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Abstract

Background

Changes to human body composition reflect changes in health status to some extent. It has

been recognized that these changes occur earlier than diseases. This means that a reason-

able prediction of body composition helps to improve model users’ health. To overcome the

low accuracy and poor adaptability of existing human body composition prediction models

and obtain higher efficiency, we proposed a novel method for predicting human body com-

position which uses a modified adaptive genetic algorithm (MAGA).

Methods

Firstly, since there are many parameters for a human body composition model, and these

parameters are associated, we designed a new parameter selection approach by combining

the improved RReliefF method with the mRMR method. Following this, selected parameters

were used to establish a model that fits body composition. Secondly, in order to accurately

calculate the weight of parameters in this model, we proposed a solution which used a modi-

fied adaptive genetic algorithm, taking advantage of both roulette and optimum reservation

strategies. This solution also has an improved selection operator. Thirdly, taking the per-

centage of body fat (PBF) as an example of body composition, we conducted experiments

to compare performance between our algorithm and other algorithms.

Results

Through our simulations, we demonstrated that the adaptability of the proposed model is

0.9921, the mean relative error is 0.05%, the mean square error is 1.3 and the correlation

coefficient is 0.982. When compared with the indexes of other models, our model has the

highest adaptability and the smallest error. Additionally, the suggested model, which has a

training time of 28.58s and a running time of 2.84s, is faster than some models.
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Conclusion

The PBF prediction model established by MAGA has high accuracy, stronger generalization

ability and higher efficiency, which could provide a new method for human composition

prediction.

Introduction

Human bodies are composed of muscle, fat, inorganic salt, water and other components, each

of which make up a percentage of the total mass of the human body. To a certain extent,

changes in human body composition reflect physiological or pathological changes. Therefore,

using body composition analysis in clinical practice may be beneficial for preventing disease as

well as for treatment and rehabilitation [1]. However, many factors affect body composition.

These include age, gender, height, weight, race, ethnicity, medical history, dietary intake, exer-

cise status and so on [2]. Equally, prediction accuracy of body composition tends to be deter-

mined by the selection of the method. It is therefore clear that a reliable prediction method for

human body composition which has high prediction accuracy, strong adaptability and better

efficiency is necessary. To date, human body composition prediction methods have included

both linear regression methods and intelligent prediction methods, from which many valuable

results have been obtained.

Many researchers working with the linear regression prediction method for human body

composition have utilized a bioelectrical impedance measurement (BIA), using gender, age,

weight, height and bioelectrical impedance as independent variables for a regression predic-

tion equation of human body composition. This equation is able to estimate fat-mass (FM),

fat-free mass (FFM), body fat (BF), total body water (TBW) and so on. The commonly used

equations for body composition prediction are those of Wang [3], Deurenberg [4] and Lukaski

[5]. Chinese scholars have carried out similar work and proposed several human body compo-

sition prediction equations for differing groups of people (such as those of different ages, sex,

race and so on). Zhang et al. [6] proposed a PBF prediction equation which made use of the

skinfold thickness of female children with a bone age of between six and eight. However, the

accuracy of these algorithms is not high. By using a magnetic resonance imaging method, Liu

et al. [7] established a regression equation for predicting the visceral and subcutaneous fat of

both male and female participants. However, this method is difficult to carry out correctly and

is not cost effective. Yang et al. [8] proposed a prediction equation for total water, fat-free lean

tissue and adipose tissue based on the BIA method, and measured its correlation using the iso-

tope dilution method. Wang et al. [9] established a prediction equation–also based on BIA–for

total water content and fat-free body weight which demonstrates high accuracy rates. These

methods predict the model according to a regression equation. However, once the regression

equation is determined, it becomes difficult to adjust it according to the situation, which

means adaptability is poor. Moreover, the regression equation is established based on a certain

range of statistical data, meaning errors tend to be significant.

A range of intelligent prediction methods for human body composition have been pro-

posed by scholars worldwide. Kupusinac et al. [10] suggested an artificial neural network-

based measurement method which can train many obtained sample sequence sets to establish

an FM prediction model. However, training is slow and results do not always converge. Fer-

enci et al. [11] compared three differing approaches: linear regression, feed-forward neural

networks and support vector machines. Simulation results indicated that support vector
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machines predict human body fat percentage slightly better than the other two approaches,

meaning it has higher accuracy. Lu et al. [12] described an intelligent BF prediction method

based on a 3D-shape. Here, a null shape descriptor was selected using a baseline regression

model. This then uses visual cues as morphological priori to improve the prediction baseline,

resulting in an improved prediction accuracy of BF. Shao et al. [13] proposed a BF prediction

strategy which combines any two of the following four methods: multivariate regression (MR);

artificial neural networks (ANN); multivariate adaptive regression splines (MARS); support

vector regression (SVR). Their results demonstrated that a combined prediction model is bet-

ter than an individual model. Zhu et al. [14] suggested a human visceral fat area (VFA) predic-

tion model based on wavelet neural networks. When compared to regression models, this

model demonstrated significantly improved prediction. Liu et al. [15] suggested an SVM-

based bioelectrical resistance anti-human body fat measurement method to improve their

model’s generalization ability. However, this is only suitable for a small sample. Chen et al.

[16] developed a body component prediction model using Akaike information criterion

(AIC)-selected characteristic parameters and then used improved entropy to solve the model.

This model’s accuracy was improved; however, the algorithm is very complex. The common

feature of these models is that they make predictions according to the learning mechanism of

the intelligent algorithm, meaning the accuracy of the algorithm is significantly improved.

However, their disadvantages are that algorithms are influenced by the sample and may con-

verge prematurely, meaning adaptability is poor.

