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Abstract

Shortwave solar radiation is an important component of the surface energy balance and pro-

vides the principal source of energy for terrestrial ecosystems. This paper presents a

machine learning approach in the form of a random forest (RF) model for estimating daily

downward solar radiation flux at the land surface over complex terrain using MODIS (MOD-

erate Resolution Imaging Spectroradiometer) remote sensing data. The model-building

technique makes use of a unique network of 16 solar flux measurements in the semi-arid

Reynolds Creek Experimental Watershed and Critical Zone Observatory, in southwest

Idaho, USA. Based on a composite RF model built on daily observations from all 16 sites in

the watershed, the model simulation of downward solar radiation matches well with the

observation data (r2 = 0.96). To evaluate model performance, RF models were built from 12

of 16 sites selected at random and validated against the observations at the remaining four

sites. Overall root mean square errors (RMSE), bias, and mean absolute error (MAE) are

small (range: 37.17 W/m2-81.27 W/m2, -48.31 W/m2-15.67 W/m2, and 26.56 W/m2-63.77

W/m2, respectively). When extrapolated to the entire watershed, spatiotemporal patterns of

solar flux are largely consistent with expected trends in this watershed. We also explored

significant predictors of downward solar flux in order to reveal important properties and pro-

cesses controlling downward solar radiation. Based on the composite RF model built on all

16 sites, the three most important predictors to estimate downward solar radiation include

the black sky albedo (BSA) near infrared band (0.858 μm), BSA visible band (0.3–0.7 μm),

and clear day coverage. This study has important implications for improving the ability to

derive downward solar radiation through a fusion of multiple remote sensing datasets and

can potentially capture spatiotemporally varying trends in solar radiation that is useful for

land surface hydrologic and terrestrial ecosystem modeling.
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1. Introduction

1.1. Background

Shortwave (0.3–5.0 μm) solar radiation is the principal source of energy to drive photosynthe-

sis in Earth’s terrestrial ecosystems. As such, characterizing the measurement and spatiotem-

poral variation in solar fluxes is important in physics, biology, chemistry, hydrology, and other

natural sciences. Additionally, solar radiation is the largest component of the available energy

to drive evaporation from the surface, underscoring its importance as a variable that connects

land-atmosphere fluxes. Because of its role in controlling surface energy balance, moreover,

solar radiation indirectly contributes to soil microbial processes through its impact on ground

heat flux and the subsurface distribution and dynamics of soil temperature. Changes in solar

radiation are associated with global biogeochemical cycling through impacts on photosynthe-

sis. Analyses of tropical Net Primary Production (NPP), for instance, suggest that increasing

solar radiation has led to increases in NPP [1]. Evapotranspiration (ET) is dependent on

downward solar radiation, which provides the energy to evaporate water. Based on previous

studies [2, 3], both pan evaporation and downward solar radiation have decreased over the last

50 years.

Downward solar radiation flux is also an important land surface parameter for ecological,

land surface hydrology, and weather forecast models such as the Community Land Model [4],

Biome-biogeochemical (Biome-BGC) [5], Photosynthesis evapotranspiration—biogeochemi-

cal model (PnET-BGC) [6–8], general circulation models (GCMs) [9] and the Weather

Research and Forecasting Model (WRF) [10]. Within these models the downward solar radia-

tion flux is either required as an input parameter or, in the case of WRF and other coupled

land-atmosphere models, produced as an output parameter. The accuracy of the input down-

ward solar radiation directly affects the corresponding accuracy of model outputs related to

surface energy budgets like primary production, evapotranspiration, and indirectly impacts

other parameters such as infiltration, runoff, and chemical solutions in the stream water

[9, 11–12]. Models of coupled land-atmosphere dynamics, such as WRF, produce solar radia-

tion fluxes as an output, capturing the impact of clouds on surface solar radiation either

through parameterizations or by explicitly resolving clouds. The ability to verify model-

predicted solar radiation at the surface against observational information, therefore, would

enhance the ability to assess and characterize errors of both land surface hydrological states

and fluxes and also the effects of simulated atmospheric conditions on the attenuation of solar

radiation from the top of the atmosphere. Observational information used for verification of

input or output surface downwelling solar flux would ideally capture spatiotemporal patterns

in solar radiation at spatial resolutions approaching those of the model being used. However,

most observational solar flux information is available only at the point scale. The ability to

deduce spatial correlates of solar radiation from networks of point-based surface observations

and use that information to generate spatiotemporal predictions of downward solar flux

would, therefore, substantially improve land modeling efforts.

