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ABSTRACT
Background. Lewis’s law and Aboav-Weaire’s law are two fundamental laws used to
describe the topology of two-dimensional (2D) structures; however, their theoretical
bases remain unclear.
Methods. We used R software with the Conicfit package to fit ellipses based on the
geometric parameters of polygonal cells of ten different kinds of natural and artificial
2D structures.
Results. Our results indicated that the cells could be classified as an ellipse’s inscribed
polygon (EIP) and that they tended to form the ellipse’s maximal inscribed polygon
(EMIP). This phenomenon was named as ellipse packing. On the basis of the number
of cell edges, cell area, and semi-axes of fitted ellipses, we derived and verified new
relations of Lewis’s law and Aboav-Weaire’s law.
Conclusions. Ellipse packing is a short-range order that places restrictions on the
cell topology and growth pattern. Lewis’s law and Aboav-Weaire’s law mainly reflect
the effect of deformation from circle to ellipse on cell area and the edge number of
neighboring cells, respectively. The results of this study could be used to simulate the
dynamics of cell topology during growth.

Subjects Biophysics, Cell Biology, Mathematical Biology
Keywords Ellipse packing, Lewis’s law, Aboav-weaire’s law, Cell topology, Voronoi diagram,
Amorphous, Epidermal tissue, 2D structure, Soap

INTRODUCTION
A two-dimensional (2D) plane can be tessellated by convex polygons. Scientists are
interested in natural and artificial 2D structures that share the common feature that the
coordination number of vertices (the number of edges meeting at a vertex) of polygonal
cells always equals three. The cell topology of these 2D structures can be described according
to three laws: Euler’s law, Lewis’s law, and Aboav-Weaire’s law (Weaire & Rivier, 1984).
The latter two laws were first observed empirically by Lewis and Aboav, with the original
aims of understanding laws in biological and physical structures, respectively (Aboav, 1970;
Lewis, 1926; Lewis, 1928; Weaire, 1974). Although Lewis’s law and Aboav-Weaire’s law are
essential for understanding the formation mechanisms of 2D structures, their theoretical
explanations are deficient (Mason, Ehrenborg & Lazar, 2012; Weaire & Rivier, 1984). The
coordination number is a short-range order that mathematically determined that the
average number of edges per cell is six (Graustein, 1931).
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When this study restricts attention to biological 2D structures, the word ‘‘cell’’ represents
the top and bottom faces of a prismatic cell. The dynamics of cell topology during growth
make biological 2D structures evenmore complicated than other types of 2D structures. For
example, internal angles of Pyropia haitanensis cells have been concentrated in the range of
100–140◦ by direction-specific division and direction turning of cell edges, which suggested
that the cells tended to form regular polygons (Xu et al., 2017). These observations hinted
at the possibility of undiscovered short-range orders in 2D structures. A recent study by Xu,
Hutchins & Gao (2018) found that the effective coverage area of ellipse-shaped exoskeletons
of microalga Emiliania huxleyi cells tended to approach the maximal area of an ellipse’s
inscribed polygon (EIP). This study identified a similar phenomenon: the polygonal cells
of natural and artificial 2D structures were inclined to form the ellipse’s maximal inscribed
polygon (EMIP). On the basis of this short-range order, the present study derived and
verified new relations of Lewis’s law and Aboav-Weaire’s law.

