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Abstract

Quantifying evidence is an inherent aim of empirical science, yet the customary statistical

methods in psychology do not communicate the degree to which the collected data serve as

evidence for the tested hypothesis. In order to estimate the distribution of the strength of evi-

dence that individual significant results offer in psychology, we calculated Bayes factors

(BF) for 287,424 findings of 35,515 articles published in 293 psychological journals between

1985 and 2016. Overall, 55% of all analyzed results were found to provide BF > 10 (often

labeled as strong evidence) for the alternative hypothesis, while more than half of the

remaining results do not pass the level of BF = 3 (labeled as anecdotal evidence). The

results estimate that at least 82% of all published psychological articles contain one or more

significant results that do not provide BF > 10 for the hypothesis. We conclude that due to

the threshold of acceptance having been set too low for psychological findings, a substantial

proportion of the published results have weak evidential support.

Introduction

The reliability of evidence published in psychological science recently became a major concern

as a high rate of published experiments failed to generate significant results upon replication

[1], including some classic textbook studies [2]. While most often this low replicability of sta-

tistically significant findings is attributed to publication bias [3], questionable research prac-

tices [4] and flawed statistical analyses [5], replicability is also conditional on the degree to

which significant results in themselves constitute evidence for an experimental hypothesis. To

explore this question, we provide a general overview of the evidential value of significant

results in psychological journals.

In general, empirical scientists form hypotheses about the world and collect data to evaluate

these hypotheses. In order to quantify their evidence, researchers in psychology and other

social sciences use their data to distinguish true effects from random chance. In practice, they

overwhelmingly use null-hypothesis significance testing (NHST), which estimates the proba-

bility of receiving an observation (or more extreme ones) if the null-hypothesis of no effect is

true. If this probability, the p-value, is equal to or less than a preset threshold (customarily

5%) then researchers reject the null-hypothesis and claim support for the effect. Since the
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development of this procedure in the early 20th century [6], social sciences have been relying

on this logic when providing evidence for their theoretical hypotheses.

Nevertheless, it is a common misunderstanding that the NHST method can quantify the

evidence for a hypothesis [7]. For example, p = .05 is often misinterpreted as 5% probability

that the null-hypothesis is true or that chance alone produced the effect [8]. Unfortunately,

however, the NHST approach cannot be used to directly evaluate the hypothesis since it esti-

mates the probability of statistical significance under the assumptions of the null-hypothesis,

but ignores the probability of statistical significance under the alternative hypothesis. In fact,

the long-term rate of false discovery depends not just on the p� 0.05 rule, but also on the

prevalence of the effects and the power of the tests. Taking these into account, the false discov-

ery rate of NHST tests is estimated to be much higher than 5% [9]. In sum, although p< .05

results have been interpreted as convincing evidence in support of psychological effects, statis-

tical logic does not admit such use of the method.

One way to quantify evidence is to assess how much the data support one or a competing

hypothesis. The Bayes factor is a tool that can be used to calculate the ratio of the likelihood of

the hypotheses in light of the data, thus expressing how much the observation should change

our beliefs about the hypotheses. Recent developments in the method [10–12] allow research-

ers to effectively employ Bayes factor analysis techniques to quantify the strength of the evi-

dence against, as well as for, the null-hypothesis. A major difference from the traditional

statistics is that this Bayes factor computation requires specifying what the hypotheses predict,

known as the priors. While the choice of prior can be debated and gives the impression of sub-

jectivity, there are two main reasons why this feature of the method should not be a major con-

cern. First, it is important to see that the need to specify the predictions of the theory is not a

limitation, but a basic requirement of science [13–14]. Second, applications of the method,

such as this work, show that the results are often robust to the choice of reasonable priors [15].