As discussed above, while linear regression is simple, accuracy is low. In contrast, intelligent

prediction algorithm is complex, yet has a high accuracy rate. However, as with linear regres-

sion, the existing intelligent prediction approach is influenced by samples and adaptability is

poor. Therefore, to obtain a better performance prediction model, we explored the intelligent

algorithms of the genetic algorithm series. Genetic algorithms are used for optimization prob-

lems in many fields [17], although they have the disadvantages of being easily trapped in local

optimization and poor optimization efficiency. To obtain better optimization results in diverse

domains, genetic algorithms have been improved by many scholars. Sangaiah et al. [18] pro-

posed a hybrid Taguchi-genetic learning Aagorithm (HTGLA), in which the Taguchi method

is inserted between crossover and mutation operations. They found that the algorithm

improved prediction accuracy. Rahmani Hosseinabadi et al. [19] described an extended

genetic algorithm which reached better solutions in terms of computational times and objec-

tive values. The fast genetic algorithm suggested by Khanduzia et al. [20] has higher accuracy

and faster running speed, and is the combination of a genetic algorithm and a fast branch and

cut method. Additionally, adaptive genetic algorithms (AGAs) were developed to improve the

ability to find the optimal solution. The AGA can be adjusted by adaptive genetic parameters

to improve an algorithm’s adaptability, thereby improving both convergence speed and accu-

racy. However, since AGAs still tend to achieve partial optimization, various modified adaptive

genetic algorithms have been proposed.

Ravindran et al. [21] described an improved adaptive genetic algorithm (IAGA), in which

they employed a new scaling technique to avoid premature convergence. In addition, they

applied an adaptive crossover and mutation techniques to mask the concept and increase pop-

ulation diversity. Results demonstrate that this algorithm is better at finding global optimal

solutions. Seong et al. [22] proposed an enhanced adaptive genetic algorithm which combines

an adaptive genetic algorithm (AGA) with conventional invasive weeds optimization (IWO)

technology. This combination improved search capability and convergence speed. Yan et al.

[23] suggested an improved sparse adaptive genetic algorithm in which the parameters of

adaptive crossover operator and the mutation operator were improved to achieve global
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optimization. Results showed that this algorithm has a higher accuracy, although its calculation

is less efficient.

Zhang et al. [24] were able to improve the chaotic adaptive genetic algorithm. Based on the

adaptive crossover operator and the mutation operator, chaotic sequences were introduced to

initialize the population, while elite retention and mixed sorting operations were utilized to

solve precocity. Simulation results suggested that this algorithm has a stronger global search

ability, faster convergence speed and greater robustness. In the improved adaptive genetic

algorithm described by Fu et al. [25], a restart strategy was used to solve the algorithm’s prema-

ture convergence problem, while a greedy strategy was employed to improve optimal solution

searching speed. These authors also utilized an adaptive crossover operator and a mutation

operator to increase the algorithm’s adaptability. Results demonstrated that this algorithm has

a higher success rate and a faster solution solving speed than others. Yang et al. [26] suggested

a solution for improving an adaptive genetic algorithm based on retention policy. In this

model, individuals with a higher adaptability demonstrated a lower probability of crossover

and mutation operator, while those with poor adaptability demonstrated adaptive crossover

and mutation operator. This solution was found to have a faster convergence speed as well as

to be more stable.

Following the above research, we found that modified adaptive genetic algorithms not only

solve the problem of poor adaptability for these models, but also prevent falling into local opti-

mum. Surprisingly, they also have stronger optimization capability and high convergence effi-

ciency, although no attempts have been made to apply this to the prediction of human body

composition. With the aim of obtaining higher prediction accuracy, stronger generalization

ability and faster convergence speed, we developed a modified adaptive genetic algorithm for

improving the prediction of human body composition. This algorithm improves the selection

operator, accounting for the retention problem of the characteristic parameter (individual)

with high adaptability in an initial evolution as well as the degradation of the algorithm in late

evolution. More importantly, it can be used to find the optimal weight set for the prediction

model, combining the advantages of both the roulette strategy and the optimal retention

policies.

It is noteworthy that the fitting model should be built before solving the unknown weight of

the prediction model and that the construction of the fitting model also has an important

impact on prediction accuracy. Furthermore, its construction depends on the selection of the

human characteristic parameters. Therefore, an improved human body composition feature

selection algorithm was proposed in this paper. The related background information is dis-

cussed in the section ‘Feature selection and establishment of the body composition fitting

model’.

There are three novel contributions in this paper. The suggested feature selection algorithm

was firstly used to select the correct feature parameters to build a fitting model. Secondly, we

utilized the proposed modified adaptive genetic algorithm to solve the unknown weight set of

the model. Finally, a series of simulations were designed to verify the performance of the pro-

posed algorithms. The main details of these contributions are:

1. We propose an improved RReliefF algorithm which combines sample distance metric with

sample morphometry and develop a sample similarity distance model which combines

human numerical parameter sample distance and sample morphological distance.

2. Based on the improved human body composition feature selection algorithm which com-

bines RReliefF and mRMR, the detailed flow of the algorithm’s selected feature is designed

to obtain the preferred feature set of human body composition.
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3. We propose an improved selection operator which combines both roulette selection and

optimal retention strategies. This combined strategy retains the most adaptive individuals

while removing the least suitable individuals, ensuring a diversity of individual choices.

4. A flow chart of this human body composition prediction algorithm based on a modified

adaptive genetic algorithm is developed, and the weight-solving problem of the human

body component prediction model is solved.

5. We designed algorithm simulations to analyse how to choose algorithm parameters, algo-

rithm adaptability and efficiency as well as the proposed algorithm’s prediction accuracy of

the body composition model.

Materials and methods

Ethics statement

The study is consistent with the Helsinki Declaration. Dalian University granted ethical

approval to carry out the study within its facilities. The body composition data that was tested

in this study, such as height, weight and fat percentage and so on, were not ethically sensitive.

