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Most antigenically novel and evolutionarily successful strains of seasonal

influenza A (H3N2) originate in East, South and Southeast Asia. To under-

stand this pattern, we simulated the ecological and evolutionary dynamics

of influenza in a host metapopulation representing the temperate north, tro-

pics and temperate south. Although seasonality and air traffic are frequently

used to explain global migratory patterns of influenza, we find that other

factors may have a comparable or greater impact. Notably, a region’s basic

reproductive number (R0) strongly affects the antigenic evolution of its viral

population and the probability that its strains will spread and fix globally: a

17–28% higher R0 in one region can explain the observed patterns. Seasonality,

in contrast, increases the probability that a tropical (less seasonal) population

will export evolutionarily successful strains but alone does not predict that

these strains will be antigenically advanced. The relative sizes of different

host populations, their birth and death rates, and the region in which H3N2

first appears affect influenza’s phylogeography in different but relatively

minor ways. These results suggest general principles that dictate the spatial

dynamics of antigenically evolving pathogens and offer predictions for how

changes in human ecology might affect influenza evolution.
1. Introduction
Antigenic variants of seasonal influenza continuously emerge and escape human

immunity in a process known as antigenic drift. These drifted strains are less

easily recognized by host immunity and therefore have a transmission advantage.

More antigenically advanced strains are also more likely to spread globally and

successfully perpetuate the evolutionary lineage of subsequent variants.

Asia has long been recognized as a major source of not only new influenza

subtypes, but also new strains of seasonal influenza [1–4]. Influenza A/H3N2,

A/H1N1 and two B lineages currently circulate in the human population, with

the H3N2 subtype causing the most disease [5]. Phylogeographic analyses

show that East, South and Southeast Asia contribute disproportionately to the

evolution of seasonal H3N2, exporting most of the evolutionarily successful

strains that eventually spread globally [6–10]. The trunk of H3N2’s phylogeny

traces the evolutionary path of the most successful lineage and was estimated

to be located in Asia 87% of the time from 2000 to 2010 [10]. Additionally, strains

of H3N2 isolated in East–Southeast Asia appear to be more antigenically

advanced, with new antigenic variants emerging earlier in East–Southeast Asia

than in the rest of the world [7,11]. These observations suggest that ecological

differences between regions, such as climate and human demography, affect

the local antigenic evolution of H3N2, which in turn shapes its global migratory

patterns. Here, we ask what ecological factors might cause disproportionate con-

tributions of particular host populations to the evolution of an influenza-like

pathogen. This information may be immediately useful for viral forecasting.

Over the long term, it could help predict changes in influenza’s phylogeography

and identify source populations to improve global vaccination strategies.
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The conspicuous role of Asia in H3N2’s evolution has been

attributed to the seasonal nature of influenza in temperate

regions [2,6–9,12]. Approximately 85% of Asia’s population

and 48% of the global population resides in a climatically tropi-

cal or subtropical region [13] where semiconnected host

populations support asynchronous epidemics that enable

regional persistence year-round [7,12,14]. Uninterrupted

transmission might increase both the efficiency of selection

and the probability of strain survival and global spread. By

contrast, transmission bottlenecks from late spring through

autumn in temperate populations necessarily limit local evol-

ution and reduce opportunities for strain emigration [15,16].

Smaller contributions from other tropical and subtropical

regions might arise from the weaker connectivity of their host

populations [9,17,18].

Although seasonality clearly affects temporal patterns

of viral migration [8], a robust explanation for differences in

regions’ long-term contributions to the evolution of H3N2

would consider the effects of seasonal variation in transmission

of the light in other potentially influential differences among

host populations, including as follows.

(a) Host population size
East–South–Southeast Asia alone contains more than half of

the global population [19]. Larger host populations should

sustain larger viral populations, and in the absence of other

effects, they should contribute a proportionally larger fraction

of strains that happen to spread globally. Additionally, if rare

mutations limit the generation of antigenic variants, larger

populations could contribute a disproportionate number of

antigenically novel strains with high fitness.

(b) Host population turnover
Birth rates have historically been higher in East–South–

Southeast Asia than in most temperate populations [19].

Demographic rates influence the replenishment of suscepti-

bles and loss of immune individuals, thereby modulating

selection for antigenic change. Faster replenishment of sus-

ceptibles increases prevalence, and thus viral abundance

and diversity, but weakens the fitness advantage of antigenic

variants. A more immune population imposes greater selec-

tion for antigenic change but supports a smaller, less

diverse viral population. Thus, the rate of antigenic evolution

may vary in a complex way with the rate of host population

turnover [20].