MATERIAL AND METHODS
We used Amscope Toupview 3.0 software to analyze the images of ten kinds of 2D
structures. The images of P. haitanensis and two images of onion were taken by the author
of this study, and the others were derived from the published papers. The nonliving
biological 2D structures included the following: cross-sections of shells of Atrina rigida,
Atrina vexillum, and Pinna nobilis (Reich et al., 2018). The living biological 2D structures
included the following: epidermal tissues of Agave attenuate, Allium cepa (onion), and
Allium sativum (garlic) (Mombach, Vasconcellos & De Almeida, 1990); and P. haitanensis
thalli. The physical 2D structures include amorphous silicon dioxide (SiO2) film (Büchner
et al., 2016) and soap (Aboav, 1980). The random-seeded Voronoi diagrams are artificial
2D structures that also have been used for analysis (Aboav, 1985). For each polygonal cell,
we measured the area (AC), coordinates of center (XPC , YPC), and vertices (XV , YV ). We
used R software (R Core Team, 2018) with the Conicfit package to fit an ellipse based on
the coordinates of the vertices of each polygonal cell (Fig. 1A) (Chernov, Huang & Ma,
2014). For the SiO2 film, the vertices of polygonal cells were formed by the silicon (Si)
atoms. Five geometric parameters could be used to describe the ellipse, which include the
semi-major axis a, semi-minor axis b, coordinates of center (XEC , YEC), and angle of tilt
of the major axis θ (Fig. 1B). On 2D geometry, five points determine a conic; for example,
the ellipse. For polygons with five or more edges, we set XPC and YPC as the initial values
of the coordinates of the ellipse center to improve fitting. As for cells with only four edges,
we combined the coordinates of the four vertices and the four midpoints of the edges as
a single data set to fit an ellipse in the same manner as the cells with five or more edges.
Then, we set the geometric parameters of the fitted ellipse as the initial values to fit the
second ellipse for the coordinates of the four vertices. We found the second ellipse to be the
smallest one among all of the fitted ellipses, and which we used for analysis. We provide
our reasons for finding the smallest circumscribed ellipses for four-edged polygonal cells
in the next section.
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Figure 1 Geometry of polygonal cell and fitted ellipse. (A) Coordinates of the vertices of a polygonal
cell and fitted ellipse. We plotted the ellipse using R software plus the Conics package (Chernov, Huang &
Ma, 2014). (B) A diagram shows semi-major-axis (a), semi-minor-axis (b), angle (δ) between line VC and
X-axis, angle (θ) of tilt of the major axis, distance (DVC) between the center of the ellipse and a vertex of
polygonal cell, distance (R) from the center of the ellipse to the cross point of line VC and fitted ellipse .

Full-size DOI: 10.7717/peerj.6933/fig-1

We calculated the area of the ellipse (AE) as follows:

AE = πab, (1)

The area of the maximal inscribed polygon of the ellipse (AMIP) is

AMIP = 0.5nabsin
(
2π
n

)
, (2)

where n is the number of edges of inscribed polygon (Su, 1987). The form deviation of
vertex (FD) is

FD=
DVC−R

R
×100%, (3)

where DVC is the distance between a vertex and the center of the fitted ellipse (the length
of line VC)

DVC =

√
(XV −XEC)

2
+(YV −YEC)

2, (4)

R is the distance from the ellipse center to the cross point of the fitted ellipse and the line
VC

R=
ab√

(asin(arctan(tan θ)−δ))2+(bcos(arctan(tan θ)−δ))2
, (5)

where δ is the angle between line VC and X-axis, the ranges of θ and δ are [0,π) and
(−0.5π,0.5π), respectively (Fig. 1B). R code (Document S1) and three examples (Data
S1) for these calculations are included in the supplementary files.
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Table 1 Parameters of polygonal cells of P. haitanensis and fitted ellipses.

Parameters Mean± SD Range Sample
number

Average number of cell edges 6.03± 0.88 4–10 1375
Form deviation (FD, %) 0.00± 3.14 −13.94–20.56 8291
Fitted semi-major-axis (a, µm) 19.86± 2.76 13.91–37.22 1375
Fitted semi-minor-axis (b, µm) 15.34± 1.72 9.29–21.76 1375
a/b 1.31± 0.21 1.01–2.71 1375
Area of fitted ellipse (AE , µm2) 961.80± 195.25 506.16–2016.86 1375
Area of the maximal inscribed polygon of fitted ellipse
(AMIP , µm2)

788.19± 172.00 343.24–1667.93 1375

Area of cell (AC , µm2) 705.98± 148.98 303.94–1512.63 1375
AC /AMIP 0.90± 0.07 0.48–1.00 1375

