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We propose that coding and decoding in the brain are achieved through digital
computation using three principles: relative ordinal coding of inputs, random con-
nections between neurons, and belief voting. Due to randomization and despite the
coarseness of the relative codes, we show that these principles are sufficient for coding
and decoding sequences with error-free reconstruction. In particular, the number of
neurons needed grows linearly with the size of the input repertoire growing exponen-
tially. We illustrate our model by reconstructing sequences with repertoires on the order
of a billion items. From this, we derive the Shannon equations for the capacity limit
to learn and transfer information in the neural population, which is then generalized
to any type of neural network. Following the maximum entropy principle of efficient
coding, we show that random connections serve to decorrelate redundant information
in incoming signals, creating more compact codes for neurons and therefore, conveying a
larger amount of information. Henceforth, despite the unreliability of the relative codes,
few neurons become necessary to discriminate the original signal without error. Finally,
we discuss the significance of this digital computation model regarding neurobiological
findings in the brain and more generally with artificial intelligence algorithms, with a
view toward a neural information theory and the design of digital neural networks.

sparse coding | digital computing | maximum entropy | continual learning | catastrophic forgetting

Because neurons represent a small energetic resource, albeit with poor computational
capabilities, it is expected that they rely on an efficient coding mechanism to convey
maximum information (1–3). Accordingly, it is now accepted that neurons encode stimuli
in a distributed fashion and transmit near-independent (nonredundant and uncorrelated)
information in many brain areas (4–6). For instance, distribution and sparsity help a
population of neurons reduce communication errors and transmit one complete signal
despite the noise in the synapses and the finite precision of the neurons. In vision,
maximizing information implies forcing the coding of images into new representations
in terms of the actual “primitives” of the images (4, 7) and their patterns (8, 9). These
representations constitute a more compact repertoire that may well be easier to work with
than a much larger redundant representation in the image. The first experiences in testing
the theory of efficiency coding or redundancy reduction came from the work of Laughlin
(10) applied to the fly eye. He measured and compared both the contrast distribution
in the image and the contrastive cells in the fly eye and predicted that optimal encoding
would take the form of maximizing contrast by transforming the original (redundant)
distribution into a uniform (uncorrelated) distribution to be transmitted to the fly brain.
As each output value becomes equiprobable, the conveyed signal achieves the capacity
limit for transmission with optimal bandwidth. As a result, optimal coding makes the
signal resemble white noise (maximum entropy): a coding effect that is called whitening
(11). Another example of efficient coding is observed in the optic nerve, which constitutes
a bottleneck in transmitting information to the brain as it comprises 1.7 million ganglion
cells, although the number of photoreceptors is on the order of 126 million cells. A
reduced code constructed from the difference between photoreceptors in the retina (e.g., a
differential code) is sent to the brain with the same amount of information, which requires
far less channel capacity (11, 12).

Hence, efficient coding for pattern separation and pattern completion is hypothesized
to occur widely in the brain to manipulate natural input. The same hypothesis is expected
for memory access, storage, and retrieval in areas such as the hippocampus and the
prefrontal cortex (6, 13). The question is, therefore, how the brain can encode, transmit,
and store one coherent signal efficiently from unreliable neurons. How can neurons
communicate as much information as is theoretically possible? These two questions are
tightly linked to the binding problem as well. How can neural areas that specialize in
different modalities, with partial access to information on an external event, coherently
share their views to produce a unified representation of the world?
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Fig. 1. Schematic presentation of the neural population based on randomly permuted ordinal codes. The process has three stages: the encoding of the
original sequence, its decoding, and a global belief vote. In the first phase, the neurons encode the relative order (the ranks) of the items in the spatiotemporal
sequence X using multiple randomly shuffled orderings of the item alphabet. The result is that each neuron sees a randomly permuted ordinal code [e.g.,
P(Y/X)]. The items’ values are no longer present in the ordinal codes, which perform a drastic quantization of information. During the decoding phase, each
neuron reconstructs the sequence in its alphabet ordering by trial and error [e.g., Q(X/Y)]. Thus, each neuron has a different local estimate of the items in the
sequence. In the final stage, after mapping back the local alphabet orderings to the original, a global belief vote at the population level accumulates the local
decisions from all the neurons, allowing correction of local decision errors (e.g., maximum a posteriori probability X̂ = X∗).

As a paradigm, we propose a mechanism that exploits a neu-
ral code with a limited resolution to code and decode higher-
resolution sequences. Resolution is the number of items within an
input repertoire or the number of differentiated values that can be
learned by a neuron. Therefore, high resolution denotes a small
quantization step and thus, a high repertoire cardinality (number
of quantization levels). In our neural network, the neural code
takes the form of a relative code to represent the relative order
of items within the sequence (e.g., the following relative ordinal
code [#5, #3, #2, #4, #1, #6] corresponds to the sequence of index
[18, 13, 8, 14, 5,19]) (Fig. 1). Despite the coarseness of these
neural codes, our results show that this mechanism can achieve
error-free reconstruction by having sparse and distributed neural
representations of the original sequence.

Neural cells sensitive to serial order in sequences have been
found extensively in the prefrontal cortex (14–18) and the hip-
pocampus during spatial exploration and memory tasks (19, 20).
Studies identify them either as conjunctive cells or as disjunctive
cells, whether researchers are looking at their binding feature to
respond nonlinearly to various signals in a mixed form (21–23)
or at their factorizing feature to respond only to relational or
structural information (20, 24–26). In both cases, they can be
viewed as loosely salient pattern detectors that are important for
memory storage (27) and neural communication (28).