Traditionally, three different methods have been used for obtaining downward solar radia-

tion information, all of which have strengths and limitations. Ground-based pyranometers are

a relatively inexpensive way to obtain estimates of hemispherical solar radiation flux that use a

voltage-generating thermopile that is excited by exposure to solar radiation. While they pro-

vide accurate estimates of solar radiation with high temporal resolution, networks of pyran-

ometers are typically not available in sufficiently high spatial coverage to resolve spatial

patterns [13]. Sparseness in spatial coverage is particularly prevalent in complex and moun-

tainous terrain where placing monitoring stations is logistically challenging. An alternative

method for calculating solar radiation is to use mathematical or empirical models. The method
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of Hargreaves and Samani [14] uses maximum and minimum daily temperature to estimate

the downward solar radiation. Although this empirical method for estimating solar radiation

is relatively simple and can be made with commonly available meteorological observations, it

is based on the assumption that solar radiation is related to the difference between maximum

and minimum temperature and the fraction of extraterrestrial radiation received at the ground

level, which results in model uncertainties. Other models such as the Angstrom-Prescott

model [15–16] use site-specific model parameters to obtain downward solar radiation. How-

ever, these parameters are based on ground based measurements and limited by these mea-

surements [17]. Finally, a number of studies have used remote sensing data to estimate

downward solar radiation using the split window technique [18–19] or look up table method

[20]. The major advantage of using remote sensing information is that it provides spatiotem-

poral coverage of the land surface, which potentially supports the development of long-term

databases of downward solar radiation. However, the split window technique requires parame-

terizations of surface variables such as air temperature and vapor pressure [21] and many

parameters are assumed constant in space and time. Additionally, validation of estimates of

solar radiation derived from remote sensing data are difficult because there are few observa-

tional constraints other than the remote sensing data used as input to the method itself.

We propose here a complimentary technique that integrates both ground-based and remote

sensing observations to predict spatiotemporal patterns in downward solar radiation. The

resulting method leverages the accuracy of ground-based pyranometers together with the spa-

tiotemporal coverage afforded by remote sensing data. The method is specifically based on

machine learning algorithms widely used in climatology and remote sensing [22–23]. Com-

pared with traditional methods for estimating downward solar radiation, a machine learning

approach holds several key advantages. A machine learning approach can (1) be used to iden-

tify those variables that are most powerful in describing spatiotemporal variation in downward

solar radiation, (2) provide explicit mechanisms for quantifying uncertainties in predicted val-

ues of solar radiation, (3) leverage diverse kinds of remote sensing data including multispectral

imagery and lidar-derived vegetation and elevation characteristics, (4) capture potentially

non-linear relationships between independent and dependent variables, and (5) provide an

assessment of model robustness.

The overarching goals for this study are to: (1) test the degree to which a machine learning

approach using random forests can accurately develop predictive models of surface downwel-

ling solar radiation using a combination of variables from remote sensing datasets, (2) under-

stand and provide justification for the presence and prevalence of predictor variables used in

the random forest model, (3) analyze the uncertainties in predictions of surface downward

solar radiation, and (4) use the random forest model to extrapolate predictions to the scale of

an entire watershed and assess the derived spatiotemporal patterns.

2. Methods

2.1 Research area

Reynolds Creek Experimental Watershed (RCEW) is 239 km2, located in the rangelands of the

Owyhee Mountains in southwestern Idaho, USA (Fig 1). The US Department of Agriculture’s

Agricultural Research Service (ARS) established RCEW in 1960 as an experimental platform

to understand and characterize impacts of rangeland management activities on hydrology,

ecology, and geomorphology. Since its establishment RCEW has been the focal point of many

studies focusing on terrestrial vegetation, soil science, hydrology, and hydroclimatology, and

most recently as a Critical Zone Observatory (CZO). The primary drainage of the watershed,

Reynolds Creek, flows primarily from south to north. Elevation in RCEW ranges from 1099 m
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at the outlet weir to approximately 2093 m at the southern end of the watershed [24]. The

RCEW is a semi-arid ecosystem dominated by sagebrush-steppe in the lower elevations and

large stands of coniferous and deciduous trees at higher elevations in the watershed. Mean

annual precipitation varies greatly in both amount and phase in RCEW, with about 240 mm

falling (primarily as rain) at lower elevations in the watershed and greater than 1100 mm fall-

ing (primarily as snow) at higher elevations [25; http://criticalzone.org/reynolds/about/]. The

climate in RCEW is characterized by hot and dry summers and mild and wet winters. The vast

majority of the precipitation falls in the period between December and March. Steeper hill-

slopes in the watershed tend to be associated with shallow and rocky soils while more gently

graded hillslopes tend to be associated with deeper, loamy soils. RCEW possesses a rich long-

term dataset of key climate variables including temperature, solar radiation, humidity, wind,

precipitation, snow and stream flow that has been recorded since the 1960s [26].