RESULTS AND DISCUSSION
Ellipse packing
Thallus of red algaP. haitanensis is a single-layered prismatic cell sheet that is amathematical
consequence of 2D expansion on a plane by cell proliferation (Xu et al., 2017). Thus,
P. haitanensis thalli can be simplified as 2D structures. We found the average number
of edges of P. haitanensis cells to be 6.0 ± 0.9 (1375 cells in 13 thalli were examined;
Table 1), which was consistent with previous studies on P. haitanensis as well as studies
on many other organisms and physical structures (Gibson et al., 2006; Sánchez-Gutiérrez
et al., 2016; Weaire & Rivier, 1984; Xu et al., 2017). According to Euler’s 2D formula, this
kind of phenomenon has been mathematically determined when the coordination number
of each vertex equals three when different-sized cells tessellate a 2D plane (Graustein,
1931; Weaire & Rivier, 1984). The size differences between cells indicated that these 2D
structures display a long-range disorder, because the unit cell has neither periodicity nor
translational symmetry. In addition, the average number of edges of P. haitanensis cells
quickly approached six with an exponential increase in cell number resulting from an
increase in body size (Xu et al., 2017). Thus, this phenomenon has been observed only
when the 2D structures contain a large number of cells (Graustein, 1931; Lewis, 1926;
Weaire & Rivier, 1984).

This study found that the vertices of cells of P. haitanensis could be used to fit ellipses
with an average form deviation of 0.00± 3.14% (8,291 vertices in 1375 cells were examined;
Table 1; Data S2). We found similar results in the other 2D structures (Table 2; Data S3).
Thus, the polygonal cells of 2D structures could be considered to be EIPs, which ensured
that all of the cells were convex polygons. The ratios of the area of the cell and fitted EMIP
(AC/AMIP) of P. haitanensis ranged from 0.48 to 1.00 with an average value of 0.90 ± 0.07
(Table 1), and 90% of the values were concentrated in a range from 0.78 to 0.97 (Data
S2). The random-seeded Voronoi diagrams and three kinds of epidermal tissues showed a
similar average ratio of AC/AMIP . The AC of amorphous SiO2, cross-sections of mollusk
shells, and soap, however, were very close to AMIP (Table 2; Data S3). Thus, we divided
the 2D structures into three categories based on AC/AMIP : Type I, monohedral tiling using

Xu (2019), PeerJ, DOI 10.7717/peerj.6933 4/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.6933#supp-3
http://dx.doi.org/10.7717/peerj.6933#supp-4
http://dx.doi.org/10.7717/peerj.6933#supp-3
http://dx.doi.org/10.7717/peerj.6933#supp-3
http://dx.doi.org/10.7717/peerj.6933#supp-4
http://dx.doi.org/10.7717/peerj.6933


Table 2 Parameters of polygonal cells of 2D structures. Parameters a/b, AC /AMIP , and FD represent
the ratio of fitted semi-major-axis/semi-minor- axis, ratio of cell area/EMIP, and form deviation, respec-
tively. Except for the last 2D structure, we derived the images of the others from published papers: amor-
phous SiO2 (Büchner et al., 2016), cross-sections of mollusk shells (Reich et al., 2018), soap (Aboav, 1980),
Voronoi diagrams (Aboav, 1985), epidermal tissues of Agave attenuate, Allium cepa (onion), and Allium
sativum (garlic) (Mombach, Vasconcellos & De Almeida, 1990). Sample numbers are shown in parentheses.

2D structures a/b AC /AMIP FD (%)

Amorphous SiO2 1.20± 0.12 (10) 0.99± 0.01 (10) 0.00± 3.73 (62)
Cross-sections of mollusk shells 1.14± 0.07 (30) 0.97± 0.02 (30) 0.00± 0.89 (170)Type II

Soap 1.11± 0.05 (20) 0.98± 0.01 (20) 0.00± 1.14 (118)
Voronoi diagrams 1.43± 0.25 (50) 0.87± 0.09 (50) 0.01± 2.48 (286)
Allium sativum (garlic) 3.24± 0.78 (10) 0.95± 0.03 (10) 0.01± 2.46 (56)
Allium cepa (onion) 3.43± 1.03 (10) 0.92± 0.03 (10) 0.03± 4.58 (57)
Agave attenuat 1.13± 0.06 (10) 0.98± 0.01 (10) 0.00± 1.14 (60)

Type III

Allium cepa (onion) 1.94± 0.38 (20) 0.95± 0.04 (20) 0.00± 1.84 (113)

six-edged EMIPs (e.g., tile by regular hexagons); Type II, tiling using different-sized and
different-edged EMIPs (e.g., 2D amorphous SiO2); and Type III, tiling using different-sized
and different-edged EIPs. For amorphous SiO2, the bond length should be different to
obey the ellipse packing. For the Types I and II 2D structures, AC equals AMIP .