(c) Initial conditions
H3N2 first emerged in or near Hong Kong in 1968. The

region in which a subtype emerges may effectively give the

viral population a head start on evolution. The first epidemic

will almost certainly occur in this region, and viruses here

will be the first to experience selective pressure for antigenic

change. If host migration rates are low and the founding viral

population persists, this antigenic lead could be maintained

or even grow in time.

(d) Transmission rates
Differences in human behaviour can affect transmission rates.

The transmission rate affects a strain’s intrinsic reproductive

number (R0), the expected number of secondary cases caused

by a single infection in an otherwise susceptible population.
Differences in regional R0 could affect evolution in at least

two ways. Higher R0 increases the equilibrium prevalence,

increasing the probability that rare beneficial mutations will

appear. In addition, the rate of antigenic drift increases with

R0 in models that include mutation as a diffusion-like process

[10,21–23]. A higher intrinsic reproductive number in one

population could thus accelerate the emergence of novel

mutants in that area.

To understand the potential effects of these five factors on

the evolution of H3N2 in space, we simulated an influenza-

like pathogen in a simplified representation of the global

human metapopulation. The simulated metapopulation con-

sisted of three connected host populations, representing the

temperate north, tropics and temperate south. Conceptually,

the tropics in the model approximate Asia, where most of

the population is tropical or subtropical [13] and epidemics

are asynchronous, and exclude other less connected tropical

and subtropical populations on other continents [9,17,18].

The two temperate populations approximate northern and

southern populations where influenza is strongly seasonal.

The model can also be generalized to represent three

arbitrary populations by reducing seasonality.

We analysed the effects of these factors on two key metrics

of influenza’s spatial evolutionary and antigenic dynamics.

The first metric measures the proportion of the trunk of the

phylogeny present in the tropics (figure 1a). The phylogenetic

trunk represents the most evolutionarily successful lineage

that goes on to seed all future outbreaks. The second metric

measures the degree to which tropical strains are antigenically

advanced (figure 1b). Phenotypically, antigenic dissimilari-

ties can be quantified as distances in antigenic space using

pairwise measures of cross-reactivity [11,24]. Our model uses

an analogous measure of antigenic distances, allowing us to

determine the relative antigenic advancement of strains from

each region. We analysed these two metrics from simulations

to test whether any of the five ecological factors could create

spatial evolutionary patterns of a similar magnitude to the

observed data.
2. Results
(a) Influenza-like patterns
We simulated an individual-based model that included eco-

logical and evolutionary dynamics in a metapopulation with

three demes [25]. By default, in one deme, transmission rates

are constant throughout the year, and in the two others, trans-

mission rates vary sinusoidally with opposing phases. Viral

phenotypes occur as points in two-dimensional Euclidean

space, and mutation displaces phenotypes in this two-

dimensional space according to a fixed kernel [25]. This space

is analogous to an antigenic map constructed from pairwise

measurements of cross-reactivity between influenza strains

using a haemagglutination inhibition (HI) assay [11,24].

Susceptibility to infection is proportional to the distance in

antigenic space between the challenging strain and the

nearest strain in the host’s infection history, giving distant or

antigenically advanced strains greater transmissive advantage.

The model reproduces the characteristic ecological and

evolutionary features of H3N2, except for the antigenic lead

(table 1), under the default parameters (table 2). We restricted

our analyses to simulations where the virus remained endemic

and where the time to the most recent common ancestor



0 10 20
year

pr
ev

al
en

ce
 p

er
 1

05

an
tig

en
ic

 d
is

ta
nc

e 
fr

om
 f

ou
nd

er

1500

1000

500

0

year

N

T

S

30 40

0 10 20
year

30 40

0 10 20 30 40

40

30

20

10

0

(b)(a)

(c) (d )

Figure 1. Representative output showing influenza-like behaviour from a sample simulation using the default parameters (table 2). Statistics reported here are
based on 53 replicate simulations. (a) The phylogeny of the pathogen is reconstructed explicitly from the recorded ancestry of simulated strains. Branches are
coloured by region indicated in panel (d ). The trunk is determined by tracing the recorded ancestry of surviving strains at the end of the simulation. Side branches
show lineages that go extinct. (b) Viruses evolve antigenically away from the founding strain in a canalized manner. On average, the antigenic distance from the
founding strain follows the trajectory indicated by the black LOESS spline fitted to viruses from all three regions. At any given point in time, strains above this line
have drifted farther from the founder compared with average, and are thus considered antigenically leading. Conversely, strains below this line are considered
antigenically lagging. Antigenic lead is calculated as the distance to the spline in antigenic units. (c) Prevalence of infection over time for each region. (d ) Depiction
of the totally connected model population, composed of the temperate north, tropics and temperate south.