We did not test people, but instead collected basic body composition data on the universal

INBODY measurement device. The body composition tester (the universal INBODY measure-

ment device) will not cause any harm to the human body. All participants were informed of

the purposes of the study and the risks associated with the procedures. Written informed con-

sent was obtained from all participants before the study commenced.

Feature selection and establishment of the body composition fitting model

Selecting the correct characteristic parameters related to body composition is a key part of the

body composition fitting model. In this case, the eight-segment impedance model of the trunk

subdivision [27] was used to obtain bioelectrical impedance parameters R1 ~ R8 of the human

body. In addition to considering the eight-segment impedance values, this should also include

other physiological parameters that affect body composition such as gender (S), age (A), height

(H), weight (W), ethnicity (N) and other factors. Therefore, basic characteristic parameters

such as R1 ~ R8, S, A,H,W and R are grouped as first characteristic parameters, while the

square of the impedance value of each segment in addition to reciprocal and multiple products

of every pair are grouped as second characteristic parameters: Ri2, 1/Ri, RiRj(1� i� 8, 1�

j� 8). Combining both first and second characteristic parameters resulted in a candidate fea-

ture parameter set of human body composition: R1 ~ R8, S, A,H,W, N, R, Ri2, 1/Ri, RiRj(1�
i� 8, 1� j� 8).

It is clear that there are many candidate feature parameters whose relationships can be cor-

relation, nonlinearity or irrelevance. Therefore, it is necessary to design a functional feature

parameter selection algorithm to remove both uncorrelated and redundant feature parameters.

Commonly used feature selection algorithms are often divided into two types: filter and wrap-

per algorithms. While the initial group has a high computational efficiency, it fails to fully con-

sider redundancy between features. In contrast, the latter group is good at identifying key

features, but its calculation speed is slow and it cannot cope well with high-dimensional data

sets.

Therefore, in order to obtain a better selection effect, these two types of algorithms–or simi-

lar algorithms–are often combined. Zhang et al. [28] proposed the filter-wrapper hybrid fea-

ture subset selection algorithm, also known as the maximum Spearman minimum covariance
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cuckoo search (MSMCCS). These authors adjusted both correlation and redundancy weights

based on the MSMC algorithm and then used both the weighted combination and the cross-

mutation strategy in the improved cuckoo search algorithm to obtain the optimal feature sub-

set. This algorithm has a higher efficiency and strong classification accuracy. Chen et al. [29]

suggested a human physiological feature selection algorithm based on filtering and improving

clustering. A feature filtering method based on the Hilbert Schmidt-dependent criterion is uti-

lized to eliminate irrelevant features, while the improved chameleon clustering method

removes redundant features, efficiently removing uncorrelated and redundant features. Hu

et al. [30] proposed a filtering plus encapsulation hybrid feature selection algorithm which uti-

lizes the partial mutual information method to filter out most unrelated and redundant fea-

tures while utilizing the FA-based wrapper method to further reduce such features. Use of this

method can lead fewer parameters yet more effective features. In addition, this model has a

high prediction accuracy.

Chhikara et al. [31] described a hybrid filter-wrapper feature selection algorithm based on

improved particle swarm optimization. Multiple regression filtering techniques and t-tests

were used to optimize the selection of key features. Improved PSO was used to further reduce

the number of features, meaning this method has a higher classification accuracy. Solorio-Fer-

nández et al. [32] proposed a new hybrid filter-package clustering method which categorizes

features according to the correlation of features at the ‘filter’ stage. This method searches for

the best feature subset by integrating an improved Calinski-Harabasz index at the wrapper

stage as well as utilizing simple ordering and an inversed elimination approach. This algorithm

has a higher operational efficiency and is suitable for large datasets. Wang et al. [33] proposed

a feature selection algorithm which combined both the RReliefF and mRMR algorithms. The

ReliefF is used to calculate the weight coefficients of each feature, while the mRMR algorithm

has the optimal correlation within categories as well as minimal redundancy between each cat-

egory. This algorithm can improve classification accuracy.

Based on the above analysis, it can be seen that the combined algorithms perform better.

However, due to the particularity of human physiological characteristic parameters, the new

combined selection algorithm should be considered. The physiological parameters of the

human body include the impedance of each segment. However, samples of the left and right

upper limbs as well as the left and right lower limbs are similar. The existing combination algo-

rithm discussed above does not consider these similarities. Therefore, we suggest an improved

RReliefF algorithm which takes advantage of the mRMR algorithm while also considering a

sample distance measurement as well as a sample morphology measurement. This algorithm is

tailored to the selection of human body component characteristics parameters.

Improved RReliefF algorithm. Since human physiological parameters are unique, the

bodily values of two people with different physiological parameters (such as impedance, height

and weight) may be similar. In contrast, these values may differ for two people with similar

physiological parameters. As shown in Table 1, the distance metric (Euclidean distance)

between sample 1 and sample 2 is smaller than that between sample 1 and sample 3, while PBF

values of sample 1 and sample 3 are similar. This means that when using the RReliefF algo-

rithm to calculate the distance between samples, errors will occur with the original distance

Table 1. The data of sample distance.

Sample Height (cm) Weight (kg) PBF (%)

1 175 65 21.2

2 177 62 19.7

3 180 68 20.9

https://doi.org/10.1371/journal.pone.0235735.t001
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metric, which in turn means that it cannot find a more accurate closest neighbor sample. This

means that, in our algorithm, when calculating sample data distance, we also considered the

sample morphological distance; that is, the combination of the sample distance metric and the

sample morphological metric. Therefore, the RReliefF algorithm is further improved for select-

ing the parameters of human characteristics.