2.2 Datasets

2.2.1 Ground-based measurements of solar radiation. The ARS Northwest Watershed

Research Center, which operates RCEW, maintains 16 meteorological stations (Fig 1) within

the watershed associated with three subsets. Generally, these stations provide long-term pre-

cipitation, temperature, humidity and solar radiation data. Surface observations at these mete-

orological stations were initiated at different times in the past, with site 76 having the longest

continually running monitoring period dating from 1964 [26]. Detailed information about

these measurement sites is provided in Table 1. These 16 sites cover a wide range of elevations

throughout the watershed, ranging from 1533 to 2169 m, and are associated with a variety of

vegetation cover characteristics and hillslope aspects. Observed downward solar radiation

from these sites constitute the surface observations used to develop our predictive models. In

particular, we focus on the year 2007 since the instrumental record contains no temporal gaps

in this year. At these 16 sites, downward solar radiation fluxes are measured with Eppley preci-

sion spectral pyranometers, which are sensitive to wavelength from 0.285 μm to 2.800 μm. In

Fig 1. Reynolds Creek Experimental Watershed with 16 meteorological sites (used for model

development and validation) and additional subsets used for validation (in circles).

https://doi.org/10.1371/journal.pone.0180239.g001
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this study we are interested in predicting the solar flux throughout the watershed as a measure

of total solar energy input to the terrestrial ecosystem. Therefore, at each site, we used the aver-

age of solar flux data for every day to represent daily solar flux data. The solar flux data is

expressed in units of W/m2. Downward solar radiation and other historical hydroclimate data

can be accessed through the NWRC website: ftp://ftp.nwrc.ars.usda.gov/.

2.2.2 MODIS remote sensing products. Three products from the MODerate-resolution

Imaging Spectroradiometer (MODIS) sensor on NASA’s Terra and Aqua satellites are used in

this study: (1) MODIS Albedo (combined Terra and Aqua) product (MCD43B3, Version 5),

(2) MODIS/Terra Land Surface Temperature and Emissivity (LST/E) product (MOD11A1,

Version 4), and (3) MODIS/Terra Vegetation Indices product (MOD13A2, Version 5). Each

of these products is available at a 1 km spatial resolution over land areas globally. MODIS

products can be downloaded from the Land Processes Distributed Active Archive Center

(LPDAAC) website (https://lpdaac.usgs.gov). The MCD43B3 product provides surface albedo

information at 8 day intervals. Note only the eight-day MODIS albedo product was available

during the timeframe of this study. The dataset combines observations from both the Terra

and Aqua satellites and the retrieval algorithms developed for generating this product make

use of MODIS spectral data at seven spectral bands (0.648 μm, 0.858 μm, 0.470 μm, 0.555 μm,

1.240 μm, 1.640 μm, and 2.130 μm) and three additional broad bands (0.3–0.7 μm, 0.7–5 μm,

0.3–5 μm) [27–29]. The black and white sky albedo represents directional hemispherical reflec-

tance (at solar noon) and bihemispherical reflectance (under conditions of isotropic illumina-

tion), respectively. The data product provides surface anisotropy, black and white sky albedo,

nadir (i.e., view-angle corrected) surface reflectance, and key quality control information,

Table 1. The location, elevation and the start dates for collecting downward solar radiation for the meteorological sites in RCEW, where 16 sites

are used for training and validation, and three additional subsets used for validation.

Site name Latitude (m) Longitude(m) Elevation(m) Start date

163 514133.8 4769428.0 2169 11/29/99

167 521600.5 4769781.0 2002 12/08/99

174 516813.1 4768022.0 2074 09/18/01

176 519689.9 4767928.0 2093 02/24/83

125 518266.2 4774328.0 1508 06/26/02

127 521745.3 4776195.0 1649 12/05/84

144 515949.4 4771988.0 1814 09/20/01

166b 520140.5 4768361.0 2067 10/02/03

076 520365.3 4783423.0 1200 06/18/81

095b 517063.5 4780455.0 1533 05/14/03

124 516395.2 4774980.0 1804 07/01/02

145 518476.7 4772497.0 1585 10/02/01

012 514030.0 4793587.0 1575 06/29/00

124b 516620.7 4775132.0 1778 10/31/06

031 519976.3 4768322.6 1794 08/08/00

138d03 522592.5 4774215.0 1869 01/21/04

Three additional subsets in RCEW used for validation

Site name Latitude (m) Longitude(m) Elevation(m) Start date

Rmsp3 (located in same pixel as 176) 519976.3 4768322.6 2056 10/27/98

138j10 (located in same pixel as 138d03) 522562.7 4774200.0 1894 07/17/03

138I21 (located in same pixel as 138d03) 522799.4 4773911.2 1999 07/16/03

https://doi.org/10.1371/journal.pone.0180239.t001
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which is stored as the MCD43B2 product (https://lpdaac.usgs.gov/dataset_discovery/modis/

modis_products_table/mcd43b2). The MCD43B3 has attained validation stage 3 (high quality

validation). Overall, the high quality MODIS operational albedos are well less than 5% albedo

at the validation sites and the low quality albedos are within 10% of the ground-based mea-

surements (http://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD43), both of

which are acceptable. We included this product in our model because of the contribution of

albedos on downward solar radiation.