We devise two important and apparently antagonistic design
principles in terms of information processing underlying the
mechanism we propose, namely orderliness and randomness.
First, relative ordinal codes permit a limited number of synapses
and a limited number of synaptic weight values to represent
one original item sequence. By doing so, it permits the cost of
wiring (3) to be reduced and the precision of the neurons to be
purposely limited; in effect, ordinal codes produce a quantized
representation of one original sequence with discrete values, sim-
ilar to binary codes in human-made communications networks.
Second, we impose some random permutations of those ordinal
codes to obtain sparse representations. Random permutations,
in effect, decorrelate redundant information in incoming signals;
henceforth, few neurons become necessary to discriminate the
original signal. By avoiding redundancy, we guarantee the code
efficiency with maximum information compression, following the
maximum entropy principle (8).

In our neural network, although any individual neuron is unre-
liable in reconstructing an original signal due to the coarse quanti-
zation performed by the relative order codes (pattern separation),
taken at the population level, they can share their views and
exploit their distributivity and sparsity to find a consensus through
cross-talk (pattern completion). Such an error-correction process
can be performed iteratively by selecting at each time step the
solutions that best satisfy the constraints during reconstruction.
This approach can be seen as similar to a Bayesian treatment of
information using conditional probabilities, such as expectation
maximization, active inference (29, 30), predictive coding (31–
33), or free energy minimization (34–36) (Fig. 2).

In effect, our strategy emphasizes the role of using simple
decoders to achieve noise cancellation. Interestingly, the three
computational stages we describe, namely 1) shuffling, 2) low-
resolution codes, and 3) belief voting, are reminiscent of the
error-correcting mechanisms employed in modern digital com-
munications pioneered with the turbo codes invented by Claude
Berrou and Alain Glavieux (discussed in ref. 37). Turbo codes
exploit two or more differently shuffled versions of the input signal
encoded by simple codes. The weakness of these codes causes large
individual reconstruction errors. However, iterative combinations
of their belief votes allow us to find a consensus and to correct
errors near perfectly. Shannon (38) showed that communication
channel capacity can be attained for asymptotically long messages
using a random channel code, which maps each message to a
code word that realizes independent identically distributed symbol
random variables. However, such a code is impractical in terms
of complexity. It was the advent of turbo codes that first demon-
strated the existence of structured codes operating close to capacity
with reasonable decoding complexity (39). Turbo codes encode a
message twice using a simple code, once in the original positional
order and once in a randomly shuffled order. These two “views”
on the message allow for an elaborate iterative decoding algorithm
that corrects many more errors than the simple codes alone.

In agreement with this, we suggest that random shuffling
and ordinal neurons can embody efficient error-correcting codes
to represent information thanks to their sparsity/distributivity
features and the consensus at the neural population level, despite
their limited learning capabilities due to a discrete representation
and crude synaptic resolution. This mechanism has the advantage
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Fig. 2. Robust neural decoding of a signal encoded with and without ran-
dom permutation of the input repertoire (alphabet). (A) Encoding using N
neurons without permuting the alphabet order. Local (per neuron) errors are
modeled by a Gaussian distribution. Combining the N local estimates (top)
allows only for a linear reduction in the estimation noise through averaging.
(B) Random alphabet permutations cause repertoire items that are neighbors
in the original order to lie farther apart. When cumulating the reordered
local Gaussian votes (top), this leads to a nonlinear effect that lets the global
estimate stand out in the noise, which is now spread over the entire alphabet.

of making memory digital because it encodes information using
a set of discrete values, making it more robust to intrinsic and
external noise for memory preservation and retrieval.

In our experiments, we found that a surprisingly small number
of neurons (a few dozen) is enough to encode and decode a
sequence of distinct items taken in a large repertoire, and this
number grows linearly, while the repertoire size can grow ex-
ponentially (e.g., the order of a billion of symbols). This is a
fundamental result; it demonstrates that the number of neurons
needed to learn an input is related to its resolution (which also
determines its entropy) and to the resolution of the neural codes.
To our knowledge, this observation has never been made before; it
expresses that the learning capacity of a neural network is limited

by its entropy and the entropy of the object to be learned. It
closely follows Shannon’s source and channel coding theorems and
provides insights for a neural information theory.

Our contributions in this paper are, therefore, twofold. First,
we describe a type of neural network, a digital neural network,
and its design. Second, from this discovery, we could derive
the Shannon equations for its capacity limit to learn and trans-
fer information (SI Appendix, Eqs. 1 and 2). These equations are,
however, universal and can be extended now to any sort of formal
model of neural networks (e.g., deep networks, spiking networks,
reservoir networks) to define and analyze their learning capacity
limit. Similar to digital processing using binary bits in human
communication and in memory storage devices, the possibility
of having digital neural networks is a direct consequence of this
equation. To our knowledge, these are two results that were
exploited neither in artificial intelligence nor in computational
neuroscience.

We discuss the impact of our findings on the brain’s memory
organization (perception, recall, binding), the implications in
terms of neural coding for sparsity and distributivity, and the
impact on the future design of energy-efficient and large-scale
artificial intelligence systems.

Model

Glossary. We explain some (information-theoretic) terms used in
the following.

Input sequence (message): a sequence (vector) of items that
shall be encoded. The index may be related to time, position,
etc. (additionally termed message in information theory).

Item: an input value (e.g., a stimulus level) taken in a fixed
repertoire.

Repertoire (alphabet): the set of possible values, assumed here
to be finite and linearly ordered (e.g., the English alphabet
with alphabetic order or brightness levels {0, 1 . . . 255} with
integer order).

Resolution: the quantization step size used when representing
a continuous quantity (e.g., the pitch of a sound). A finer
quantization resolution will then correspond to more steps
(a larger repertoire) needed to cover a fixed input range.

