direct interaction with Toll-Like Receptor 4
(TLR4) (21, 22). The NS1-mediated activation of macrophages
and mononuclear cells leads to secretion of pro-inflammatory
cytokines, known to alter tight junctions (23), while the activation
of platelets leads to increased platelet aggregation, adhesion to
endothelial cells and phagocytosis by macrophages. In addition,
pre-incubation of hepatocytes with soluble NS1 enhances the
replicative capacity of these cells for dengue, suggesting a role
for NS1 in the modulation of innate immune responses (13).
All these results strongly support the notion that soluble NS1
directly participates in the plasma leakage, thrombocytopenia,
and hemorrhages associated with SD.

ANTI-NS1 ANTIBODIES CROSS
REACTIVITY WITH HOST MOLECULES

Soluble NS1 elicits strong humoral responses in the host. Anti-
NS1 antibodies can either be protective or deleterious to the
host, as NS1 antibodies can recognize host factors by molecular
mimicry to cause tissue damage and impair physiological
functions. The notion that anti-NS1 antibodies do participate
in dengue pathogenesis resulted from experiments by Falconar,
who showed that anti-NS1 monoclonal antibodies cross-react
with human fibrinogen, thrombocytes and endothelial cells and
produce hemorrhage in a mouse model (24).

Plasma leakage is one of the key clinical manifestations
of severe dengue and a major target for anti-NS1 antibodies
are endothelial cells, key players in maintaining vascular
homeostasis. In a pioneering article on the subject, Lin et al.
(25) reported that sera collected from dengue patients contained
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antibodies able to induce damage to HUVEC endothelial cells
via caspase activation and induction of apoptosis. Pre-treatment
with recombinant NS1 reduced the damaging capacity of the
sera. The same group later reported that binding of anti-NS1
antibodies to HMEC-1 endothelial cells causes the expression
of proinflammatory cytokines such as IL-6, IL-8, and MCP-1
and cell activation as indicated by the expression of adhesion
molecules such as ICAM-1 (26). The molecular bases of the cross
reactivity of anti-NS1 antibodies with endothelial cells have been
partially defined. Using HUVEC cells, Liu et al. (27) found that
the human protein LYRIC (lysine rich CEACAM1 co-isolated)
is a target recognized by anti-NS1 cross-reactive antibodies
in endothelial cells. The binding of cross-reactive anti-NS1
monoclonal antibodies (mAbs) to LYRIC enhanced apoptosis
and complement-dependent cell cytotoxicity, indicating that the
recognition of LYRIC is indeed associated to endothelial cell
damage. Finally, an epitope located in a disordered loop of the
wing domain of NS1 (116–119) has been deemed responsible
for the cross reactivity between NS1 and LYRIC (Figure 1A).
Of note, LYRIC plays a role in the activation of various
signaling pathways, including the NF-κB; in agreement, the
reduction of apoptosis and nitric oxide (NO) production of
endothelial cells mediated by anti-NS1 antibody binding can be
significantly reduced if cells are treated with inhibitors of the
NF-κB pathway (29, 30).

Anti-NS1 cross reactive antibodies may also play a role
in the liver damage observed in patients with dengue, as
suggested by observations using a murine model. Inoculation
of mice with recombinant DENV NS1, but not with JEV
NS1, resulted in the production of antibodies capable of
recognizing naïve mouse liver endothelial cells and interestingly,
not kidney endothelial cells. Moreover, mice inoculated with
rNS1 or passively immunized with anti-NS1 IgG, showed altered
transaminase (AST and ATL) levels, but not indication of kidney
damage (31); yet, there is not obvious explanation for the organ
specific damage cause by anti-NS1 antibodies.

Coagulopathy and thrombocytopenia are also features
associated with SD. Anti-NS1 antibodies have also been reported
to target platelets, thrombin and plasminogen. The protein
disulfide isomerase (PDI) on platelets is recognized by antibodies
that recognize a peptide of DENV NS1 corresponding to amino
acid residues 311–330, located in the C terminal region, in the
β-ladder domain (Figure 1B). These antibodies are present in the
sera of naturally infected patients and upon binding to platelets
are capable of inhibiting isomerase activity and promote platelet
aggregation (32, 33). In addition, platelets opsonized by anti-NS1
antibodies are more readily phagocytosed by macrophages (34).
Finally, anti-NS1 antibodies also recognize components of the
coagulation pathways, pointing to a role of these antibodies in
the hemorrhagic disorders associated with dengue (35). After
immunization of mice with DENV rNS1, several mAbs capable
of recognizing human plasminogen could be isolated (35). These
mAbs not only bind plasminogen but also induce its activation
and conversion to plasmin due to catalytic properties. Again,
the cross-reactive epitope on NS1 raising the higher affinity
mAbs (305–311) is in the β-ladder, C-terminal region of the
protein (Figure 1C).