MOD11A1 is a Terra land surface temperature and emissivity product, which provides

daily per-pixel temperature, emissivity, clear day coverage, and night/day coverage. This

MODIS product is retrieved by a split-window algorithm and validated with in-situ measure-

ments [30–31]. The quality assurance information can be found from http://www.icess.ucsb.

edu/modis/LstUsrGuide/usrguide_1dtil.html#qa. The Terra land surface temperature and

emissivity product was included in the model due to the role of clouds reflecting downward

solar radiation.

The MOD13A2 product provides spatiotemporal coverage of vegetation conditions via sev-

eral indices. The quality assurance information can be found from https://lpdaac.usgs.gov/

dataset_discovery/modis/modis_products_table/mod13a2. Two particular vegetation indices

of interest in this study include the normalized vegetation index (NDVI) and Enhanced Vege-

tation Index (EVI), available at 16 day temporal intervals. The blue, red and near-infrared

reflectance, at 0.469 μm, 0.645 μm, and 0.858 μm, are also used. Note that the estimated down-

ward solar radiation in this study corresponds to that below the vegetation canopy.

2.2.3 Computation methods. To construct the daily data for the albedo and vegetation

parameters for each pixel containing ground albedo data in 2007, the remote sensing time

series from the MCD43B3 and MOD11A1 products are interpolated and smoothed. Twenty

predictors from MCD43B3 and seven predictors from MOD13A2 are obtained from the inter-

polation and smoothing scheme, which is similar to the scheme used by Dozier et al [32].

There are several reasons for the interpolation and smoothing. First of all, interpolation tech-

niques can prepare the daily predictors for the model inputs and also increase the dataset size.

Second, these two MODIS products contain intermittent time gaps due to cloud or weather

conditions whereas concurrent ground-based observations may still be available during the

same time period. The interpolation and smoothing algorithm (implemented in Matlab,

MatlabR2015, The MathWorks, Inc.) is applied to the data to fill the spatial-temporal data

along the time series to estimate f(t). The smoothing spline for the function is as follows

(http://www.mathworks.com/help/curvefit/smoothing-splines.html):

f ðtÞ ¼ p
XN

j¼1

wðjÞ f̂ ðtjÞ � f ðtjÞ

�
�
�

�
�
�
2

þ ð1 � pÞ
Z tmax

tmin

lðtÞ D2f ðtÞj j
2dt ð1Þ

w(t) is the weight vector, the default value in the error measure is ones (size (x)). The default

value for λ(t) is 1. D2f(t) is the second derivative of the function f(t). P is the smoothing param-

eter, which varies between 0 and 1. If p = 0, f(t) is the least-squares straight line fit to the data.

If p = 1, f(t) is the variation cubic spline interpolant. p is usually chosen around 1 / (1 + h3 / 6),

with h the average spacing Δt of the data sites. After interpolation, the daily data for the predic-

tors are obtained.

The study domain is located entirely within row four and column nine of the MODIS Sinu-

soidal Tile Grid. The MODIS Reprojection Tools (MRT) were used to reproject these MODIS

products from their native sinusoidal to a Universal Transverse Mercator (UTM) Zone 11

north projection.
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2.3 Machine learning approach and validation methods

The machine learning algorithm random forest is an ensemble classifier that consists of many

decision trees [33]. It uses bootstrap samples to construct multiple decision trees. Each deci-

sion tree is built on a random subset of the training samples. During the tree growing process,

the best split of the data is determined through n randomly selected features. The samples that

are not used in the bootstrap process are out-of–bag (OOB) samples. To evaluate the accuracy

of the model, the classification error is estimated for tree samples that are not used for training

the model. The average of these errors over the total number of trees is referred to the OOB

error. In the study, 32 parameters extracted from the MODIS products are used to predict

downward solar radiation (Table 2). Black sky albedo and white sky albedo at different spectral

bands are used from MCD43B3, the land surface temperature and emissivity from MOD11A1,

and vegetation parameters from MOD13A2. The RF model is developed here using Matlab’s

ClassificationBaggedEnsemble techniques. This algorithm trains learners from the data,

Table 2. The 32 parameters extracted from the MODIS products. Note: BSA is black sky albedo. WSA is white sky albedo.