The Euclidean distance between samples is calculated to find the nearest neighbor sample

of the sample using the RRelief algorithm. Eq 1.1 is used to calculate Euclidean distance

between sample i and sample j:

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

k¼1

ðxik � xjkÞ
2

s

ð1:1Þ

where xik is the k-th body physiological parameter value of sample i, xjk is the k-th body physio-

logical parameter value of sample j andm is the total number of the physiological parameters

of the human body. Since both the human body characteristic parameters and the Euclidean

distance coefficient have different dimensions, the calculation result must be treated with cau-

tion. The relative Euclidean distance coefficient is used as a sample data distance coefficient to

solve this. Quality indicators are both standardized and normalized:

Dij ¼
dij � minðdijÞ

maxðdijÞ � minðdijÞ
ð1:2Þ

where min(dij) is the minimum and max(dij) is the maximum value of Euclidean distance. The

above equation shows that the norm of the value is closer to 0, suggesting that the distance

between the two samples is smaller; when the value is closer to 1, the sample distance is larger.

In order to measure the morphological distance of the sample, the Pearson correlation coef-

ficient of the calculated sample is used. This calculation formula is:

rij ¼

Xm

k¼1

ðxik � �xiÞðxjk � �xjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

k¼1

ðxik � �xiÞ
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

k¼1

ðxjk � �xjÞ
2

s ð1:3Þ

where �xi; �xj are the mean values of the human physiological parameters for samples i and j,
respectively. Sample morphological distances can be indicated using the absolute value of the

similarity coefficient; that is, Rij = |rij|(Rij 2 [0,1]). In order to ensure that the morphological

distance coefficient and relative Euclidean distance coefficient have a synchronized signifi-

cance, we used:

Sij ¼ 1 � Rij ð1:4Þ

The closer the value of the morphological distance coefficient to 0, the greater the similarity

between samples. If the value is closer to 1, samples are less similar.

Once impact factors of the sample similarity degree had been normalized, the following

sample similar distance model was defined to consider numerical distance of the human physi-

ological parameter sample as well as sample morphological distance:

Cij ¼ aDij þ bSij ð1:5Þ

where α and β are the coefficient weights and α+β = 1 and the range of sample similarity
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distances Cij is [0,1]. The closer a value is to 0, the more similar the samples. In contrast, the

closer a value is to 1, the larger the sample phase difference.

A body composition feature parameter selection method combining improved RReliefF

and mRMR. The human body feature selection algorithm flow can be seen in Fig 1. Firstly,

human physiological information datasets T = (O, F, C) were collected by staff at the physical

examination center of one hospital. O = {o1, o2,� � �,on} represents the training sample data set;

F = {f1, f2,� � �,fn} represents the original physiological parameter set; C = {c1, c2,� � �,cn} describes

the target category set. Secondly, dataset T is used as the input for the improved RReliefF algo-

rithm. The resulting weighted feature parameter set F0 = {f1, f2,� � �,fm} is then used as input

dataset T0 for the mRMR algorithm. The final optimal feature set F@ = {f1, f2,� � �,fr} was obtained

through a combination of improved RReliefF and mRMR methods.

Detailed algorithm flow:

Step 1 Data collection and organization: constructing the training sample dataset O, feature

parameter set F and target category set C; setting up the weighted feature set F0 and final tar-

get feature set F@, all with initial empty values.

Step 2 Sample similarity distance Cij of Eq 1.5 is substituted for sample neighbor distance d(i,
j) in the RReliefF algorithm with the aim of improving that algorithm.

Step 3 Training sample data set O, feature parameter set F and target category set C are entered

into the improved RReliefF algorithm and the weight value of each feature parameter is

obtained using formula Eq 1.6, as follows:

W½A� ¼
NdC&dA½A�
NdC

�
ðNdA½A� � NdC&dA½A�Þ

m � NdC
ð1:6Þ

whereW[A] is the weight value of the feature parameter; NdC is the weight under various pre-

dictive conditions; NdA[A] is the weight under various feature conditions; NdC&dA[A] is the

weight set under various predicted values and feature conditions; andm is the parameter set

by the user.

Step 4 Sorting the feature parameter set F = {f1, f2,� � �,fn} by the weighted weight, as calculated

in Step 3.

Step 5 Taking characteristic parameters with a weight value greater than a threshold of σ into

F0, resulting in weighted human physiological parameters F0 = {f1, f2,� � �,fm}.

Step 6 Using obtained weighted human physiological parameter set F0 = {f1, f2,� � �,fm}

and the target category set C as inputs as well as maximum correlation value

maxDðF0; cÞ ¼ 1

jF0 j

X

fi2F0
Iðfi; cÞ in the mRMR algorithm to choose a feature with the highest

correlation to the target label to join F@.

Step 7 Selecting a new feature parameter from F0 to put into F@. Assuming that q−1 features

have been chosen and the target feature set is F0q-1, the q-th feature is now chosen from the

Fig 1. Selection process of human body physiological characteristic parameters.

https://doi.org/10.1371/journal.pone.0235735.g001
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remaining feature set {F0−F0q-1}. This satisfies the following equation:

maxð
X

fi2F0 � F0q� 1

Iðfi; cÞ �
1

q � 1

X

fj2F0q� 1

Iðfi; fjÞÞ ð1:7Þ

Step 8 Repeating Step 7 until the target feature set F@ contains r features and classification accu-

racy Sr� Sr+1. The result is the final feature set.

Establishment of prediction model for human body composition prediction. Based on

the algorithm described above, a final feature set of F@ = {G, A,W,H, R1R2, R2R3, R4R5, R2,H2/

R2} is selected, while the fitting model of the obtained human body component PBF can be

seen below, in Eq 1.8.

f ¼ o1Gþ o2Aþ o3W þ o4H þ o5R1R2 þ o6R2R3 þ o7R4R5 þ o8R2 þ o9H
2=R2 þ b ð1:8Þ

where ω1~ω9 are the regression coefficients of the fitted model and b is the model’s constant

term.