Channel: a mapping function that models a transmission (or
storage) system. If the channel map h(·) is one to one, the
channel is noiseless, and the input may be reconstructed
perfectly from its output. Otherwise, the channel is noisy, and
perfect reconstruction is impossible. Noisy channels often
have probabilistic maps h(·).

Channel encoder: mapping of a message to a code word, a
sequence of channel input values. Its goal is to add structured
redundancy to protect against channel noise.

Decoder: exploits the channel code structure to correct errors
introduced by the noisy channel.

Digital computing: the main difference with respect to analog
computing is that values involved in computation are from
a finite set (e.g., binary in most digital computers). This
requires the ability to correct the errors introduced by every
type of physical computing and storage circuit (biological or
electronic). The ordinal code with a belief voting decoder
used in this work is an error-correcting mechanism.
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Turbo coding: a telecommunications error-correction scheme
that encodes the original input sequence and an interleaved
(position-permuted) copy of it. The decoder iteratively
estimates the original sequence aided by the previous estimate
of the interleaved sequence and vice versa. This alternating
decoding iteration allows many more errors to be corrected
than with a single code, provided that the interleaver ensures
that the two estimates for a symbol are almost independent.

Overview. The overall process consists of encoding an informa-
tion sequence, storing (transmitting) it in order-sensitive neurons,
and then, decoding it.

The input sequence of length L consists of items taken from
a repertoire of size R, which may be mapped without loss of
generality to the set of integers [R] = {1, 2, . . .R}. We will
interchangeably use the terms repertoire and original alphabet to
distinguish it from the reordered (permuted) alphabets underlying
the coding and decoding mechanisms.

A message sequence s comprising L items (symbols) s =
[s1, s2, . . . , sL] is encoded by a function x = g(s) into a code
word x = [x1, x2, . . . , xN ], where the numbers of message sym-
bols L and code symbols N are not necessarily equal. The code
word is transmitted through a communication (or storage) chan-
nel to produce an output y = [y1, y2, . . . , yN ] = h(x ), which
is decoded to produce a message estimate ŝ . Message symbols
and channel inputs and outputs are modeled as random variables,
indicated by capital letters, while realizations use lowercase letters.

The message is channel encoded by mapping it to N randomly
permuted alphabets, which results in different rank sequences
“seen” by the ordinal neurons. The latter form the channel, which
outputs N scalars (dot products) (Eq. 1). They are two sources
of channel “noise”—the alphabet quantization due to the replace-
ment of items by their rank and possibly, a many-to-one mapping
of rank sequences to a scalar dot product. Finally, decoding is
performed by first estimating the N rank sequences and then,
combining those into a global decision vote. The details of this
process are explained in the following.

Computational Features of Ordinal Codes. Neurons sensitive
to the ordinal structure within a sequence can be implemented
by weighting the relative order of the items depending on their
relative rank or their relative importance within it. Hence, this
type of coding differs from the temporal coding of the bioinspired
spike timing-dependent plasticity reinforcement rule (40, 41).
Relative ordinal codes also depart from the rank-order coding
(ROC) algorithm of Thorpe and colleagues (42, 43), although this
work and previous works are inspired by it (36, 44). The ROC
algorithm has been proposed as a model to explain the rapid pro-
cessing performed by the visual system in a few cortical layers. This
algorithm is a computational model of the visual spiking neurons
and the Spike Timing-Dependent Plasticity (STDP) mechanism.
Although sparse, the encoding is not relative; therefore, there is
no reduction in the number of synaptic weights. We will expand
more in Discussion on how the brain might perform this function
and the biological plausibility of it.

We can use the example presented in Fig. 3 A and B
to explain the difference between the two types of coding:
STDP/ROC and ordinal encoding, respectively. For instance,
in a time series of six items ordered as seq : [18, 13, 8, 14, 5, 19]
in Fig. 3A, the ordinal code corresponding to this sequence is
order : [#5,#3,#2,#4,#1,#6] in Fig. 3B. If R is defined as
the cardinality of the input space and L is the number of items
within the sequence, then it is necessary to have L or R synaptic

A B

C D

Fig. 3. Efficiency of a relative order code vs. a temporal code. (A) A spa-
tiotemporal sequence of L items taken in a repertoire of size R. (B) Ordinal
codes represent the sequence with a vector from L only, storing the relative
rank order over time of the items in the sequence. In C and D, in terms of
computational cost and precision, formal neurons, such as perceptrons, have
to encode the items’ index of temporal sequences in their synaptic weights
either with resolution R and L synaptic links or with R synaptic links and
synaptic weights with resolution L. In C, instead, ordinal codes represent in
their weights the relative order of items in the sequence only (L values). In D,
this second type of coding allows for the drastic quantization of information
to only L synaptic links to learn, with respect to the R links necessary instead,
as in formal neurons. This large reduction in dimensionality comes at the cost
of losing information about the items’ values.

links to encode the sequence depending on the code used and the
desired precision level (Fig. 3C ).

For instance, the STDP learning mechanism requires R synap-
tic links to encode the indices and their location in the temporal
sequence; the values of the synaptic weights encode the temporal
delay or the index order (40, 45, 46). In comparison, an ordinal
code requires only a vector of L weights, in which the amplitude
level encodes the relative order. This relative code can be seen as a
harsh analog to digital conversion in which the exact item values
in the sequence are removed. However, in the case where R � L,
it can represent a computational advantage to represent only the
ordinal structure within the data (47, 48) (Fig. 3D).
Ordinal codes implementation. The ordinal coding strategy con-
sists of discretizing the items in the sequence based on their rank
in a given alphabet.