MODIS Product Data sets Units

MCD43B3 Albedo_BSA_Band1 None

Albedo_BSA_Band2 None

Albedo_BSA_Band3 None

Albedo_BSA_Band4 None

Albedo_BSA_Band5 None

Albedo_BSA_Band6 None

Albedo_BSA_Band7 None

Albedo_BSA_nir None

Albedo_BSA_shortwave None

Albedo_BSA_vis None

Albedo_WSA_Band1 None

Albedo_WSA_Band2 None

Albedo_WSA_Band3 None

Albedo_WSA_Band4 None

Albedo_WSA_Band5 None

Albedo_WSA_Band6 None

Albedo_WSA_Band7 None

Albedo_WSA_nir None

Albedo_BSA_shortwave None

Albedo_BSA_vis None

MOD11A1 Clear_day_cov None

Clear_night_cov None

Emissivity_31 None

Emissivity_32 None

Night_view_angl Degrees

MOD13A2 1 km 16 day EVI EVI

1 km 16 day blue reflectance Reflectance

1 km 16 day MIR reflectance Reflectance

1 km 16 day NDVI NDVI

1 km 16 day NIR reflectance Reflectance

1 km 16 day red reflectance Reflectance

1 km 16 day sun zenith angle Degree

https://doi.org/10.1371/journal.pone.0180239.t002
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combines a set of the trained models, and then aggregates the predictions based on the new

data from the learners. This approach can also help in evaluating the importance of each indi-

cator by estimating how many times the parameter is used in each model run, with parameters

that are used more frequently considered relatively more important.

For this research, we validate the models using three different approaches. In the first

approach, the model is trained based on 12 of the 16 sites and which are selected from different

site characteristics. After training the model, we use the model to predict the time series of

downward solar radiation in 2007 for the remaining four sites which are not used for training.

The four different combinations used for the unselected sites (Table 1) are 012, 076, 095b, 124;

124b, 125, 127, 128; 138d03, 144, 145, 163; and 174, 176, 166b, 167. The bias, root mean square

error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are

calculated using these sites. The second approach validates the model simulation result using

data from subsets within the same MODIS pixel. Sites 138j10 and 138I21 are within the same

pixel as site 138d03, and site 176 is within the same pixel as site Rmsp3. Therefore, we use

sites138d03, 138I21 and 176 for independent validation. In the third validation approach, we

develop an algorithm that is similar to a bootstrapping approach to randomly select 12 of the

16 sites used for training (a total of 1820 possible combinations (C12
16
¼ 1820). Accordingly, we

run the model 1820 times and calculate error metrics for the 12 site combinations. In the end,

a total mean error for all of the model simulations is calculated.

We use different metrics to evaluate the agreement between model simulations and

observed downward solar radiation data including RMSE, bias and MAE, and MAPE [34].

These metrics are calculated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðXobs;i � Xpre;iÞ

2

n

s

ð2Þ

BIAS ¼
1

n

Xn

i¼1
ðXobs;i � Xpre;iÞ ð3Þ

MAE ¼
1

n

Xn

i¼1
Xobs;i � Xpre;i

�
�
�

�
�
� ð4Þ

MAPE ¼
100

n

Xn

i¼1

Xobs;i � Xpre;i

Xobs;i

�
�
�
�

�
�
�
� ð5Þ

Where Xpre,i is the predicted value at time t; Xobs,i is the observed value at time t; Xpre and Xobs

are the average observed and predicted values at time t, respectively; and n is the number of

observations.

3 Results

3.1 Interpolation of daily data for 32 predictors from MODIS products

The 32 predictors from MODIS (Table 1) are used to predict solar radiation. We use black sky

albedo band 1 (BSA_Band1) at site 076 (elevation: 1200 m, Table 1) as an example to demon-

strate the effects of the interpolation and smoothing algorithm. The upper plot in Fig 2 is black

sky albedo with an eight-day interval and the bottom plot shows daily black sky albedo. Both

plots suggest that albedo is changing seasonally with large fluctuations for BSA_Band1. In

the first 90 days (late winter and early spring), there is a marked peak (0.61). Gradually the

BSA_Band1 starts decreasing until around 0.2 at the 90th day. After 90 days (late spring into
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summer), BSA_Band1 sharply decreases from 0.4 to 0.08 and remains low until around 300

DOY (winter). These phenomena are likely due to snow, dust, and/or plant phenology. In the

early spring, the snow has not melted yet. Thus, the ground surface reflects more radiation and

correspondingly, the albedo values are high. However, due to ablation of snow and increased

vegetation growth, BSA_Band1 starts to decrease during late spring. During summer the

BSA_Band1 values remain low until winter snow accumulation, at which point the values

increase once again.