These results suggested that the fitted ellipse should be the smallest circumscribed ellipse
of the polygonal cell, which was the reason we sought to find the smallest ellipse for four-
edged cells in this study. A recent study reported similar phenomenon on single-celled
microalga E. huxleyi (Xu, Hutchins & Gao, 2018). E. huxleyi cells were fully covered by
interlocking calcite exoskeletons, and the specific geometry of exoskeletons resulted in the
effective coverage area of exoskeletons tending to reach the maximal area of an inscribed
polygon of ellipse-shaped exoskeletons.

Obviously, the effects of growth on cell topology for these three types of 2D structures
were quite different. For 2D structures made of EMIPs, if the variations in topology were
achieved by reconstruction or by transition to other types, the topological variations of
all of the cells had to be finished synchronously to obey ellipse packing. Otherwise, we
observed a cell area less than AMIP . For example, the areas of polygonal cells were always
equal to AMIP during the evolvement of soap (Table 2) (Aboav, 1980). As for 2D structures
made of different-sized and different-edged EIPs, most of the cells were smaller than their
corresponding EMIPs. For biological 2D structures, complicated life activities strongly
altered the cell size and topology (e.g., accumulation of organic components, respiration,
cell division and fusion, watermetabolism, and exposure of stressful conditions).Moreover,
different metabolism rates between cells and the asynchronous cell cycle would make
the dynamic behaviors of cell topology even more complicated. Based on geometric
limits, Xu, Hutchins & Gao (2018) proposed that the regular dodecahedron-shaped cells of
coccolithophore Braarudosphaera spp. should be the resting or cyst stage of the life cycle.
Similarly, the cells of living biological 2D structures should be EIPs rather than EMIPs,
which suggested that living biological 2D structures belonged to Type III (Tables 1–2) and
that specific cases may have manifested such that the complicated life activities would not
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influence the cell topology like the regular polyhedral cells of Braarudosphaera spp. The
variations in the cell topology of Type III 2D structures had to be achieved by fine-tuning.
In the following sections, we detail the effects of growth on cell topology for all three types
of 2D structures.

The eccentric angle of neighboring vertices of an n-edged EMIP is equal to 2π/n (Su,
1987). Therefore, the eccentric angles of a six-edged EMIP equal to 60◦ and the average
internal angle is 120◦. On the basis of observations of direction-specific divisions (which
resulted in equal-sized divisions) and division-associated direction changes of the cell edges
(concentrated internal angles ranging from 100◦ to 140◦), Xu et al. (2017) found that P.
haitanensis cells tended to form regular polygons. The closer the polygonal cell was to a
regular polygon, the closer the cell was to a spherical shape, which could help maintain
force balance (Chen, 2008; Ingber, Wang & Stamenovic, 2014). Unbalanced forces could
result in unequal-sized cell division (Kiyomitsu, 2015). Equal-sized daughter cells, however,
were always found in the cell proliferation of P. haitanensis thalli (Xu et al., 2017).

Lewis’s law
Lewis’s law is an empirical law that suggests that AC of an n-edged cell is related linearly
to n (Chiu, 1995; Lewis, 1926; Lewis, 1928; Weaire & Rivier, 1984). According to Eq. (2),
the cell area of Type II 2D structures increased with edge number. To investigate the
relationship between the number of edges and the cell area of Type III 2D structures, we
used P. haitanensis thalli as the research material. The average values of AE , AMIP , and AC

increased with n, whereas the difference between the average values of AE and AC decreased
(Fig. 2A). Except for n> 8, the average ratios of a/b were stable regardless of the values of n
(Fig. 2B). Because AMIP is n