The ordering function rank(An ,S , i), n ∈ [N ], i ∈ [L], spec-
ifies as output the rank under order An of the item si located
at position i within the sequence S = [S1,S2, . . . ,SL]. The
ordered alphabet An = [π

(n)
1 ,π

(n)
2 , . . . ,π

(n)
R ] is a permutation

of the original repertoire, and N is the number of output neurons
equal to the number of representations of the same sequence
in different permuted orders. We implement the rank function
rank(An ,S , i) = 1/r as the inverse of the rank r for a particular
index i , which can be obtained easily with the argsort() function
in the C, MATLAB, or python languages.

The equations of the neurons Y sensitive to ordinal infor-
mation in a sequence are as follows. The neurons’ output Y
is computed by forming the dot product between the ordering
function rank(An ,S , i) and the synaptic weights wi ; wi ∈ [0, 1],
i ∈ [L]. For an input sequence of L items taken in the repertoire
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of cardinality R and for a population of N ordinal neurons, we
have

Y (n) =

L∑

i=1

rank(An ,S , i)w
(n)
i , n ∈ [N ]. [1]

The updating rule of the weights is that of the Kohonen
networks (49) with a learning rate α fixed to 1.0 for one-shot
learning; for the neuron Y (n), we have

Δw (n) = α(rank(An ,S)− w (n)). [2]

Thus, after complete learning, the weightsw (n) = rank(An ,S)

and the neuron’s output become maximal, Y (n) = Ymax =∑L
r=1

1
r2 , for our choice of rank function. Notice that this

maximum depends only on the choice of rank function and
the sequence length L.

Since the weights w are normalized between [0, 1] and the
support of their density is bounded, the ordinal neurons are
similar to radial basis functions. This attribute permits us to use
the neurons Y as receptive fields and radial basis functions so that
sequences with the same item order will fire the Y neurons with
a high activity level with respect to the alphabet orders An . The
channel input X does not appear in Eq. 1 since the chain-encoder
channel may be seen as mapping the input sequence S directly to
the channel output Y (n).

This neural network differs from other random neural net-
works, such as reservoir computing (50, 51) or sparse coding with
random projections (52). In those networks, random projections
tag the input in a high-dimensional space, and they cannot retrieve
it. Our neural network, instead, can reconstruct the incoming
signal. The random permutations decorrelate information and
remove redundancy to have independent identically distributed
random variables.
Sequence reconstruction mechanism. To reconstruct each sequ-
ence learned by each neuron and to have an estimate of the items
in each alphabet, we can use any metaheuristic methods, such
as the hill-climbing algorithm, simulated annealing, or genetic
algorithms, to evaluate it by trial and error. Here, we implement
the simulated annealing algorithm solutions through an iterative
stochastic optimization as the one used in related works on
predictive coding (36, 44) (Fig. 1).

Using a noise vector S noise , we test a generated sequence
S = S + S noise and indirectly evaluate its distance to the
encoded sequence S∗ in neuron Y by computing the error E
between the current activity level of neuron Y for sequence S
and its highest activity level Y ∗ for the encoded sequence S∗.
If the error gradient ΔE diminishes, then we store the current
sequence S∗.

This error signal E , similar to a gradient descent or hill-
climbing mechanism, guides the exploration process iteratively to
minimize error until convergence.

Similar with what we showed in refs. 36 and 44, this variational
process is an online stochastic hill-climbing algorithm performed
iteratively; a pseudocode is provided thereinafter. We added in ref.
47 a more sophisticated hill-climbing algorithm corresponding to
simulated annealing to efficiently drive the exploration process.
Global decision vote mechanism. The global decision vote mech-
anism has some similarities to a Gaussian mixture model (GMM;
in the pseudocode).

For each location in the sequence, a probability density func-
tion for each item in the repertoire is produced, represented as a
sum of all densities of Gaussian components from all the neurons.

The N Gaussian distributions are centered on the L retrieved
items for each location in the sequence but on their respective
alphabet An . Therefore, neighboring items will not be the same
in each alphabet, and the vote will be orthogonal, as presented in
Fig. 2. This differs from the original GMM.

For kernel-based methods, the parameter σ corresponds to the
bandwidth parameter or the variance, which has an incidence on
the global decision vote. The smaller σ is, the larger the bias,
whereas the larger σ is, the smaller the bias.

In GMM, an optimal bandwidth can be defined with respect
to the number of Gaussian functions, although this was not
considered here.

Algorithm 1 Pseudocode of the algorithm

s = [item1, item2, . . . , itemL], � a sequence of L items,
items ∈ [R] = {1, 2, . . .R} � items randomly selected
neurons ∈ [N ] � neural population of N neurons
random alphabets A= [A1,A2, . . . ,AN ], � of cardinality
R
original alphabet A0 = [1, 2, . . .R]

sk =Ak [s], k ∈ [N ] � sequence s in the new alphabet Ak

1) encoding, one-shot learning for demonstration purpose
for k = 1, 2, . . . ,N do � for each neuron k