Table 1. Properties of the default model.

statistic
model
mean+++++ s.d. observed (ref )

annual incidence 0.091+ 0.0077 0.09 – 0.15 [26]

antigenic drift rate

(antigenic units yr – 1)

0.97+ 0.11 1.01 [11]

TMRCA (years) 3.7+ 0.26 3.89 [10]

fraction of trunk in the

tropics

0.61+ 0.13 0.87 [10]

tropics’ antigenic lead

(antigenic units)

0.0025+ 0.036 0.25 [7,11]
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(TMRCA) never exceeded 10 years during the 40 years of simu-

lation. We chose this cut-off because in some simulations, the

viral population developed unrealistically deep branches. In

excluding extinctions and excessive diversity (branching), we

assume that H3N2’s historical evolutionary patterns represent

the virus’ likeliest evolutionary dynamics. Of 100 replicate

simulations, the viral population went extinct in 18 cases

and exceeded the TMRCA threshold 29 times, leaving 53 simu-

lations for analysis. The model tracks the ancestry of individual

strains, allowing us to explicitly reconstruct the phylogeny of

the virus and the geographical location of lineages. The phylo-

geny has the characteristically well-defined trunk with short

branches of the H3N2 haemagglutinin (figure 1). This shape

arises due to repeated selective sweeps of antigenic variants,

which reduces standing diversity; the average TMRCA across

replicates was 3.72 years (s.d. ¼ 0.26), comparable to empirical

estimates of 3.89 years [10]. The antigenic distance from

the founder increased linearly with time (figure 1), character-

istic of H3N2’s canalized antigenic evolution [24,25]. The

mean antigenic drift across replicate simulations was 0.97

antigenic units per year (s.d. ¼ 0.11), comparable to observed

rates of 1.01 antigenic units per year [11]. The mean annual inci-

dence was 9.1% (s.d. ¼ 0.8%). Reported annual incidence

across all subtypes of seasonal influenza ranges from 9% to

15% [26]. As we only modelled one lineage (e.g. the H3N2

subtype), the low estimate from the model is comparable to

observed incidence.
Although all three host populations were the same size,

the tropical strains were on average more evolutionarily suc-

cessful. The phylogenetic trunk traces the most evolutionarily

successful lineage and was located in the tropics 77% (s.d. ¼

13%) of the time, comparable to the observed 87% of H3N2’s

trunk in East–South–Southeast Asia between 2000 and 2010

[10]. However, the default parametrization does not produce

an antigenic lead in any population, despite the observed

antigenic lead of Asian strains (table 1). Antigenic cartogra-

phy shows that while H3N2 drifts on average at 1.01



Table 2. Default parameters.

parameter value reference

intrinsic reproductive number (R0) 1.8 [27,28]

duration of infection n 5 days [29]

population size N 45 million (see the electronic supplementary material)

birth/death (turnover) rate g 1/30 yr – 1 [19]

mutation rate m 1024 d21 (see the electronic supplementary material)

mean mutation step size dmean 0.6 antigenic units (see the electronic supplementary material)

s.d. mutation step size ds.d. 0.3 antigenic units (see the electronic supplementary material)

infection risk conversion c 0.07 [25,30,31]

migration rate m 1023 d21 (see the electronic supplementary material)

seasonal amplitude e 0.10 [32]

0

0.25

0.50

0.75

1.00

0 0.05 0.10 0.15 0.20 0.25
seasonal amplitude

tr
op

ic
s 

tr
un

k 
pr

op
or

tio
n

−0.4

−0.2

0

0.2

0.4

0 0.05 0.10 0.15 0.20 0.25
seasonal amplitude

tr
op

ic
s 

an
tig

en
ic

 le
ad

(b)(a)