2π sin
( 2π

n

)
times AE (Su, 1987), the ratio of AMIP/AE approaches

one with an increase of n (Fig. 2C). We found positive linear relationships between AC and
AE (R2 = 0.73, P < 0.0001; Fig. 2D) and between AC and AMIP (R2 = 0.85, P < 0.0001, Fig.
2E). Thus, AC can be calculated by the following empirical equation:

AC = 0.80AMIP+78.79= 0.40nabsin
(
2π
n

)
+78.79, (6)

where the maximal value of nsin
( 2π

n

)
is

lim
n→∞

nsin
(
2π
n

)
= 2π. (7)

Because both nsin
( 2π

n

)
and AE increase with n (Figs. 2A and 2B), AC also increased with

n, which was consistent with Lewis’s law. Overall, the present study suggested that the
relationship between AC and n is more complex than previous believed.

The cell proliferation of biological 2D structures can be used as a window to observe
the dynamic behavior of cell topology during growth. By equal-sized division, mitosis shall
strongly disturb cell topology. Obviously, division should separate a cell along the direction
of theminor-axis of the fitted ellipse,making daughter cells closer to EMIPs (Fig. 3A).Nearly
150 years ago, Hofmeister proposed a similar idea called long-axis division (Hofmeister,
1863). More complicated, however, Xu et al. (2017) found that divisions preferred to
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Figure 2 Relationships between n, AC, AMIP, and AE of P. haitanensis cells. (A) Relationships between
the number of cell edges n, area of cell AC, area of the maximal inscribed polygon AMIP, and area of fitted
ellipse AE. Big symbols represent the average values of AC, AMIP, and AE, whereas small symbols represent
the raw data (1375 cells were analyzed). (B) Relationship between n and ratio of a/b. (C) Relationship be-
tween n and ratio of AMIP/AE. (D) Relationship between AC and AMIP (1375 cells were analyzed). (E) Rela-
tionship between AC and AE (1375 cells were analyzed).

Full-size DOI: 10.7717/peerj.6933/fig-2

transect mother cells at midpoints of unconnected paired edges. Afterward, the direction
of the cell edges were changed to concentrate the internal angles ranging from 100◦ to 140◦.
Thus, the smallest number of edges per cell was four, and two equal-sized daughter cells
were produced.

The ellipse packing is exactly a short-range order, which could influence both local and
global cell topology. We used the average axes of the fitted ellipses and average number of
edges to calculate the average variation on the internal angles (Table 1, Fig. 3A). Assuming
an EMIP with six edges was divided along the minor axis of the ellipse, then ellipse packing
should turn all three polygonal cells around the new vertex into EMIPs (Fig. 3B). Thus,
two daughter cells would be turned into two five-edged EMIPs with equal sizes, and the
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Figure 3 Cell division obeys ellipse packing. (A) Red dashed lines represent that division of the maximally inscribed six-gon divided the cell along
the minor axis of the ellipse and produced two equal-size daughters. Blue dashed line shows that an edge was separated by a new vertex, which pro-
duced three new angles (bottom). (B) Ellipse packing turned the two daughters into maximally inscribed five-gons (top left) by allometric growth of
cell edges, whereas the neighboring seven-gon also turned into an EMIP (top right). To minimize the total disruption on the three angles, the turn-
ing angle in the neighboring cell should be 34.1◦ (bottom). (C) The three angles around each vertex tended to be 120◦. The ratios of a/b of all of the
ellipses were set to an average value of 1.3 (Table 1).

Full-size DOI: 10.7717/peerj.6933/fig-3

neighboring cell of the daughters would be turned into a seven-edged EMIP. The sum
of the three angles around a vertex is 360◦. Assuming the total disruptions on the three
angles is kept to a minimum, on the basis of the least square method, the newly formed
internal angle in the neighboring cell would be decreased from 180◦ to 145.9◦. This would
explain the observation that the turning angle was 40 ± 6◦ (138 angles were examined) in
the previous study by Xu et al. (2017). Meanwhile, those angles inherited from the mother
cells also had to be adjusted to obey ellipse packing. Obviously, all of these changes on
angles must be achieved by allometric growth of the cell edges. The long-axis division
could help the cells retain their shapes closest to EMIPs. Finally, from a global perspective,
the combined effect of ellipse packing and other short-range order (vertex coordination
number is equal to three) turned all three angles around each vertex to 120◦ (Fig. 3C).
Overall, for biological 2D structures, ellipse packing placed restrictions on the direction of
cell division and the turning angles of the cell edges.