3.2 Model results and validation

Daily downward solar radiation for the 16 sites are estimated by the RF model (Fig 3). Overall,

the agreement between the model simulation and observation data is strong (r2 = 0.96; Fig 2).

The mean simulated downward solar radiation (185.6 ± 93.5 W/m2) is close to the mean

observed data (185.6 ± 100.3 W/m2). The model simulation and observation data range from

17.6 W/m2 to 372.4 W/m2, and from 5 W/m2 to 390.7 W/m2, respectively.

For the first validation approach, we present four combinations of predictions that are

based on the remaining 12 sites (Table 3 and Fig 4). For combination 1, the model simulation

results for sites 163, 167 and 176 capture the pattern of downward radiation although the pre-

diction for site 174 underestimates the observation data. While site 176 agrees well with the

observations, the peak periods in sites 163 and 167 do not. Site 176 has the lowest RMSE (25.5

W/m2) and site 174 has the largest RMSE (52.5 W/m2) among these four sites.

In the second combination (site 125, 127, 144 and 166b (Table 3 and Fig 5)), sites 125, 144

and 166b agree well with the observation values but slightly underestimate the observation val-

ues during summer. The model fails to capture the pattern of downward solar radiation for

site 127 from DOY 100 to 250.

In the third combination (sites 076, 095b, 124 and 145 (Table 3 and Fig 6)), sites 076, 095b

and 124 match well with the observation data except slightly underestimating the observation

Fig 2. One example (site 176) showing the interpolation of daily data for Albedo_BSA_Band1 in 2007

from MCD43B3 which provides data every 8 days. The upper plot shows Albedo_BSA_Band 1 retrieved

from MCD43B3 and the bottom plot shows daily interpolated Albedo_BSA_Band1 data.

https://doi.org/10.1371/journal.pone.0180239.g002
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data during summer. Site 145 (RMSE = 55.9 W/m2) doesn’t capture the pattern of downward

solar radiation from DOY 90 to 220. The large difference between prediction and observation

results is likely due to a large data gap for the predictors at site 145.

The fourth combination uses sites 012, 124b, 031 and 138d03 (Table 3 and Fig 7). The

model fails to predict site 012 (RMSE = 85.6 W/m2) but predicts the other three sites well:

124b (RMSE = 36.7 W/m2), 031 (RMSE = 62.7 W/m2) and 138d03 (RMSE = 57.1 W/m2).

Fig 3. Model simulation results for the downward solar radiation based on random forest. The dashed

red line represents the best fit and the solid black line shows 1:1 line. Note: R2 is for the regression line based

on the observed and predicted downward solar radiation.

https://doi.org/10.1371/journal.pone.0180239.g003

Table 3. The mean prediction and observation values, along with root mean square error (RMSE, W/m2), bias (W/m2), mean absolute error (MAE,

W/m2) for the validation sites based on 2007 full year data.

Experiments Sites Mean_pre Mean_obs RMSE Bias MAE MAPE (%)

Combination 1 163 181.78 184.10 39.96 -2.32 29.96 25.06

167 187.00 184.084 50.38 2.92 41.17 41.23

174 165.92 181.64 52.48 -15.72 41.64 31.52

176 195.76 190.74 25.54 5.02 17.88 15.41

Combination 2 125 194.52 172.35 44.33 22.16 33.70 58.75

127 150.03 175.71 69.80 -25.68 54.08 42.15

144 190.50 184.62 38.91 5.88 29.02 27.02

166b 190.58 196.53 28.20 -5.94 21.47 15.22

Combination 3 76 198.43 179.32 45.55 19.11 35.29 40.83

095b 189.97 192.99 39.28 -3.02 29.62 23.38

124 196.40 197.40 38.80 -0.99 29.08 21.82

145 163.11 180.86 55.89 -17.759 44.78 41.07

Combination4 12 116.12 174.65 85.57 -58.53 69.40 41.34

124b 193.43 197.40 36.73 -3.97 27.20 13.19

31 173.12 196.53 62.73 -23.40 48.56 13.44

138d03 190.74 190.74 57.09 -17.62 44.36 14.33

https://doi.org/10.1371/journal.pone.0180239.t003
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Using our second validation approach, we used sites 138j10 and 138I21 as subsets of site

138d03 (Figs 8 and 9). Site 138j10 matches better (RMSE = 16.0 W/m2) than site 138I21

(RMSE = 29.0 W/m2); however overall the prediction result captures the pattern for site

138I21. There are differences among the simulated and observed within the same pixel due to

sensor sensitivities caused by weather conditions such as cloudy days when the sensor cannot

fully capture the radiation. This possibly explains the sharp fluctuations for the observation

data during summer. Similarly, sites rmsp3 and 176 fall within the same MODIS pixel in

RCEW. RMSE for site rmsp3 is relatively smaller than site 176.