Wk = rank(Ak , sk ) � learn the relative ordinal code

2) decoding, similar with a hill-climbing gradient error
for k = 1, 2, . . . ,N do � for each neuron k

initialize Errk , Err bak ,
s bak = s noise � with s noise ∈ [R]L

while Errk �= 0 do
s ′
k = s bak + s noise � with s noise ∈ [R]L

Y (k) =
∑

rank(Ak , s
′
k )Wk ,

Errk = (Ymax − Y (k))2

if Errk ≤ Err bak then � keep values
s bak = s ′

k
Err bak = Err k

sk = s bak

3) global decision, similar to a GMM
initialize σ, S ′

for i = 1, 2, . . . ,L do
initialize cumul sum[i , j ] = 0, ∀j ∈ [R]
for k = 1, 2, . . . ,N do

initialize μ= s ′
k [i ]

for j = 1, 2, . . . ,R do � or j in a range around μ

G(π
(k)
j ) = 1

σ
√
2π

e−(j−μ)2/2σ2

� in alphabet Ak

cumul sum[i , j ]+ =G(j ) � in alphabet A0

S ′[i ] = argmax (cumul sum[i , :]) � return max item
return S ′

Results

Because each neuron encodes a quantized version of the original
sequence, the reconstructed sequences are prone to local errors.
However, these errors are also distributed uniformly with respect
to the randomization performed on the original alphabet (e.g.,
the original order of the items in the repertoire); Model has
a glossary of the terms used. We can exploit this property to
disambiguate what is information from what is noise when a
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Fig. 4. Examples of reconstructed sequences with different permuted
alphabets or keys, with R = 100 and L = 50. The permuted ordinal code
learned by each neuron allows us to retrieve the sequence with high fidelity
but always with some small local error due to the quantization to ranks
performed by the neurons in their respective alphabet order (A–D). The
original sequence (in the permuted order alphabet Ai of the neuron i) is
plotted in blue, and the retrieved sequence is plotted in red. Variance is
proportional to R, approximately ±0.1R.

decision is made at the population level. We display this effect in
Fig. 4 for four reconstructed sequences with different randomly
permuted alphabets for neurons 1, 2, 5, and 8.

As neurons tend to satisfy a minimal global error during
reconstruction using only permuted codes, the local errors can
be large in some locations. The density distribution of the local
error is now uniform due to the different permuted orders for
each neuron. This can be exploited for disambiguation during the
global decision vote at the population level when the sequences
are remapped into the original alphabet (as seen in Fig. 2B).

This equalization of the distributions is similar to the whitening
effect found in sparse coding (9, 11) and differs from conventional
neural networks, whose neurons encode inputs using the same
distribution and same lexicographic order as in Fig. 2A; in this
case, the error distribution is correlated, blurred, and therefore,
difficult to discriminate.

To understand how the global decision is made at the popu-
lation level, we analyze the local votes and their cumulative sum
in Fig. 5 to reconstruct one item, taken as an example. Fig. 5A
presents the vote between zero and one of each neuron for each
alphabet item (of R = 100 items) and for a given position in the
sequence. The local vote for each neuron follows a wide Gaussian
curve centered on the retrieved item and its surroundings con-
trolled by the bandwidth parameter σ. The votes of the different
neurons are then mapped back to the original alphabet order

except for neuron 49 (last column), which has an unshuffled
alphabet, to ease method understanding.

Fig. 5B shows the cumulative sum of each neuron’s vote for each
item∈ [R] (the sum is below 50, the size of the neural population),
displaying the global decision vote at the population level, with
a peak around the item of index 23, the ground truth displayed
with a red arrow. This peak is also observed in Fig. 5C, in which
we overlap the cumulative sums. In addition, we can observe other
peaks of smaller amplitude, which are other alternatives. The re-
maining majority of the votes form a noninformative background
noise (i.e., the noninformative votes vanish). We can apprehend
now the beneficial effect of randomization on reconstruction.
Randomization permits crossing the local decisions so that at the
global level, only the intersecting votes remain.

Another question is to assess the influence of the global decision
mechanism on the belief vote. To understand this, we plot in Fig. 6
the reconstruction error with respect to the cumulative local votes
for each neuron and different width parameter σ. For instance,
this parameter σ modifies the Gaussian functions’ width, which
acts upon the shape of the density distribution of the global vote
when they are summed up.

The cases for σ = 1, 2, and 5 correspond to the most unreliable
situations when the redundancy of the neurons is little exploited
and when the error is only slowly reduced; exploiting the 50
neurons can reduce the overall root mean square error (RMSE)
from 0.5 to 0.3 for σ = 1 and RMSE = 0.1 for σ = 2. However,
during the decision-making process, any large classification errors
(relative index errors above σ) are unlikely to be corrected when
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Fig. 5. Local decision vote for individual neurons and global decision vote
at the neural population level: R = 100, L = 50. The red arrow indicates
the true value to be retrieved back. In A, the activity level represents the
local decision vote for each neuron (x axis) based on the Gaussian density
distribution centered on the estimated values for each item in their respective
randomized alphabet (y axis). B presents the cumulative sum with respect
to the number of neurons used during global decision. The activity level
indicates the accumulated sum for each item: the global decision vote at the
neural population level. C displays the cumulative sum for several numbers of
neurons used.
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Fig. 6. Plot of the RMSE for the global decision at the neural population level
with respect to the parameter σ ∈ [1, 5, 10, 20, 50], with R = 100 and L = 50.
The smaller the parameter σ is, the less effective the decision-making, which
will not make good use of the redundancy. In such cases, 10 neurons are not
enough to retrieve the original sequence, limited to an RMSE of 0.3. Instead,
for a larger parameter σ above 10, fewer neurons can drastically reduce error
to zero, performing a sparse coding of the incoming sequence.

reordered. This is because the votes are centered only on the
locally retrieved items. For a slightly higher value σ = 5, which
corresponds to a relaxation of the decision process allowing a local
error of five index distances from the correct index in the repertoire
R, the RMSE is cancelled, and only 22 neurons are necessary
to reconstruct the original sequence (green line). We can remark
that more neurons generate errors, and above 32 neurons, there
is a complete error cancellation. In comparison, for higher values
σ > 10, which correspond to a relaxation of the decision process
for possibly large classification errors above a relative distance of
10 indices to the correct index, the number of neurons needed to
cancel the error is reduced drastically to seven or eight neurons
needed to retrieve the original sequence perfectly. These results
show that an utterly small number of noisy neurons, seven or
eight, can perfectly represent a sequence of 50 items taken in
a repertoire of 100 items, which can be letters or pixel values.
However, above this small number, the neural population becomes
redundant, and more neurons will not add more information.
Therefore, seven or eight neurons are the lower limit (Nlimit ) until
pattern completion in sparse coding for a sequence of 50 items
(L= 50), in a repertoire of 100 items (R = 100) in this case.