If X = [x1, x2, x3, x4, x5, x6, x7, x8, x9, 1] = [G, A,W,H, R1R2, R2R3, R4R5, R2,H2/R2, 1] then

the fitting model equation f is:

f ðoÞ ¼ oXT ð1:9Þ

In the above equation, variable X is known while weight ω is unknown. This modified adap-

tive genetic algorithm can be used to solve variables ω.

Human body composition prediction method based on improved adaptive

genetic algorithm

Roulette selection strategy. The working principal of the roulette selection strategy starts

with a calculation of the fitness and selection probability for each individual, which then form

a disc. Secondly, individuals are sorted and numbered in descending order according to selec-

tion probability, after which the cumulative probability of the individual can be calculated.

Finally, a random number is generated in the interval [1, 0]. If this random number is either

less than or equal to the cumulative probability of i individuals or greater than the cumulative

probability of i−1 individuals, that individual is selected. The probability that any individual is

selected is as follows:

pðkÞ ¼
fitðkÞ
XM

i¼1

fitðiÞ
ð2:1Þ

where fit(k) is the fitness degree of individual k andm is the population size.

However, there are obvious shortcomings to the roulette selection strategy [34]. In the early

stage of the algorithm, individuals with higher fitness are more likely to be selected and copied

into the next generation, resulting in a large number of the same individuals in the offspring.

A compromised population diversity leads to premature convergence. In the later stage of the

algorithm, as most individual differences are not large, each individual’s fitness is similar. This

means that the roulette selection strategy is likely to lose its ability to choose, and so selection

becomes random.
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Optimal retention strategy. The optimal retention strategy skips crossover and mutation

operations on the fittest individuals in the population, and then directly copies the fittest indi-

vidual to the next generation. This can prevent the existing optimal solution from being

destroyed and remove individuals with the worst adaptability from the next generation, ensur-

ing a constant population size. When this strategy is used in a population’s evolution and that

population reaches a certain scale, the algorithm ensures that the final problem converges to

the global optimal solution. However, the algorithm’s efficiency is not much improved.

Improved selection operator combining roulette selection strategy with optimal reten-

tion strategy. To improve adaptability and diversity of individual selection, we took the

advantage of both the roulette selection and the optimal retention strategies. We propose an

improved selection operator which combines the two strategies. The details of this operator

can be seen in Fig 2. In this operator:

1. All individuals are sorted in their population according to their level of fitness, from large

to small, before being equally divided into s groups.

2. The population size is set to N. By applying the optimal retention strategy, the 1

s N individu-

als from the group with the best fit are directly passed on to the next generation without

crossover or mutation.

3. Individuals from the second group to s−1 group were ranked by fitness degree, and Eq 2.1

was used to calculate the probability of each individual being selected. Following this, the

individual’s cumulative probability was also calculated. The selection operation was then

conducted utilizing the roulette strategy.

4. When using the roulette strategy selection, s� 2

s N individuals were selected s� 1

s N times to

obtain s� 1

s N individuals.

5. 1

s N individuals from the group with the lowest levels of fitness are directly discharged.

Fig 2. Improved selection operator strategy.

https://doi.org/10.1371/journal.pone.0235735.g002
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Here, differing values of the number of groups s produce differing optimal solutions for the

population. See Section 3 for a specific analysis. The improved selection operator eliminates

the group of individuals with the lowest fitness levels while preserving the highest fitness set.

This prevents some possible problems (for example, reversed evolution) while accelerating

convergence. When a population is too large and an experimental data sample is overwhelm-

ing, the improved algorithm has better efficiency and higher convergence speeds as compared

to the optimal retention strategy. Additionally, our algorithm overcomes several disadvantages

of the roulette selection strategy. Individuals with greater adaptability do not participate in

roulette selection and are instead entered directly to the next generation, ensuring a diverse

population. Retention of well-aligned individuals in the later stages ensures the algorithm does

not degrade into random selection.

The flow of the MAGA-based human body composition prediction algorithm. The

principal of MAGA is to solve the unknown variable ω of the body composition prediction

model as follows: the fitness function is set, following which decimal coding and initialized

population are utilized. Subsequently, an adaptive selection operator, adaptive crossover oper-

ator and adaptive mutation operator are used in order. The optimal solution for the variable ω
is then obtained. This algorithm flow is shown in Fig 3.

(1) Encoding and initialization

Since the model obtained here is a continuous function and visual representation of the body

composition prediction problem, the unknown coefficient representation of this fitting model

can be written as ω = [ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9, b]. The decimal real number coding

method is used. A set of unknown coefficients ω = [ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9, b] repre-

sents the individuals in the population. Each individual’s gene is a real number, the range of

which is set to [–100,100]. When the population is initialized, M randomly generates groups of

unknown parameters to constitute an initial subpopulation. The initial value of the evolution

generation counter is set to 1 and the maximum genetic generation is set to 400.

(2) Fitness function

Both benefits and drawbacks of body composition prediction can be measured using the

degree of similarity between body composition predictions fk(ω)i and real values Fi. The closer

these two values are, the more accurate the prediction result. Under this condition, the individ-

ual ω = [ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9, b] has the highest adaptability degree. We used the

mean residuals of predicted and actual values as the objective function of the prediction

method:

objectðkÞ ¼
1

m

Xm

i¼1

jfkðoÞi � Fij
Fi

ð2:2Þ

wherem is the size of the training sample, Fi is the actual value of the i-th training sample and

fk(ω)i is the predicted value of the i-th training sample of the k-th individual. Eq 2.2 shows that

the smaller the function value, the closer the predicted value is to the real value. In order to

represent the optimal solution of the problem in a maximized form, the function is trans-

formed, as can be seen below, while the final fitness function is obtained, as demonstrated in

Eq 2.3.

fitðkÞ ¼
1

1þ objectðkÞ
ð2:3Þ
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where object(k) is the objective function of body composition prediction. This is another form

of Eq 2.2, while it is clear that object(k) 2 [0, +1] and that fit(k) 2 [0,1].