While the Bayes factor is a continuous scale between 0 and positive infinite, customary

labels are often used to categorize the strength of evidence [16](Table 1). Assuming the reader

has no prior expectations regarding the outcome of the research, by Bayes factor of 1 we can

infer that the evidence is equally in favor of the null and alternative hypotheses, a clearly insen-

sitive case. The range of Bayes factors between 1 and 3 has been suggested as a region for anec-

dotal evidence for the alternative hypothesis, while Bayes factors between 1 and 1/3 indicate

anecdotal evidence towards the null [17]. Bayes Factor 3 indicates that the odds are 3:1 for the

alternative hypothesis, allowing 75% confidence in the results. The next level is the moderate
evidence, which is used for Bayes factors between 3 and 10, and Bayes factors between 1/3 and

1/10. To be able to claim strong support, Bayes factor > 10 and < 1/10 are considered to be

the threshold for H1 and H0, respectively [17].

Different categories have been suggested as a requirement for a result to be taken as evi-

dential. Originally, Jeffrey proposed that Bayes factor 3 mostly correspond with the level of

Table 1. Bayes factor evidence categories and the corresponding Bayes factor intervals [16–17].

Bayes factor evidence categories Value of the Bayes factor

Strong support for H1 > 10

Moderate support for H1 3–10

Anecdotal support for H1 1–3

Equal support for the hypotheses 1

Anecdotal support for H0 1/3–1

Moderate support for H0 1/10–1/3

Strong support for H0 < 1/10

https://doi.org/10.1371/journal.pone.0182651.t001

Evidential value of significant results
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evidence that is usually obtained with conventional significance testing [16]. Others suggested

that the conventional threshold is too liberal and Bayes factor 6 is more efficient in correctly cap-

turing the effect [18] and 10 provides more compelling evidence [18–19]. Nevertheless, it is

important to emphasize that it would be a misuse to blindly apply Bayes factors as hard cut-off

levels. Instead, these indices should inform the reader about the degree to which the observations

support one compared to another hypothesis. Although researchers often set expected levels of

evidence for their decisions, the relative nature of the support should never be disregarded.

While there is a functional correspondence between p-values and Bayes factors [20], the

question remains as to how much evidence is provided by individual significant results in psy-

chology. A previous investigation compared all p-values and the computed Bayes factors of

855 t-tests published in two experimental journals in 2007 [21]. Those results demonstrated

that if p-values are misinterpreted as evidence then they mostly agree with the Bayes factor

results about the direction of their support, yet they systematically overestimate the strength of

the evidence against the null-hypothesis. It is a question, however, whether this sample of the

two journals can be generalized to all domains of psychology. To extend this analysis and

assess the overall picture about the strength of evidence in psychological science, we computed

Bayes factors with additional robustness analyses for 287,424 significant t- and F-tests using a

text-mined dataset of 35,515 psychological articles published between 1985 and 2016 [22]. This

dataset contains all reported t- and F-tests from 293 psychological journals from this period of

time, representing a substantial corpus of all published research of the field. Here, we use this

sample to estimate the strength of evidence that individual significant results provide for the

alternative hypothesis.

Methods

The analysis plan of this study was preregistered on osf.io/5rf2x prior the conduct of all the

reported analyses. For the analyses, we used a dataset collected by Hartgerink [22]. This dataset

contains the metadata and statistical parameters of 688,112 null-hypothesis test results text-

mined from 50,845 articles published in 321 psychology journals between 1985 and 2016.

For our main analysis, we limited our database to the t, and F statistics which are the most

frequently used statistics in psychology [22] and we assumed an independent sample design,

the most lenient condition for supporting the alternative hypothesis. First, we selected 403,929

test statistics (the 169,984 t-tests, the 233,945 F-tests where the value of the first degrees of free-

dom was one). Using the recalculated p-values we excluded the non-significant test statistics