Aboav-Weaire’s law
If m represents the average number of edges of cells surrounding an n-edged cell, then the
relation between m and n of Type I 2D structures is m= n= 6. As for Type II and III 2D
structures, we used Aboav-Weaire’s law to describe the relation between m and n:

m= (6−β)+
6β+µ2

n
, (8)

Xu (2019), PeerJ, DOI 10.7717/peerj.6933 8/16

https://peerj.com
https://doi.org/10.7717/peerj.6933/fig-3
http://dx.doi.org/10.7717/peerj.6933


where six is the average number of cell edges of 2D structures, β is a constant, and µ2 is
related to the second moment of the edges of the n-edged cell (Weaire & Rivier, 1984). The
present study and a previous study by Xu et al. (2017) showed that all cells tended to form
regular polygons, which indicated that the internal angles of a cell tended to be close to each
other. According to Lewis’s law, the cell area of Type II and III 2D structures increase with
n. The average internal angle of an n-edged cell is π− 2π

n , which also increases with n. The
sum of three angles around each vertex is 2π , which suggests that the average neighboring
angle of the n-edged cell is decreasing with an increase of n. Consequently, the m, the
average area, and the average internal angle of neighboring cells tend to decrease with an
increase of n. Thus, Aboav-Weaire’s law describes the representative level of a data set with
2n neighboring angles in the total data set withmn internal angles of the neighboring cells.
In addition, the mean value of m should also be equal to six.

On the basis of experimental studies, β ≈ 1.2 was found to be conserved for several
natural physical and biological structures(Aboav, 1983;Aboav, 1980;Mombach, Vasconcellos
& De Almeida, 1990; Mombach, De Almeida & Iglesias, 1993). This number was very close
to the average ratio of a/b of cells of several kinds of 2D structures (Tables 1–2, Fig. 2B)
and of the oval-shaped exoskeletons (faces) of E. huxleyi cells (Xu, Hutchins & Gao, 2018).
In previous studies, µ2 has been assumed to be small (Edwards & Pithia, 1994; Lambert
& Weaire, 1981). Regular hexagons could monohedrally tessellate a plane (Grünbaum &
Shephard, 1987). This kind of tessellation also featured with ellipse packing and every vertex
had a coordination number equal to three. This indicated that when n= 〈n〉 = 6, µ2= 0,
where 〈n〉 is the average number of cell edges. This study assumed

µ2=
6−n
12

. (9)

Thus, using Eq. (8), we have

m=
(
6−

a
b

)
+

6a
b +

6−n
12

n
, (10)

where a and b are the semi-major axis and semi-minor axis of fitted ellipse of an n-edged
cell, respectively. Then, Eq. (10) can be rewritten as follows:

m= 6+
6−n
n
×

(
a
b
+

1
12

)
. (11)

This equation could explain the relation between m and n of all three types of 2D
structures. The calculatedm of cells of Types II and III 2D structures were very close to the
real values by enumeration (Fig. 4A). The average difference between calculatedm and real
m was −0.13 ± 0.31 (371 cells were examined). Because µ2 is very small, Aboav-Weaire’s
law could be approximately expressed as follows:

m≈ 6+
6−n
n
×

a
b
. (12)

The calculatedm using Eqs. (11) and (12) showed only minor differences (Fig. 4A, Data
S3). In addition, this study found an empirical relation for Type III 2D structures
1
12
= 1−

AC

AMIP
, (13)
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Figure 4 Examinations of the relations of Lewis’s law and Aboav-Weaire’s law. (A) Relationship be-
tween the real m (mR) and the calculated m (mC) of an n-edged cell (371 cells were examined). We used
Eqs. (11) and (12) to calculate m. (B) Relationship between real and calculated area (AC) of an n-edged
polygonal cell of all Type III 2D structures (1475 cells were examined). We used Eq. (14) to calculate AC.
The units of the cell area of P. haitanensis (1375 cells, Table 1) and the other Type III 2D structures (100
cells, Table 2) were µm2 and pixel2, respectively.