In the third validation approach, we run all possible combinations (n = 1820) using the

model and evaluate the errors for each combination (Fig 10). The RMSE ranges from

37.2 W/m2 to 81.3 W/m2; bias ranges from -48.3 W/m2 to 15.7 W/m2 and MAE ranges from

26.6 W/m2 to 63.8 W/m2. These relatively high RMSE sites (peak values) are coincidentally the

same sites with high bias and MAE values.

3.3 Distributed downward solar radiation for RCEW

We use two representative days, June 18th, 2007, and December 17th, 2007, as examples of the

spatial distribution of solar radiation in RCEW. The downward solar radiation is obtained from

the model based on the 16 sites associated with the 32 predictors for all pixels in the watershed.

In June (Fig 11A), the downward solar radiation for the west side of the watershed is higher

than that of the east side, decreasing from southwest to northeast and from 150 W/m2/day to

220 W/m2/day. The values range from 100 W/m2/day to 190 W/m2/day for December 17th

(Fig 11B), which are expectedly lower than the summer downward solar radiation.

3.4 Variable importance

We identified the frequency of the predictors used in the RF model to determine the most

influential predictors for solar radiation (Fig 12). Generally, variables from the albedo product

Fig 4. Time series of daily downward solar radiation in 2007 for test sites 163, 167, 174 and 176.

https://doi.org/10.1371/journal.pone.0180239.g004
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(MCD43B3) exhibit greater importance than those from the vegetation product (MOD13A2

and MOD11A1). Specifically, the three most important predictors belong to the albedo prod-

uct, including the Albedo_BSA_Band 4 (0.470 μm) which was used most frequently (1110

times), the Albedo_BSA_vis (658 times) and the Clear_day_cov (636 times). These bands are

followed by Albedo_WSA_nir (501 times), Albedo_BSA_Band 5 (0.555 μm, 417 times),

Fig 5. Time series of daily downward solar radiation in 2007 for test sites 125, 127, 144, and 166b.

https://doi.org/10.1371/journal.pone.0180239.g005

Fig 6. Time series of daily downward solar radiation in 2007 for test sites 076, 095b, 124, and 145.

https://doi.org/10.1371/journal.pone.0180239.g006
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Albedo_BSA_Band 7 (1.640 μm, 363 times) and Albedo_WSA_Band2 (0.858 μm, 312 times)

(Fig 12).

4 Discussion

4.1 Evaluation for the model performance and comparisons for solar flux

between June 18th and December 17th, 2007

The RF model developed here effectively predicts downward solar radiation for DOY 1–365

for 2007 and explains 96% of the variance (Fig 3). We used three different approaches to

Fig 7. Time series of daily downward solar radiation in 2007 for test sites 012, 124b, 031 and 138d03.

https://doi.org/10.1371/journal.pone.0180239.g007

Fig 8. Validation sites 138j10 and 138I21 (located within same pixel as 138d03). The green dots are the model simulation

data (identical within the same pixel) and the black dots are the observation data for the three different sites in the same pixel.

https://doi.org/10.1371/journal.pone.0180239.g008
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validate the model output, all of which support our conclusion that solar radiation is reason-

ably predicted with MODIS variables yet nuances in data availability and seasonality are

important to consider. Most sites show strong agreement between model simulation and

observation data, with the exception of several sites with data gaps (Fig 2). The bootstrap

approach demonstrates that the model underestimates summer values for all simulations.

There are two possible reasons for this. First, the atmospheric dynamics are more active in

summer and can cause changes in the atmospheric profile, affecting downward solar radiation.

Furthermore, the 8- and 16-day intervals of the MODIS data may not provide sufficient tem-

poral resolution in regards to the summer atmospheric dynamics. Second, the use of the inter-

polation and smoothing method to obtain daily predictors from MODIS products likely added

uncertainty in the model and affected the model simulation for peak periods of downward

solar radiation.

The three validation approaches have their own advantages and disadvantages. The simple

regression analysis in the first approach doesn’t consider the spatial or temporal resolution.