(109,470 results), as the question of our interest was to calculate the degree of evidence behind

the significant results. To exclude ambiguous cases from our analyses, we filtered out those

results which did not provide the exact values of the test statistics (374 results), as well as the

one-sided tests (4878 results), having no information about the direction of the hypotheses of

those tests. Furthermore, we removed those test statistics where the recalculated p-values

changed whether or not the results were statistically significant using the 0.05 decision thresh-

old (705 results). Next, we rounded up all of the non-integer degrees of freedoms of the t-tests

as we assumed that these scores were reduced by a correctional process (e.g., Welch t-test). We

calculated the square root of the F-values and analyzed them as t statistics thereafter. After-

ward, we calculated the sample sizes of the results from the reported degrees of freedom as-

suming independent-sample design. Finally, we took out the results where the overall sample

size did not exceed 5 to exclude the extreme cases (486 t-tests, 592 F-tests). After these selec-

tions, 114,272 t-tests and 173,152 F-tests remained in our dataset.

To compute the Bayes factors corresponding to the t- and F-tests, we employed the ttest.
tstat function of the BayesFactor R package [23]. The calculation of the Bayes factors requires

Evidential value of significant results
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specification of the predictions (prior distribution) of the null- and the alternative models [15,

24]. In cases where the effect size of the alternative model can be high, it is suggested to employ

a two-tailed Cauchy distribution centered on zero as a prior distribution of the alternative

hypothesis [15]. The scaling of this prior distribution can influence the calculated value of the

Bayes factors, and so the level of evidence favoring the hypotheses. Accordingly, for smaller

effects a high-scaled prior distribution can underestimate the degree of positive evidence com-

pared to a low-scaled prior. To determine the scaling factor of the Cauchy distribution, we

applied the median effect size (d = 0.93) of a collection of 100,000 significant statistical tests,

extracted from 10,000 psychology articles, as a rough estimate [25]. As this calculated value

could be influenced by a small number of extremely high effect sizes, we decided to employ the

so called default JZS prior (
p

2/2) for our main analyses, which is more lenient towards smaller

effect sizes [26]. This value is the default scaling factor of the ttest.tstat function and is consid-

ered a ‘medium’ scaling factor [23]. To explore the robustness of our results, we repeated the

analyses with different sizes and shapes of the prior distribution (See S1 Supplementary meth-

ods and results). Using the resulting Bayes factor values, we categorized each test result into

the corresponding Bayes factor evidence category of Table 1.

Results

The results show that overall only 54.7% of all analyzed results provide strong evidence

(B = 10) for the alternative hypothesis, while half of the remaining results do not pass the level

of even anecdotal evidence (B = 3) (Table 2). As illustrated in Figs 1 and 2, due to the func-

tional relationship between p-values and Bayes factors [20, 26], there is an upper bound on the

potential Bayes factors corresponding to p-values. As a result, findings with p> 0.005, cannot

provide strong evidence for the alternative hypothesis. Of note, even among those results with

p< 0.005, 6% still fail to reach the level of strong evidence. Results remain robust with differ-

ent prior distribution settings and when assuming paired sample tests (see S1 Supplementary

methods and results). Repeating the same analyses on the significant correlation findings in

the collection (N = 15,026), the pattern of results differed only slightly, with 59.6% of results

reaching the level of strong evidence, half of which remained in the anecdotal evidence region

(S1 Supplementary methods and results). Considering just the t-, and F- statistics, the results

indicate that at least 82% of all psychological articles contain at least one significant result

which does not provide strong evidence. This result highlights that the rejection of the null-

hypothesis based on significant p-values gives only ambiguous support for the alternative

hypothesis.

Discussion

As Figs 1 and 2 depict, the strength of evidence that significant results provide vary greatly.

While there is an upper bound to the Bayes factors corresponding to the p-values, regardless

the value of p, the evidence can be very minimal or even supporting for the null-hypothesis

[27]. These results demonstrate that without the computation of Bayes factors the interpreta-

tion of psychological results remains fairly limited.

Table 2. The proportion of significant t- and F-test results in the different Bayes factor evidence categories. The corresponding Bayes factors were

calculated with medium scaled prior distribution assuming independent-samples design.