Full-size DOI: 10.7717/peerj.6933/fig-4
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which can be expressed as follows

AC =AMIP

(
1−

1
12

)
= 0.5nabsin

(
2π
n

)(
1−

1
12

)
. (14)

The slope of the relationship between calculated AC and measured AC of cells of Type
III 2D structures was very close to one (R2

= 0.98, P < 0.0001, Fig. 4B). The a/b describes
the deformation degree from circle to ellipse. Similarly, the present study proposed that,
for Type III 2D structures, the number 1/12 describes the deformation degree from EMIP
to EIP. Meanwhile, for Type III 2D structures, the Eq. (12) can be rewritten as follows:

m= 6+
6−n
n
×

(
a
b
+1−

AC

AMIP

)
. (15)

Variations of 2D topology
We discussed the variations of cell topology of biological 2D structures in the previous
sections. The random-seeded Voronoi diagrams are also Type III 2D structures, which were
used to simulate the static structure of biological materials (Honda, 1983; Sánchez-Gutiérrez
et al., 2016). This study found that the ellipse packing creates a strong restriction on cellular
geometry (e.g., the edge length and internal angle), which indicates that ellipse packing
could be used to predict the effects of cell proliferation on cellular geometry. Thus, the
combination of ellipse packing and Voronoi diagram may be applied to simulate the
topological dynamic behaviors during the growth of biological 2D structures.

Although the average number of cell edges was always six, the distributions of the edge
numbers showed big differences between the 2Dmaterials and varied during growth (Aboav,
1980; Aboav, 1985; Büchner et al., 2016; Reich et al., 2018; Xu et al., 2017). Moreover, we
know little about the relationships between the range of edge numbers and other topological
parameters. In this study, we used the interval length (L) to describe the differences between
the maximal and minimum edge numbers. Then, Type I 2D structures had the smallest
L of 0. During the evolvement of soap, L increased from 3 to 11 (Aboav, 1980). Similar
phenomena also have been reported in physical 2D materials. For example, the point
defects in hexagonal networks, one kind of local variations of topology, manifested with
an increase of L from 0 to 2 (Büchner & Heyde, 2017).

To avoid confusion caused by the effects of observation scales, we discuss only the
topological variations of a 2D physical material with constant mass, and these variations
would not influence the connection pattern between atoms. Under the restrictions of
ellipse packing and coordination number, the average number of cell edges was always six
and the number of cells remained constant. We proposed five basic topological variations
(Table 3):

V1. Reconstruction, which will not change the global topological parameters of the
2D structure but will create a new 2D structure with completely changed local topology.
From a global scale, the area of the 2D structure will not be changed—for example, the
destruction and rebuilding of graphene used the same number of carbon atoms.
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Table 3 Five kinds of basic topology variations of 2D physical structures with constant mass.

Parameters V1 V2 V3 V4 V5

Type of 2D structure × × × orX X X

Area of 2D structure × X × X XGlobal
Interval length of range of edge number (L) × × X × X

Number of cell edges (n) X × X × X

Area of cell (AC ) X X X X X

ab X X X × X

a/b X × orX X × X

Local

Average number of edges of neighboring cells (m) X × X × X

Notes.
V1, Reconstruction; V2, Scaling; V3, L-Variation; V4, Transition between Type II and Type III; V5, Transition between
Type I and Type III.
Symbol× represents the parameter will not be changed, andX represents the parameter will be changed.

V2. Scaling, which will not influence the type, L, n, and m, but the area of the 2D
structure and individual cells will be changed. The uniform scaling of ellipses has to be
achieved by a uniform change in the edge lengths to maintain constant ab and a/b.

V3. L-Variation of Type II, which was featured with a varied L of the Type II 2D structure
and will not influence only the area of the 2D structure. Because we considered the Type I
2D structure to be a specific case of Type II with L equal to 0, the transition between Type I
and Type II 2D structures actually belonged to L-Variation. For 2D amorphous SiO2 film,
the numbers of cell edges ranged from four to nine (Büchner & Heyde, 2017; Büchner et
al., 2016), which indicated three intermediate states (L= 4, 3, and 2) occurred during the
transition between crystalline (Type I) and amorphous (Type II) SiO2 film.