(3) Genetic operator

The genetic operator consists of three parts: selection operator, crossover operator and muta-

tion operator. The improved method proposed in this article is used when selecting the

Fig 3. The flow of the MAGA-based human body composition prediction algorithm.

https://doi.org/10.1371/journal.pone.0235735.g003
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operator execution. The construction of both the adaptive crossover operator and the adaptive

mutation operator is the same as that utilized in several existing studies [35, 36, 37].

(4) Iterative termination condition

When the error between the predicted and actual values is less than or equal to 0.01, or when

the number of iterations reaches a maximum value of 400, iteration is terminated, while the

optimal individual in the current population becomes the solution output of the problem.

Results and discussion

Experimental data

The laboratory care committee of Dalian University granted ethical approval to carry out the

study within its facilities. The dataset is the physiological characteristic parameters of 220

healthy Chinese participants, including 96 females and 124 males, who ranged in age from

nine to 84 years, in height from 149 to 190cm, and in weight from 38.4 to 121.4kg from one

hospital (the Haidian Maternal and Child Health Hospital) in Beijing, China. The parameters

are G, A,W,H, PBF and R1 ~ R8, which respectively represent the variables of gender, age,

weight, height, percentage of body fat and human body eight-segment impedance. Addition-

ally, R1 ~ R8 represents the impedance of the human body’s left upper limb, upper trunk, right

upper limb, left trunk, right trunk, lower trunk, left lower limb and right lower limb respec-

tively. A total of 200 samples were randomly selected as the training set, while the remaining

20 samples were used as test sets. Training set data can be seen in Table 2, while test set data is

shown in Table 3. The modified adaptive genetic algorithm proposed in this paper was used

Table 2. Human physiological characteristics of training samples.

Human physiological characteristic parameters

NO. G A W(kg) H(cm) R1(O) R2(O) R3(O) R4(O) R5(O) R6(O) R7(O) R8(O) PBF(%)

1 M 28 82.0 175 253.9 20.1 264.7 21 21.7 26.1 212.5 212.0 27.8

2 F 51 68.6 154 277.5 22.9 293.2 23.5 23.9 29.4 205.4 200.8 39.1

3 M 23 109.5 182 235.3 20.4 250.9 20.7 21.3 25.9 166.8 164.9 35.1

4 M 48 80.9 171 225.3 21.6 236.1 22 22.6 28.1 175.9 174.9 28.0

5 F 74 54.9 150.5 327.9 23.1 336.5 23.5 24.2 26.3 264.8 274.6 37.7

6 F 26 59.2 163 405.3 20.8 390.8 21.2 21.9 27.7 235.8 238.2 31.4

7 M 23 109.5 182 232.1 21.9 247.1 22.3 23 28.7 166 167.6 34.6

8 F 22 50.4 162.5 362.8 22.7 376.9 23.1 24.2 27.1 263 258.5 24.5

9 M 52 92.4 180 240.3 20.6 236.7 21.2 21.9 27.6 179.9 190.6 26.2

10 F 40 65 160 327.6 21.9 332.7 22.4 23.5 24.5 241.5 236.9 35.7

11 F 34 42.8 155 340.9 21.1 356 21.9 22.2 29.5 216.4 220.5 18.3

12 M 59 71 169 241.8 21.5 242.6 22.1 22.6 27.8 210.5 209.4 23.6

13 F 57 65 153 264.4 22.2 266.3 22.6 23.5 29.4 219.3 222.3 37.3

14 M 50 89 172 248.6 21.5 246 23.5 20.4 27.4 199.2 207.5 34.4

15 F 84 63.8 151.5 276.4 23.2 291.2 23.8 25.4 33.2 194.1 199.9 38.4

16 F 49 65 159.5 291.1 22.3 295.5 22.8 23.6 30.1 219.3 217.2 35.3

17 M 61 79.3 169 265.1 21.9 286.4 22.4 22.2 28.3 211.6 206.3 34.3

18 M 55 65.2 163 279.2 21.3 296.4 23.1 23.7 30.4 241.5 243.3 30.5

19 F 45 49.7 152.5 367.7 21.5 377.1 22.1 21.9 25.8 261.5 267.7 32.3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

200 M 22 77.5 183 279.7 21.3 291.3 21.7 22.9 29.4 224 231.9 20.5

https://doi.org/10.1371/journal.pone.0235735.t002
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for modeling training. The model was implemented and tested in Matlab R2016a using Python

3.5.4 software environment. The mean square error of the PBF prediction model can be seen

below:

MSE ¼
1

n

Xn

i¼1

ðfkðxÞi � fkðxÞÞ
2

ð3:1Þ

where n is the test set size, fk(x)i is the predicted value obtained each time from the model and

fkðxÞ is the mean of the predicted values.

The correlation coefficient is calculated by comparing predicted results with actual values.

The calculation method is:

rðfkðxÞi; FiÞ ¼
CovðfkðxÞi; FiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½fkðxÞi�Var½Fi�

p ð3:2Þ

where Cov(fk(x), Fi) is the covariance of fk(x)i and Fi, Var[fk(x)i] is the variance of fk(x)i, Var[Fi]
is the variance of fi, fk(x)i is the predicted PBF value of the body composition model and Fi is
the actual PBF value.