Figure 2. Seasonal amplitude e in the temperate populations increases the tropics’ contribution to the most evolutionarily successful lineage but alone does not
affect regional differences in antigenic advancement. Transmission rates b in the temperate north and south oscillate sinusoidally in opposite phase, with amplitude
e . All other parameters remain at their default values (table 2). (a) Effects of seasonality on the fraction of the trunk in the tropics (Pearson’s r ¼ 0.85, p , 0.001;
R2 ¼ 0.72). Each point shows the fraction of time that the phylogenetic trunk was located in the tropics during the course of one simulation. The dashed line
represents the null hypothesis where tropical strains comprise one-third of the phylogenetic trunk. (b) Effects on seasonality on the antigenic lead of the tropics
(Pearson’s r ¼ 20.12, p ¼ 0.20, R2 ¼ 0.01). Each point shows the average antigenic lead of tropical strains over time from one simulation. The dashed line
represents the null hypothesis where tropical strains are neither antigenically ahead or behind. Blue lines represent linear least-squares regression.
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antigenic units per year globally [11], Asian strains tend to be

farther drifted at any given time, and the region is thus con-

sidered to lead antigenically [7,11].
(b) Seasonality
We first varied the strength of seasonal forcing, holding other

parameters at their default values. Seasonality by itself in

the two temperate populations could not cause the tropics to

produce more antigenically advanced strains; however,

seasonality did cause the tropics to contribute a greater fraction

of evolutionarily successful strains (figure 2). By linear

regression, we estimate that the trunk would spend 87% of

its time in the tropics (the same fraction that is observed in

Asia [10]) with a seasonal transmission amplitude (e) of 0.19

(95% CI: 0.18, 0.20). Reduced seasonal forcing in the temperate

populations equalized the fraction of the trunk in each popu-

lation. In multivariate sensitivity analysis, the amplitude of

seasonal transmission accounted for 33% of the variation in

the tropical fraction of the trunk (electronic supplementary

material, figure S2 and table S2). This result suggests that

seasonal bottlenecks in temperate populations discourage
seasonal strains from fixing globally, in agreement with other

models [15]. However, seasonality alone could not explain

any variation in the tropic’s antigenic lead (electronic sup-

plementary material, figure S2 and table S3). We therefore

hypothesized that ecological factors besides seasonality must

contribute to regional differences in relative antigenic fitness.
(c) Transmission rate in the tropics
Increasing R0 in the tropics relative to the temperate popu-

lations caused the tropics to produce strains that led

antigenically while also preserving the tropics’ contribution

to the trunk (figure 3). Linear regression implies that a 28%

(95% CI: 25%, 30%) increase in R0 in the tropics causes the tro-

pics to produce strains that are, on average, 0.25 antigenic units

ahead of global mean, reproducing the observed antigenic lead

in Asia [7,11]. We also estimate that a 17% increase in R0 (95%

CI: 15%, 19%) causes the phylogenetic trunk to be located in the

tropics 87% of the time, reproducing the observed fraction of

the H3N2 trunk in Asia [10].

The effects of R0 on the antigenic lead were robust to

changes in other ecological variables and over a range of
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Figure 3. Increased R0 in the tropics increases the tropics’ contribution to the most evolutionarily successful lineage and the antigenic advancement of tropical
strains. Relative R0 is calculated as R0 in the tropics divided by R0 in the temperate regions. R0 in the tropics was varied while R0 in the temperate regions was kept
at its default. Other parameters were also kept at their default values (table 2). (a) Effect of R0 in the tropics on the fraction of the trunk in the tropics (Pearson’s
r ¼ 0.88, p , 0.001; R2 ¼ 0.78). Each point shows the fraction of phylogenetic trunk located in the tropics during one simulation. The dashed line represents the
null hypothesis where tropical strains comprise one-third of the phylogenetic trunk. (b) Effect of R0 in the tropics on the antigenic lead in the tropics (Pearson’s r ¼
0.93, p , 0.001; R2 ¼ 0.87). Each point shows the average antigenic lead of tropical strains over time from one simulation. The dashed line represents the null
hypothesis where tropical strains are neither antigenically ahead or behind. Blue lines represent linear least-squares regression.
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Figure 4. Seasonality in temperate populations has an equalizing effect on antigenic differences. Relative R0 is calculated as R0 in the tropics divided by R0 in the
temperate regions. (a) Effects of seasonality and R0 on the fraction of the trunk in the tropics. Blue indicates that the phylogenetic trunk is located in the tropics less
than one-third of the time, and red indicates that the trunk is in the tropics more than one-third of the time. (b) Effects of seasonality and R0 on antigenic lead in
the tropics. Blue indicates that tropical strains are on average ahead antigenically relative to other global strains and red indicates that tropical strains are behind
antigenically. Each square averages 1 – 17 replicate simulations.
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baseline values of global R0. When we varied the other par-

ameters (table 2), relative R0 in the tropics accounted for

77% of the variance in the antigenic lead, making it the best

predictor of antigenic lead in the tropics (electronic sup-

plementary material, figure S2 and table S3). The fraction of

the trunk in the tropics also increased with the relative R0,

although R0 explained less of the variation in trunk pro-

portion (41%), due to the effect of seasonality (electronic

supplementary material, figure S2 and table S2).