THE NS1 PROTEIN AS A VACCINE
CANDIDATE

Traditionally, dengue vaccines have been developed using the
envelope (E) and pre-membrane proteins (prM) of dengue virus
(DENV) as immunogens. This approach has resulted in the first
licensed vaccine with regulatory approval in various countries
(36). However, alternative strategies are still pursued due to
the risk of vaccine-related ADE induction made evident during
follow up studies of the CYD-TDV leading vaccine candidate
(37). NS1 has been an attractive candidate for many years due
to (a) lack of presence on the virion’s surface, resulting in lower
risk of inducing antibodies with ADE potential; (b) high degree
of conservation amongst DENV serotypes; (c) high levels of NS1
protein secretion of up to 50µg/ml of plasma, which correlates
with severity during DHF/DSS (13, 38) and acts as a viral toxin,
thus becoming a potential vaccine target; (d) early evidence
that recovered patients have high titers of anti-NS1 antibodies;
(e) high levels of immunogenicity and evidence of protection
against DENV infection in mice upon NS1 vaccination and
the involvement of antibodies and CD4+ T cells (39). This is
in spite of the controversial role that anti-NS1 antibodies can
play, such as the cross reactivity with endothelial cell surface
proteins leading to apoptosis (25–27, 29, 30), platelet cross
reactivity causing dysfunction and tendency to bleed (32, 33)
and reactivity with proteins of the coagulation cascade, such
as thrombin (40) (Figures 1A-D). Initial observations made by
Schlesinger et al. during mid 1980s of the protective efficacy
of the glycoprotein gp48 (NS1) against Yellow Fever in mice
(41) and macaques (42) led to the seminal work showing
that immunization with DENV-2 NS1 protein was able to
elicit protection against a homologous DENV infection (43).
Recombinant viral vectors in the form of vaccinia virus made
an early entry in the NS1 vaccine field, and vaccine efficacy was
demonstrated using mouse encephalitis DENV models (44). By
2003, DNA vaccines had become a trend in vaccinology and
attempts to induce immunity against DENV without risk of
ADE prompted the development of DNA vaccines expressing
NS1. Co-administration of DNA-NS1 with IL-12 as genetic
adjuvant demonstrated efficacy against a DENV-2 challenge
(45). Importantly, it became evident for genetic vaccination
that leading sequences are of major importance in targeting the
protein to the secretory pathway to enhance antibody responses
and improve efficacy of DNA-NS1 vaccines (46, 47), an early
lesson for future flavivirus vaccine design using DNA or viral
vectors (48). NS1 has eventually been produced in bacteria and
used as vaccine in presence of adjuvants. Inclusion of E. coli
ETEC heat-labile toxin (LTG33D) as adjuvant has been shown to
yield better efficacy against a DENV-2 challenge than traditional
adjuvants like Alum or Freund’s adjuvant (49). Vaccinations with
NS1, as well as NS1-immune sera or mAbs can protect against a
lethal DENV challenge, thus underscoring the potential of NS1-
based vaccines. NS1 vaccination may result in cross-reactivity
with host proteins of vaccinees, hence making this a challenging
approach. However, mAbs have been useful to identify non cross-
reactive sequences through epitope mapping using phage display
that are yet able to show protective efficacy against a challenge
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FIGURE 1 | Molecular model of dengue virus NS1 showing regions involved in molecular mimicry with LYRIC in endothelial cells (A), with the protein disulfide

isomerase in platelets (B) and plasminogen (C). Those two last epitopes overlap in one position (311). An immunodominant epitope presumably involved in protection

(28) is also shown (D). Interestingly, this last epitope does not overlap with any of the epitopes related to molecular mimicry. Monomers are shown in gray and white

and wing and ladders domain are indicated.

with DENV (50). The latter research highlights the potential
of monoclonal antibodies and structural-guided vaccinology to
design NS1 vaccines with ability to protect against infection with
yet a reduced potential of adverse reactions due to cross reactivity
with self-antigens. NS1 has also proven valuable in immunity and
vaccine development against Zika virus (ZIKV) in the context of
potential increased severity through ADE between the two highly
similar ZIKV and DENV. Humanmonoclonal antibodies against
ZIKV NS1 have been isolated and shown protective efficacy in
mouse models through the engagement of FcγR without the
requirement of virus neutralization (51). These results lead to a
subsequent demonstration of protective efficacy of an NS1-based
DNA vaccine in a lethal ZIKV challenge model (52).

CONCLUDING REMARKS

The mechanisms underlying severe dengue are not fully
understood, but certainly involve a combination of viral
virulence, host genetics, and immunopathology. For as long
as ADE has been recognized as an immune mechanism that
promotes severe dengue (DHF/DSS), efforts have been made
to find alternative DENV vaccine strategies to induce immune
responses against antigens other than structural components
of the DENV virion. The observation that both, structural
(prM and Envelope) proteins and the non-structural protein
1 (NS1) elicit strong humoral immune responses in infected
individuals has prompted the development of vaccines against
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both DENV components. Recently, it was shown that IgG
anti-NS1 antibodies in sera from a phase II clinical trial
were effective in preventing endothelial damage cause by NS1
in an in vitro model (53). These antibodies will not only
prevent ADE but can confer NS1 cross protection with the
other 3 DENV serotypes. Nevertheless, development of NS1
vaccines is yet a challenging approach due to the cross-
reactive immune responses between NS1 and self-antigens
in endothelia, platelets and clotting factors. NS1 structural
studies and availability of monoclonal antibodies are permitting
the identification of peptide sequences within NS1 domains
that are suitable to generate immunity against DENV with a
decrease in cross reactivity to self-antigens. Interestingly, anti-
JEV NS1 antibodies, used as controls in various experiments
with anti-NS1 antibodies (26, 31) do not cause any cell damage.
Structural studies showed differences between the JEV NS1
and the DENV NS1 in the C-terminal, β-ladder domain,
where cross-reactive epitopes to platelets and plasminogen are
located (54). Indeed, antibodies to chimeric JEV-DENV NS1
protein showed reduced cross-reactivity while still conferring
protection in a mouse model (55). Finally, despite the compelling

evidence obtained in vitro and with animal models, indicating
a role for anti-NS1 antibodies in SD pathogenesis, it is
wise to keep in mind that plasma leakage, thrombocytopenia,
and other vascular clinical signs are all transient and last
only for a few days, much shorter than the presumed
half-life of any antibody. Thus, additional research is still
needed to fully understand the association between anti-NS1
antibodies and dengue pathogenesis in patients and the extent
to which molecular mimicry need to be avoided in NS1
based vaccines.
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