Strength of evidence

Strong H1 Moderate H1 Anecdotal H1 Anecdotal H0 Moderate H0 Strong H0 Total

N/row total (%) 54.7% 21.4% 22.9% 1.0% 0.0% 0.0% 100.0%

N 157,184 61,579 65,677 2,861 116 7 287,424

https://doi.org/10.1371/journal.pone.0182651.t002

Evidential value of significant results
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It is to be noted, however, that our analyses cannot provide precise estimates to all psycho-

logical results, as they cover only the most frequently used statistical methods (t, and F statistics)

and, furthermore, they are subject to the errors in the original reports and to the limitations of

text-mining. In particular, it is important to highlight that the analyzed results certainly contain

a proportion of manipulation check, therefore, the present results are not exclusive descriptors

of focal results. An additional distortion of the sample can originate from the fact that several

questionable research practices affect the likelihood of finding evidence for false hypotheses [4].

Ad hoc exclusion of outliers [28], selective reporting of p-values [29], and motivated stopping

rules for data collection [4] have all been diagnosed in the field as additional factors that increase

the rate of false discovery. The preference in publication culture for significant results over non-

significant results [3] also increases the prevalence of false positive reports and incentivizes

researchers to produce significant results. Although the exact impact of these biases is unknown,

recent analyses revealed a high level of distortion in published statistical results [5, 30].

Changes to statistical practices have been repeatedly proposed in recent decades [31–34].

Relying more on reported confidence intervals [35] or using lower decision thresholds for p-val-

ues (0.001 in 33, 0.005) [36] have been recommended to improve the use of NHST statistics.

Despite the many reform attempts, NHST is still misinterpreted and misused, at an increasing

rate in certain areas [37]. While, certainly, the use of Bayes factors can only be part of the solu-

tion, their proponents emphasize that besides being able to quantify evidence against, and even

for, the null-hypothesis, its use is also less prone to potential biases of multiple comparisons or

optional stopping rules [38]. In fact, within this approach, for any study with an insufficient

level of evidence, the researchers may continue to collect data until the results allow decisions to

be made about the hypotheses [39]. Nevertheless, even without Bayesian calculations great

improvement in existing practices can be achieved, for example by simply reporting the largest

possible ‘post-experimental rejection ratio’ calculated from the p-value of any standard statistical

Fig 1. The relationship between published significant p-values and the corresponding Bayes factors for the t- and

F- test results. The Bayes factors were calculated with medium scaled prior distribution assuming independent-samples

design for t- and F-test results. The stripes on the plot are the results of the general custom of rounding the t- and F-values

to two decimals.

https://doi.org/10.1371/journal.pone.0182651.g001
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test [40]. As the new statistical methods become easily applicable [41], researchers and journal

editors may become convinced to extend the statistical toolbox of psychological research when

evaluating the relationship between theories and their empirical evidence.

This study aimed to highlight that disregarding all the intentional or unintentional biases in

research practice, a sizable proportion of published results labeled as “statistically significant”

provide, in themselves, very little or no convincing evidence for the presence of the effect.

From this aspect, it is not that surprising that previous ‘evidential’ findings fail to replicate,

rather it is a necessary consequence of the threshold of acceptance having been set too low for

the purported effects [19, 36]. As failed replications in recent years motivated psychological

research to increase the transparency of research and openness of science, the present results

should carry a further message to the field that changes to the customary research and analysis

practices are inevitable.

Supporting information

S1 Supplementary methods and results.

(DOC)

S1 Analysis main text. (R code).

(RMD)

S1 Analysis supporting information. (R code).

(RMD)

Fig 2. Density plots with quartile lines for the Bayes factors in ranges of published significant p-values. The corresponding

Bayes factors were calculated on the t- and F- test results with medium scaled prior distribution assuming independent sample design.

For visualization purposes, the leftmost plot depicts only the lowest quartile of the corresponding Bayes factors.

https://doi.org/10.1371/journal.pone.0182651.g002
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