We illustrate the reconstruction process and the pattern com-
pletion stage in a sequence of 50 items (L= 50) for a repertoire of
now 10 million items (R = 107) in Fig. 7. Fig. 7A shows the global
decision vote based on the cumulative sum for different neural
population sizes N . Fig. 7B shows the absolute error between the
true items and their local reconstruction (after global consensus
voting) for each position in the sequence. The consensus vote
among the neurons with complete disambiguation is achieved for
approximately 17 neurons:N = 17. Below this limit, not all items
in the sequence are correctly reconstructed. We can observe that
the discrepancy is not linear and that errors cannot be predicted
monotonically with respect to the size of the neural population
used during the decision-making process. The error cancellation
changes abruptly and nonlinearly at different locations in the
sequence with respect to the number of cumulative votes.

We display (in Fig. 8) the performances of the neural pop-
ulation when encoding a sequence of fixed length L= 50 and

for different cardinalities R of the input repertoire, up to 100
million items, R = 108. Such a large cardinality may model a
finely quantized fixed-range signal, so in the following, we speak
interchangeably of resolution and cardinality. High resolution
means a small quantization step and thus, a high repertoire
cardinality (number of quantization levels).

The case for input repertoire cardinality R = 102 (blue line)
corresponds to the same situation as in the previous experiments.

For a sequence of items taken in a 10 times larger repertoire,
R = 103 (orange line), corresponding to a higher resolution, the
performances degrade slightly, and only approximately 10 neurons
are required to fully reconstruct the sequence. That is, three
additional neurons are necessary to encode a sequence taken in an
alphabet of 10 times as many items, which is a surprising result.

However, for higher cardinalities up to R = 108, the perfor-
mances do not degrade, and the progression becomes slightly
more nonlinear. The number of ordinal neurons necessary to fully
encode a sequence taken in a large-scale repertoire is extremely
small, below 20 neurons, in comparison with the repertoire car-
dinality. The graph in Fig. 8B, with the values averaged over 10
simulations, shows the counterintuitive result that a logarithmic
relationship can be achieved between the number of neurons
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Fig. 7. Sequence reconstruction vs. the number of neurons N for a fixed
input sequence of length L=50 (repertoire size R=107). Each column in the
matrix plot corresponds to the reconstruction for a given N. A shows the global
reconstruction in the color-coded repertoire. (B) The squared reconstruction
error averaged over the neurons. Approximately 17 neurons are needed to
guarantee correct reconstruction in all sequence positions.
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Fig. 8. The number of neurons needed to decode a sequence of various
resolutions. The resolution is related to the size R of the input repertoire or
its cardinality, from which items are taken in the sequence (larger R for finer
resolution). The number of neurons Nlimit is the minimum number of neurons
found necessary for reconstruction without error. (A) The global decision vote
for various cardinalities R. We set σ to the large value R/2. In B, the minimum
number of neurons needed is Nlimit to reconstruct the sequence without error
with respect to the input resolution (R, respectively). The graph shows a linear
progression of the number of neurons required to code a sequence while
the cardinality R augments exponentially; the values are averaged over 10
simulations.

necessary to encode a sequence and its resolution, which can grow
exponentially.

This shows the surprising result that an extremely small number
of neurons is required to disentangle a signal or sequence of very
high resolution, and this is achieved with quantized neurons with
limited learning capabilities, which make large reconstruction
errors.

This result indicates that few quantized neurons can handle very
high-resolution signals as sparse codes to keep memory safe for
reduced neural communication (3) and error-free pattern com-
pletion (9, 13, 53). Put into an equation format, this fundamental
result describes the intuition behind information theory that the
channel capacity is related to the resolution of the message to be
learned. In the case of a neural network, the number of neurons N
and the resolution of their codes Rnetwork represent the neurons’
capacity to learn one input and Rinput = R, its resolution. We
develop in SI Appendix the demonstration of the equation that re-
lates these different terms and corresponds to NL logRnetwork ≥
L logRinput . This equation can be adapted to our ordinal neural
network, with Rnetwork = L being the number of possible values
that can take the synapses (SI Appendix, Eqs. 1 and 2).

We illustrate our algorithm on a visual example. The network
learns one image of size 256 × 256 with neurons of synaptic
resolution 2 (Fig. 9). Each neuron has access to a different shuffled
order of the pixel values within the image repertoire of size 256.
The binary codes reduce the pixel values to the values [0,1] for
the synaptic weights. This operation makes neurons very poor
detectors, as plotted in Fig. 9 A and B for two of them.

We reproduce the reconstruction process at the population
level, and we plot in Fig. 9C the Euclidean error based on the
number of neurons used during reconstruction and in Fig. 9D
the results for different ensembles of neurons.

We can observe from the graph that nearly 40 neurons are nec-
essary in our case to recover the full resolution of the image with-
out error. This number is, however, a large upper bound because
according to the equation defined in SI Appendix (NL logL≥
L logR), only eight neurons need to have orthogonal codes as
N = log 256/ log 2≈ 8, which is in line with binary codes in bits
in image processing.

The neural codes transform the pixel distribution into an inde-
pendent identical distribution. Therefore, the spatial redundancy
is removed, which makes the representation sparse.

Discussion

Biological Plausibility. We described in this paper how artificial
neural networks with discrete and ordinal synaptic weights can
reconstruct back missing information in original signals. However,
we did not provide any grounds how the brain may implement this
function. We suggest two plausible mechanisms.