Experimental results and discussion

Experiments on algorithm parameter selection and model performance comparison are

reported in this paper. The choice of algorithm parameters has a crucial impact on the predic-

tion effect, so we firstly explored how to choose the important parameters of the feature selec-

tion algorithm and MAGA.

Table 3. Human physiological characteristics of the test samples.

Human physiological characteristic parameters

NO. G A W(kg) H(cm) R1(O) R2(O) R3(O) R4(O) R5(O) R6(O) R7(O) R8(O) PBF(%)

1 F 60 59.5 162 307.0 23.4 297.6 23.9 24.4 30.5 261.9 217.7 31.1

2 M 23 49.3 158 370.5 22.4 362.1 22.7 23.5 29.3 257.4 262.9 27.8

3 M 28 58.5 180 307.3 24.5 312.3 25.4 26.4 32.3 261.8 255.7 12.6

4 M 28 58.5 180 312.5 25.9 322.2 26.5 27.3 34.2 259.6 252.4 13.8

5 F 51 56.9 161 341.1 23.6 340.6 25 27.2 34.4 230.1 227.7 29.6

6 F 29 79.3 163 278.9 26.4 278.5 26.9 27.3 33.5 200.1 184.2 40.6

7 M 59 77.2 176 244.8 22.2 260.4 22.5 22.8 29.1 192.7 190.7 22.9

8 M 45 87.8 180 235.7 20.3 237 20.9 21.3 26.4 221.2 215.6 23.0

9 M 57 75.0 163 235.4 20.6 244.9 21.2 21.5 28 192.6 192.7 32.2

10 M 31 78.4 171 216.9 19.8 222.7 20.3 20.7 25.8 167.4 160.7 21.6

11 F 42. 55.8 152 282.8 26.6 291.5 27.4 28 33.4 216.2 212.7 31.4

12 F 51 68.3 162 307.4 20 306.3 20.7 21.3 27.2 193.7 188.8 33.9

13 F 54 70.5 168 290.0 28.1 296 28.7 29.1 35.2 208.6 203.3 30.2

14 M 55 60.7 165 284.7 23.3 274.9 23.8 24.3 30 222.6 219.1 21.9

15 M 50 79.7 166 241.6 26.7 241.9 27.3 27.6 33.7 193.0 199.4 30.7

16 F 33 50.0 156 322.0 25.3 327.5 25.9 26.7 32.1 241.9 243.1 24.7

17 M 43 64.2 170 292.4 23.1 283.7 23.8 24.3 29.8 236.6 245.9 21.7

18 M 43 66.4 175 303.7 21.1 320 22.3 21.9 28.1 237.3 229.1 21.1

19 M 51 63.5 168 255.3 26.1 259.1 26.7 27.5 32.1 304.4 206.0 27.6

20 M 48 76.6 172 264.2 22.2 272.3 23.5 22.3 29.9 205.5 203.4 27.5

https://doi.org/10.1371/journal.pone.0235735.t003
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To explore the influence of different values of key parameters (α and β) on the prediction

accuracy in the feature selection algorithm, the comparison experiment was set. Fig 4 demon-

strates how the different ratios of α to β affect PBF prediction errors and that the mean square

error of the prediction model is the smallest when the ratio of α to β is 2: 1. In addition, accord-

ing to formula 1.5, α+β = 1. Therefore, the value of α is set to one third and the value of β is set

to two thirds in the feature selection algorithm, thus obtaining a more satisfying prediction

accuracy.

The setting of the parameter s in the MAGA has a great influence on fitness. It can be seen

from Fig 5 that when s is 8, the population fitness is the highest. If the value is either too large

or too small, it is not conducive to finding the optimal solution for that population. If it is too

small, the grouping is also too small while the optimal retention is too large and the population

evolution is slow, meaning that better individuals may not be selected. However, if it is too

large, the grouping is also too large, and the optimal individual retains too little to prevent the

optimal solution being found. Hence, we set the parameter s to 8 for selecting the higher fitness

individual.

To examine the performance of the proposed model, we compared the body composition

prediction models based on genetic algorithm (GA), adaptive genetic algorithm (AGA),

improved adaptive genetic algorithm (IAGA) [35, 36, 37], support vector regression algorithm

(SVR) [13, 38], artificial neural network algorithm (ANN) [10], traditional regression method

(TRM) and MAGA.

Fig 6 demonstrates the comparative analysis results of the fitness of different models, while

Table 4 is a comparison of the fitness and training time of differing models. Since TRM, SVR

and ANN algorithms are not involved in the calculation of fitness function, there are no maxi-

mum fitness degrees in Table 4. Fig 6 shows that once a population has evolved 110 times, the

Fig 4. Mean square error of different ratios of α and β.

https://doi.org/10.1371/journal.pone.0235735.g004
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Fig 5. Relationship between grouping number s and population fitness.

https://doi.org/10.1371/journal.pone.0235735.g005

Fig 6. Comparative analysis of the fitness of different models. The legend for Fig 6 is “GA, AGA, IAGA, MAGA”.

https://doi.org/10.1371/journal.pone.0235735.g006
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MAGA model fitness, which is the largest among the compared models, reaches a maximum

of 0.9921, meaning the value of the iterative evolutionary fitness no longer increases and the

optimal solution is obtained. Furthermore, it is noteworthy that the MAGA model fitness has

been increasing during population evolution, but the fitness of other models may occasionally

decline, demonstrating a better robustness. With the use of both the adaptive crossover opera-

tor and the mutation operator, our improved selection operator is able to protect the optimal

solution while ensuring diversity of choice. This means that, when compared to other algo-

rithms, the MAGA improves the model’s fitness and robustness. Table 4 shows that, when

compared with the models based on IAGA, SVR and ANN, training time for the MAGA

model is slightly shortened while there is no significant improvement for the MAGA model

compared with the models based on GA, AGA and TRM. Since the premature problem of

both GA and AGA is serious and the obtained population is not highly adapted, the models’

training time is short. The MAGA’s improved selection operator is superior to the selection

operator of the IAGA and MAGA has a faster searching optimal solution speed compared

with SVR and ANN, meaning that training time is shorter.