V4. Transition between Type II and Type III, which will change the area of 2D structure
and individual cells. According to the new equation of Lewis’s law in this study, the area of
2D structure should change by 1/12 times, as should the volume if the height of 2D layers
remained constant.

V5. Transition between Type I and Type III, which will change all parameters. The area
of 2D structure changed by 1/12 times.

Given the variations related to Types I and II 2D structures, the topological variations
of all involved cells need to be synchronously finished to obey ellipse packing. The V2,
V4, and V5 could influence the area of 2D materials, which may be the most noticeable
characteristic of these topological variations. The combination of these five basic topological
variations would make it more difficult to understand the overall topological behavior,
and the complexity of structure (e.g., heterogeneous materials, dimensionality of material)
added further difficulties. For example, in the Voronoi diagrams with spiral lattice, the
cells were arranged in a pattern of Fibonacci numbers (Rivier et al., 1984; Rivier, Sadoc &
Charvolin, 2016). More work is needed to deeply understand the ellipse packing and its
effects on global and local topology of 2D structures.

3D structures
We considered every prismatic cell of the biological 2D structures to be a convex polyhedron
with an average face number of eight. On the basis of a model study on 3D Voronoi froth
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with random seeds, if the coordination number of multi-polyhedral-celled 3D structures
is four, then the average face number is

( 48
35

)
π2
+ 2(≈ 15.54) (Meijering, 1953; Weaire

& Rivier, 1984). This number was very close to the average face number of 15.4 in the
polyhedral cells of single-celled microalga E. huxleyi with a vertex coordination number
of three (Xu, Hutchins & Gao, 2018). The difference in the average face number indicated
that these 3D structures could not simplified as 2D structures. A convex polyhedral cell
is a sealed 3D structure that has a positive curvature at every vertex and obeys Euler’s
law. Euler’s law, however, does not set any restriction on six-edged faces (Grünbaum &
Motzkin, 1963; Xu, Hutchins & Gao, 2018). This suggests that a given 3D structure does not
necessarily need to be a sealed structure even it obeys Euler’s law. The closure of polyhedra
could be considered to be a basic level of uniform distribution of curvature. The face
topology of polyhedra could be analyzed using software CaGe (Brinkmann et al., 2010).

Polygons with more than six edges induce locally negative curvature, and those with
less than six edges induce positive curvature (Cortijo & Vozmediano, 2007). Thus, the
polyhedral cells of E. huxleyi contained four-gons, five-gons, and six-gons, which helped
maintain full coverage on the spherical surface (Xu, Hutchins & Gao, 2018). As for 2D
tessellation using different-sized cells, the average edge number of six determined that the
top and bottom faces of P. haitanensis cells contained four to ten edges (Table 1). Because of
geometric limits, Lewis’s law and Aboav-Weaire’s law remained valid for the face topology
of cells of E. huxleyi (Xu, Hutchins & Gao, 2018). For living biological 3D structures, as
with the living biological 2D structures, growth influenced the topology of the polyhedral
cells. Thus, on the basis of this study and the previous study by Xu, Hutchins & Gao (2018),
we suggested that the faces of the polyhedral cells would be EIPs rather than EMIPs to
allow the cell topology to accommodate complicated life activities, which indicated that
Lewis’s law for Type III 2D structures (Eq. (14)) also may be applied to living biological
3D structures. Aboav-Weaire’s law may be generalized to 3D structures with consideration
for the distribution of curvature at vertices.

CONCLUSION
This study found that polygonal cells of natural and artificial 2D structures were inclined
to form EMIPs. This phenomenon was named ellipse packing, which could be applied in
simulations of the dynamics of cell topology during growth.We derived improved relations
of Lewis’s law and Aboav-Weaire’s law and verified these findings using the semi-axes of
fitted ellipses, cell area, and the number of cell edges. The present study suggested that
Lewis’s law and Aboav-Weaire’s law are nonlinear relations, which mainly describe the
effect of circle deformation on cell area and the edge number of neighboring cells. Ellipse
packing determines the cell topology of 2D structures and growth patterns.
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