Further, it is challenging to define the location or time of outliers from Fig 3. The second vali-

dation approach (comparing sites within the same pixel), results in different model errors for

each site (Figs 8 and 9). We expect differences in these results because of the 1 km pixel size

Fig 9. Validation site Rmsp3 (located within same pixel as 176). The green dots are the model simulation data (identical within the same

pixel) and the black dots are the observation data for the two different sites in the same pixel.

https://doi.org/10.1371/journal.pone.0180239.g009
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and the complexity of the watershed. However, these differences between sites (within the

same pixel) indicates the importance of spatial heterogeneity and points towards the need for

potentially finer resolution modeling. Alternatively, the mean error of all the subsets within a

pixel could be considered. The third validation approach minimizes human bias in selecting

Fig 10. RMSE, Bias, MAE for all possible combinations based on RF model runs.

https://doi.org/10.1371/journal.pone.0180239.g010

Fig 11. The spatiotemporal pattern of downward solar radiation (W/m2/day) for RCEW on June, 18th

(A) and on December, 17th (B) in 2007.

https://doi.org/10.1371/journal.pone.0180239.g011
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sites for training and validation. This objective assessment of the model errors may be the

most representative of the overall uncertainty.

The spatiotemporal patterns of solar radiation in RCEW for June 18th and December 17th,

2007, are useful to explore. During the summer period, downward solar radiation generally

increases with elevation; however, this pattern is not consistent during the winter. The down-

ward solar radiation decreases with increasing elevation possibly due to snow and cloud

cover in the winter. The areas with snow or cloud cover are likely to have higher albedos which

will reflect more downward solar radiation and thus the land surface will receive less solar

radiation. The agricultural areas in RCEW (right plot, Fig 11) have the highest solar radiation

in the winter period. These areas are also situated in low elevation and low topographic relief

areas.

This approach has the potential to be applied to other regions in order to provide detailed

and long-term downward solar radiation datasets for the ecosystem modeling community.

While ground-based measurements of downward solar radiation are difficult to obtain, espe-

cially in complex terrain, this satellite-based approach can be used for estimating solar radia-

tion across space and time.

Fig 12. The important predictors used in the model based on all 16 sites.

https://doi.org/10.1371/journal.pone.0180239.g012
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4.2 Important predictors for downward solar radiation and model

uncertainty analysis

The three most important predictors of solar radiation identified by the model are black sky

albedo band 4, the black sky albedo (visible band) and clear day coverage. Both black sky

albedo and white sky albedo are reflectance at a particular solar zenith angle. Numerous factors

that affect albedo include the phenological cycle (agricultural green-up/harvesting), meteoro-

logical parameters (soil wetness or snow patterns), and climatological trends (desertification,

and vegetation cover changes). As mentioned earlier, the albedo product has an 8-day time

interval. If agricultural green-up/harvesting occurs during this 8-day period interval, the

albedo is likely to introduce uncertainty to the estimation of solar radiation. Wet and melting

snow are less than 0.60 and fresh snow albedo are more than 0.85 based on Zhang’s study [35]

by comparing the impacts of these two types of snow. Fresh snow reflected more solar energy

and reduced the absorbed solar energy than the wet and melting snow. Wildfire is also preva-

lent in RCEW and similar areas in summer and early fall, resulting in bare ground that reflects

more solar energy and increase surface albedo.

The uncertainty of estimating downward solar radiation is also attributed to external errors

from MODIS retrieval algorithms such as the kernel-based bidirectional reflectance distribu-

tion function (BRDF) model used by the atmosphere products [28]. In addition, errors may

arise in the atmospheric correction process which estimates scattering and absorption attrib-

uted to aerosol optical depth and aerosol type [36]. Aerosol depth is relatively more accurate

than aerosol type and properties 37]. Another possible factor that affects model uncertainty is

the gap-filling methods used for missing data. Existing gap-filling methods include linear/non-

linear spatial interpolation, kriging etc [37]. In June and July (Figs 4–7), observed solar radia-

tion is underestimated for several sites due to two reasons. The first reason is likely due to bias

in the ground based measurements of solar radiation from climatic conditions [24]. The sec-

ond reason is likely due to the MODIS products used in the random forest model. Based on

Liang’s [38] study, MODIS-observed albedo tended to underestimate albedo in comparison

from the ground based measurements, due to the retrieval algorithm.

While we analyze several types of errors that contribute to the estimation of solar radiation

flux, more quantitative information is needed to understand the relative importance of these

errors on the total uncertainty budget. Future work should focus on quantifying these errors

and how scale affects solar radiation.

5 Conclusions

The results of this study indicate that combining ground-based and remotely sensed data can

be used to quantify spatiotemporal patterns of solar radiation in a semi-arid ecosystem. We

demonstrate that the RF model can be effectively used with predictors from MODIS products

to predict downward solar radiation. With additional error analysis, long-term daily datasets

of downward solar radiation using remotely sensed data and ground-based data may be readily

available using our methods.
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