Notably increased R0 in one deme was sufficient by

itself to make strains more evolutionarily successful and

antigenically advanced. When we removed seasonality

altogether to model three climatically identical populations,

the population with the highest R0 produced both the most anti-

genically leading and evolutionarily successful strains

(figure 4). Thus, higher R0 alone in one region can cause it to
attain an antigenic lead and fraction of the trunk as large as is

observed in Asia.

To better understand why increasing regional R0 causes

that region to produce more antigenically advanced strains,

we examined the effect of R0 on antigenic evolution in a

single deme. Simulations showed that increasing R0 increases

the rate of antigenic drift (electronic supplementary material,

figure S3). To investigate further, we derived an analytic

expression for the invasion fitness of a novel mutant in a popu-

lation at the endemic equilibrium (electronic supplementary

material, equation (S1)). When the resident and mutant strains

have the same intrinsic fitness (R0), the growth rate of an anti-

genically distinct, invading mutant increases linearly with R0

(electronic supplementary material, figure S4). This linearity

holds as long as the conversion between antigenic distance

and host susceptibility (equation (4.3)) is independent of R0.
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As R0 increases, not only do mutants invade faster, but also the

invasion speed increases faster as a function of antigenic dis-

tance (electronic supplementary material, figure S4).

Although seasonality alone did not affect antigenic lead, the

effects of R0 on antigenic lead could be influenced by seasonality

(figure 4). Introducing seasonality in the temperate populations

reduced differences in antigenic phenotype between regions.

When tropical strains were antigenically ahead of temperate

strains (due to higher tropical R0), introducing seasonality

reduced the tropics’ antigenic lead. When tropical strains were

antigenically behind temperate strains (due to lower tropical

R0), introducing seasonality reduced the antigenic lag. Two fac-

tors explain the equalizing effect of seasonality on antigenic

phenotype. First, higher contact rates during transmission

peaks in the two temperate populations increase the rate of

strain immigration from the tropics. Second, seasonal troughs

in prevalence allow tropical strains to invade more easily due

to reduced competition with local strains.

(d) Demographic rates, population size and initial
conditions

Other ecological factors affected regional contributions to evol-

ution but could not reproduce the observed patterns as well as

differences in R0 (electronic supplementary material, figures S1

and S2). Notably, strains were slightly more antigenically

advanced in older populations (electronic supplementary

material, figure S1). When the rate of population turnover in

the tropics was half that in the temperate regions, the tropics

led by 0.04 antigenic units (s.d. ¼ 0.03). Larger populations

generally contributed more to the trunk, although there was

much variation that population size alone did not explain (elec-

tronic supplementary material, figures S1, S2 and tables S2, S3).

Initial conditions did not have a lasting effect (electronic

supplementary material, figure S5).

(e) Implications for other influenza subtypes
Both influenza A/H1N1 and influenza B evolve slowly com-

pared with H3N2 and are suspected to have lower R0 [10,11].

Specifically, H1N1 drifts at a rate of 0.62 antigenic units per

year, and the B/Victoria and Yamagata strains drift at 0.42

and 0.32 antigenic units per year, respectively [11]. H1N1 and

B viruses are also less apt to have Asian origins than H3N2

[10]. When we simulate with lower baseline R0, we find that

differences in R0 between regions have a weaker influence on

spatial patterns of evolution (electronic supplementary

material, figure S8). Based on the relationship between mean

R0 and antigenic drift (electronic supplementary material,

figure S3), we would expect seasonal H1N1, for example, to

have an R0 of 1.6. For this R0, a 17% increase in R0 causes the tro-

pics to occupy only 79% (versus 87% for H3N2-like R0 of 1.8) of

the trunk, and a 28% increase in R0 causes the tropics to lead by

0.20 (versus 0.25 for H3N2) antigenic units.
3. Discussion
In our model, we find that the simplest explanation for why a