First, chemical and electrical synapses possess specific strength
and plasticity to conduct nerve impulses and therefore, particular
synaptic resolution and potentiation. Above this potentiation
limit, synapses may saturate, as it can be the case for binary
synapses. This may induce a strong discretization of the incoming
signal, which may be well rendered by discrete or low-resolution
weights as we suggest.

Second, while in many domains of human cognition, sequen-
tially and hierarchically structured representations are thought to
play a key role, many evidences suggest that the neurons in the
frontal cortex are involved in their encoding (15, 16, 18, 54–56).

We review several neurocomputational models for ordinal en-
coding in ref. 48 and provide as well an original biological
implementation of it based on STDP, called ordinal STDP.

In this ordinal version of STDP, pre- and postsynaptic neurons
reinforce their links with respect on their relative index, relative
distance, or relative spatial location but not on their timing as it
is conventionally the case in STDP.

Postsynaptic neurons with higher (lower) index than presynap-
tic ones will strengthen (diminish) their synaptic links. By doing
so, spiking neurons sensitive to specific order in sequences can be
constructed in recurrent networks, without the need to encode the
indexes in the synapses as it is currently done in simulations. This
type of ordinal encoding may have the advantage to preserve the
spatio-temporal structure in spike trains and to be less sensitive to
variabilities and intrinsic noise.

Digital Computation. We found the counterintuitive result that
a very limited number of neurons with coarse resolution and
random connections can accurately encode arbitrary signals of
very high resolution, 100 million times higher than the neurons’
learning capabilities, and this ratio grows linearly.

Because of the neurons’ ordinal representation of the sequence,
items taken in a repertoire of dimension R can be represented by a
neural code with values taken in a repertoire of dimension L only,
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making the computation cycles of encoding and decoding very
fast. Surprisingly, the principal bottleneck is at the reconstruction
stage, which is dependent on the parameter σ and the number
of neurons N used in the calculation of the Gaussian functions.
The larger σ is, the heavier the computation but also, the more
precise the reconstruction, as shown in the experiments. The
number of units required remains nonetheless low and almost
constant.

Considering our finding that very few neurons are necessary to
retrieve back items taken in very large repertoires, this mechanism
is very sparse and computationally efficient.

From this result, we found a mathematical relationship between
the memory capacity of a neural population–which depends
on its number of neurons N and the resolution of its neural
codes Rnetwork = L–and the repertoire cardinality Rinput of the
message to be learned (equivalently its entropy or resolution). This
parallels Shannon’s so-called separation theorem, which states that
an information source may be transmitted (or stored) with an
arbitrarily small frequency of error as long as the source entropy
per channel use does not exceed the channel (or storage) capacity.
The related equations are provided in SI Appendix, Eqs. 1 and 2.
These equations can provide insights for a neural information
theory and the design of digital neural networks, for which the
neural network we propose is one instance.

The ordinal codes in our neural architecture operate a
discretization (quantization) of information. Additionally, the
randomly permuted orders yield independent and identically
distributed rank items to be coded (with maximum entropy).
This maximum entropy holds under the model assumption that
the random permutations are chosen uniformly for each sequence
learned. Together, they form a joint source-channel code that
allows disambiguation of sequences that map to the same rank
order in the original alphabet. This is in line with the efficient
coding principle of redundancy reduction and the whitening
phenomenon, which is found in sparse coding (3, 8, 11, 12, 57).

Error-correcting codes are at the heart of the revolution of
modern communication theory and practice. Interestingly, the
pioneering work that first came within reach of the Shannon limit

to error-free communication is that on the turbo codes (37), which
exploit the three mechanisms we similarly use here: shuffling of the
input signal, coarse representation (by parity-check codes), and
belief votes at the decoder.

Within the brain, since the task of correctly retrieving a par-
ticular group of neurons is incommensurate (58) considering the
number of neural units (1010 cells) and the number of synaptic
connections (1014 dendrites), the brain has to find an efficient
solution to overcome its complexity for processing, protecting,
and retrieving information (3). One outstanding and provocative
question is, therefore, if the brain effectively uses a digital code to
process neural information. Although not a computer, does the
brain incidentally exploit the same principles found in current
man-made telecommunication networks?

After all, if “DNA is encoded digital information in the ‘Strong
Sense”’ according to Richard Dawkins (59), the brain may also
exploit some kind of digital processing for memory preservation,
access, and learning.

Perceptual Binding. Pouget et al. present in ref. 60 a Bayesian
inference treatment of feature binding between two or more
variables, emphasizing the important role of the Gaussian distri-
bution of the neurons’ output; that is, neurons encode (Gaussian)
probabilities, and as such, they are sensitive to specific values in
high dimensions (i.e., their mean value), which are a compromise
between multiple inputs but weighted by the inverse of their
variance (their precision or uncertainty). Therefore, in comparison
with perceptrons in formal neural networks, biological neurons
convey two types of information instead of one: the output and
the confidence level.

They use one example in which the estimation of the width of
an object (μwidth ) is performed by combining visual and tactile
cues (X1 and X2); the estimated size of the object is the average
between these two variables with mean and variance: μwidth =
W1X1 +W2X2. As such, combining cues increases (or decreases)
the information and confidence level.