Fig 7 demonstrates the comparison of predicted values obtained by different models with

their actual values. Fig 8 shows the comparison of relative errors between predicted and actual

values obtained by different models, while Table 5 shows a comparison of the indicators of dif-

ferent algorithms.

It can be seen from Fig 7 that, when compared to other models, the predicted value curve

generated by the MAGA model has the smallest difference from the actual value curve. As

shown in Fig 8, when compared with other models, relative errors between predicted values

generated by our MAGA model and actual values are the smallest. Table 5 shows that the

mean relative error of the proposed model is 0.05% and the mean square error is 1.3. Addition-

ally, the correlation coefficients between the predicted and true values of the six models are all

greater than 0.5 and the P values are all far less than 0.01, which show that they are strongly

correlated and the results are of statistical significance. In particular, the correlation coefficient

of the proposed model is 0.98 and the P value is 0. In sum, this shows that the predicted value

obtained by the proposed model is the closest to the real value and the overall error rate is the

lowest of all models, meaning it has the highest prediction accuracy. Moreover, while the run-

ning time is slightly lower than the IAGA, SVR and ANN models in the same environment, it

is a little more than the AGA and TRM models. However, although the AGA and TRM models

have higher operating speeds, their prediction accuracy is very low.

Based on the above results, the MAGA model not only has better robustness and higher

adaptability, but also can quickly find the optimal solution. What is more, the accuracy of the

prediction model is more desirable. Accordingly, there are significant advantages for predic-

tion of PBF using the suggested algorithm.

Table 4. Comparison of the training time for different models.

Model Maximum fitness degree Training time(s)

GA 0.5642 26.82

AGA 0.8074 28.23

LAGA 0.9532 28.94

MAGA 0.9921 28.58

SVR - 30.67

ANN - 29.89

TRM - 25.46

https://doi.org/10.1371/journal.pone.0235735.t004
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Conclusions

Since existing methods of body composition prediction are impacted by the sample and dem-

onstrate poor algorithm adaptability and low accuracy, we have proposed a new method for

predicting body composition. In this method, preferred human body characteristic parameters

were firstly obtained using a feature selection algorithm which combines RReliefF and mRMR.

The body composition prediction fitting model was established based on this algorithm.

Fig 7. Comparison of the actual values and predicted values obtained by different models. The legend for Fig 7-(a)

is “actual value, MAGA, IAGA, AGA”. The legend for Fig 7-(b) is “actual value, MAGA, SVR, ANN, TRM”. (a)

Comparison of the actual values and predicted values obtained by the MAGA, IAGA and AGA models. (b)

Comparison of the actual values and predicted values obtained by the MAGA, SVR, ANN and TRM models.

https://doi.org/10.1371/journal.pone.0235735.g007
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Secondly, the roulette selection and optimal retention strategies were used for adaptation. The

selection operator of the genetic algorithm was also improved, and this new algorithm was

used to solve the unknown weight in the fitting model. Finally, an example sample was used to

simulate the proposed method’s effectiveness. Simulation results show that the method

improved the accuracy of the body composition prediction model, while operation efficiency

and model fitness degree were also improved. The advantages of this method may arise from

the following aspects: 1) due to the appropriate feature selection algorithm, characteristic

Fig 8. Comparison of relative errors between actual values and predicted values obtained by different models. The

legend for Fig 8-(a) is “MAGA, IAGA, AGA”. The legend for Fig 8-(b) is “MAGA, SVR, ANN, TRM”. (a) Comparison

of relative errors between the actual values and predicted values obtained by the MAGA, IAGA and AGA models. (b)

Comparison of relative errors between the actual values and predicted values obtained by the MAGA, SVR, ANN and

TRM models.

https://doi.org/10.1371/journal.pone.0235735.g008
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parameters with large correlations and small redundancy were selected; 2) the combination of

roulette selection and optimal retention strategies ensured the diversity of selection; 3) the

superiority of the proposed modified adaptive genetic algorithm means it can obtain the opti-

mal solution for the problem faster and more accurately. We anticipate that this algorithm

could provide a new model reference for human body composition prediction. We will con-

duct further research in the future based on the following five aspects: 1) we will consider how

to more effectively reduce the time complexity of the algorithm; 2) cross-validation will be

used to test model performance; 3) the influence of different sample sizes on the prediction

effect will be considered; 4) we will explore the predictive effects of the proposed algorithm on

more body components such as total body water and body fat; 5) the combination of the two

intelligent algorithms will be considered to solve the unknown weights in the body composi-

tion fitting model.
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Table 5. Comparison of the performance of different models.

Model Mean relative error (%) Mean square error Correlation coefficient Running time(s)

AGA 0.2185 6.27 0.684a 2.66

LAGA 0.1045 2.72 0.929b 2.97

MAGA 0.0500 1.30 0.982c 2.84

SVR 0.0873 2.56 0.927d 3.02

ANN 0.1058 2.85 0.920e 2.95

TRM 0.2348 6.73 0.596f 2.49

a. P value (significance level) is 0.001, which is far less than 0.01.
b. P value (significance level) is approximately 0, which is far less than 0.01.
c. P value (significance level) is approximately 0, which is far less than 0.01.
d. P value (significance level) is approximately 0, which is far less than 0.01.
e. P value (significance level) is approximately 0, which is far less than 0.01.
f. P value (significance level) is 0.006, which is far less than 0.01.

https://doi.org/10.1371/journal.pone.0235735.t005
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