We can draw a parallel with our framework. In our examples,
we can see each element of the sequence as if they were different
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Fig. 9. Image reconstruction by neurons of lower resolution. In A, we present two neurons that encode an image with random permutations of the pixels’
distribution (255 values) and reduced to a binary code (two values). (C) Euclidean error with respect to the number of neurons used during global decision-
making. Nearly 40 binary neurons are required to retrieve back perfectly the original pixels’ value. (D) Image reconstruction for different numbers of neurons
used during the decision vote.
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variables, modalities, or cues, with access to different sources of
information. The more items that are added in the sequence,
the more active the neuron, which corresponds to its confidence
level. Alternatively, the weights matrix W can also be read in
the other direction (vertically); the more neurons that are used in
element estimation, the more precise the reconstruction through
accumulation (61).

The Gaussian functions and equations in our model are used
in the same manner as the Bayesian treatment of uncertainty
during feature binding in ref. 60, with variance as a sign of
computation (62). In addition, the randomization introduced
in our algorithm has the advantage of creating a normal dis-
tribution of the variables so that each variable is independent
and separable from the others. Sparsity is, therefore, a feature
as important as binding for “tractability” or disentanglement in
perception (63).

Information Routing and Conscious Gating. Our ideas may cast
light on recent proposals that the prefrontal cortex is the brain
router for gating information and conscious access (64, 65) or
others that the brain manipulates integrated and differentiated
information codes (66).

Because retrieval is viewed as an optimization decoding process
in our network, our framework may explain why the bandwidth
limitation to memory access is all or none and why conscious
access is constrained, time limited, and sequential. Under this
aspect, it is in line with the predictive processing and free energy
account for consciousness, in which consciousness is simply the
process of optimizing beliefs through inference (67–70). Their
results are also in accordance with current main theories of the
brain that relate conscious processing explicitly with information
theory to global ignition, long-distance broadcasting, cognitive
cost, and information integration (66, 69, 71–76).

Our results may provide some additional constraints on the
types of neural coding and communication mechanisms necessary
for distal neurons to dynamically control the synchronization
of a coherent neural assembly to fulfill gating and conscious
processing. Moreover, the efficiency of the working memory can
be evaluated quantitatively in terms of durability and access to
stored information: 1) its robustness against catastrophic forget-
ting and 2) its rapidity in retrieving any pieces of information,
even corrupted ones.

Digital Neural Networks. Some other neural architectures have
been proposed recently to incorporate discreteness and digital
capabilities. Instances have been proposed by Berrou et al. (77)
focusing on the problem of memory capacity and organization,
while Graves and colleagues (78, 79) investigated their computer-
like features.

The neural network of Berrou et al. (77) borrows the tech-
nique from telecommunication networks, showing high memory
capacity and sparsity, but its use in real case problems and its
computational efficacy in real time have not been investigated.
Additionally, Graves’ neural Turing machine and differentiable
neural computer (DNC) show the computational capabilities
of conventional computers with the use of neuronal pointers
and access to external memory. The feature of having an ad-
dressable memory with pairs of (key, value) permits DNC to
buffer and manipulate variables and codes, useful for symbolic
artificial intelligence (AI) problems. However, the problem of how
the organization of memory and information processing can be
efficiently combined, what the brain does, still remains.

To make a parallel with these neural networks and also, with
the von Neumann computer architecture, we may see the neural
population we introduced to realize the function of a random ac-

cess memory to retrieve quickly the addresses of neurons in a large-
scale memory network. These neural addresses are represented in
our neural architecture by quantized ordinal codes. Our results
showed that a relatively small neural code can retrieve sequences
in a very large-scale repertoire (e.g., an external memory system).

Conclusion

Our proposal that the brain may manipulate and compute a
kind of digital information may remind us of the pioneering
and provocative works of the founders of computers and com-
putation John von Neumann and Alan Turing, to which we can
add Claude Shannon. On the one hand, John von Neumann
(80) created the standard model of computer architectures based
on the separation between the operative and the operand, with
memory-stored control and memory-stored programs. He also
suggested the idea that the brain might be necessarily a digital
parallel addressable memory machine to avoid noise to keep and
compute information. On the other hand, Alan Turing (81) was
perfectly aware of the cost of computation that has to endure
the human memory system, “necessarily limited” (82, p. 231), to
process, retrieve, and keep track of information. Besides, noise,
storage, and transmission are at the heart of the concerns of
the communication and information theory of Claude Shan-
non (38), who also worked on the redundancy of the English
language (83), in artificial intelligence (chess and maze-solving
programs) and information storage in genes before the discovery
of DNA.

Before Claude Shannon’s work, engineers thought that to
reduce communication errors, it was necessary to increase trans-
mission power or to send the same message repeatedly. Shannon
(38) basically showed that it was not necessary to waste so much
energy and time if you had the right coding schemes.

Current machine learning techniques (e.g., deep networks) rely
extensively on big data and large neural networks to approximate
statistical correlations on a relatively small number of classes (a
few hundred). It is acknowledged that we will soon arrive at
the end of a cycle as it becomes harder to achieve significant
improvements with the difficulty of accessing a larger volume
of data and constructing larger deep networks. Furthermore,
energy consumption becomes problematic as powerful computers,
graphic cards, and high-performance computing are now required
for efficient learning in a reasonable amount of time with those
models. Thus, we can make a parallel with the current situation in
AI and the earlier ages before digital communication.

Current AI architectures (deep networks) mostly ignore that
computing has physical means and energy costs that biological
systems cannot afford as they do not have access to a virtually
unlimited amount of energy, precision, and time and have an urge
to act. According to the efficient coding hypothesis for the brain,
leveraging maximum entropy may be a decisive ally to achieve
neat computational power with limited resources (neurons and
synapses). We suggest that this leap be done by the digitalization
of information for energy consumption, computational effective-
ness, and preserving information.
Data, Materials, and Software Availability. The code to run the neural
network is available on GitHub (https://git.u-cergy.fr/neurocyber/digicode) (84).
All other data are included in the article and/or SI Appendix.
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