host population produces more antigenically novel and evo-

lutionarily successful strains than other populations is that

its strains have a higher intrinsic fitness, or R0. The strong

effect of regional R0 on spatial patterns of viral evolution is

caused by the effect of R0 on antigenic drift. Higher regional
R0 facilitates invasion of antigenically novel strains, resulting

in faster antigenic drift. Seasonality reduces the rate at which

temperate populations export strains that are evolutionarily

successful, but seasonality alone cannot explain regional

differences in the production of strains that are antigenically

novel. Size and age can influence global patterns too, but to a

lesser extent: larger populations export more strains that fix,

and populations with slower replenishment of susceptibles

increase the rate of antigenic evolution. These last two effects

are sensitive to changes in seasonality and R0. These results

highlight the relationship between human ecology and influ-

enza’s phylogeography. Regions with high transmission rates

may be expected to contribute disproportionately to influen-

za’s evolution and may also be ideal targets for vaccine

campaigns. Accordingly, changes in human ecology can be

expected to alter influenza’s phylogeography. These general-

izations assume that H3N2 will evolve mostly as it has, with

high strain turnover and limited genetic variation at any time,

but more complex dynamics may be possible.

To make general predictions, we used a simple model.

Although our three-deme metapopulation prevents us from

replicating influenza’s phylogeographic dynamics precisely,

the model nonetheless reveals how ecological differences

in populations create spatial patterns in the evolution of

an influenza-like pathogen. Simulations with more complex

metapopulation models showed the same trends as the

simple three-deme model (electronic supplementary material,

figures S9 and S10), suggesting that our results are robust to

changes in metapopulation population structure.

These results immediately raise the question of whether

there is evidence of regional variation in R0. Low reporting

rates and antigenic evolution make the R0 of influenza diffi-

cult to measure with traditional methods, but we can

conjecture from several lines of evidence. Low absolute

humidity favours transmission via aerosol in experimental

settings [33] and influences the timing of the influenza

season in the USA [34]. Based on absolute humidity and aero-

sol transmission alone, these results suggest that R0 of

tropical and subtropical Asia would be lower than in temper-

ate latitudes. However, in Vietnam the onset of influenza-like

illness is associated with periods of high humidity [35]. This

observation suggests that humidity is not the dominant

driver of influenza transmission, at least in this region.

Contact rates also influence transmission [36]. Multiple

studies have detected a significant effect of school closure

on influenza spread [37–39], although this trend is not with-

out exception [40]. Households also influence risk: after one

household member is infected, the average risk of secondary

infection in a household contact is 10% [41]. Differences in

classroom and household sizes may thus influence local

transmission, and both are higher in, for instance, China

and India than in Europe and the USA [42,43]. Contact sur-

veys report higher contact rates in Guangdong, China, than

in European communities, whereas those in Vietnam are

lower, although differences may arise from differences in

survey design [44–46]. These surveys notably miss non-

social, casual contacts (e.g. shared cafeterias and elevators)

that might be important for influenza transmission.

Differences in local transmission rates may not scale: high

rates of local transmission may be offset or attenuated by

the structure of contact networks over larger areas. At the

regional level, commuter and air passenger flows affect

the spread of influenza epidemics, suggesting that adults
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are important to the long-range dispersal of the virus [12,18].

The frequency of long-distance contacts differs between com-

munities [44]. Although sensitivity of R0 to network topology

is well known theoretically [47,48], there is a need to integrate

the features of local and regional empirical transmission net-

works to infer large-scale differences R0.

Empirical estimates of R0 are in theory attainable from sero-

prevalence. Under a simplistic, single-strain SIR model, which

assumes random mixing and no maternal immunity, differ-

ences in R0 should appear in differences in seropositivity by

age. For instance, if R0 ¼ 1.8, approximately 5.1% of 2 year-

olds would be seropositive, whereas 7.4% would be seroposi-

tive if R0 were 20% higher. R0 variation in this range could be

detected by sampling as few as 1500 2-year-olds in each popu-

lation. Detailed surveys of H3N2 seropositivity by age cohort

exist for some European countries [49,50] but show much

faster increases in seropositivity with age than expected

under the SIR model: 100% of tested children are seropositive

to H3N2 by age 7 in The Netherlands and by age 12 in

Germany. This discrepancy between theory and data may be

due to antigenic drift resulting in higher attack rates [10]. The

spatial difference in seroprevalence may also reflect greater

contact rates among school-aged children [45] and highlights

the possibility that differences in exposure rates at young

ages do not reflect mean differences in the populations. Such

effects may be reduced by examining seroprevalence at older

ages, but these estimates must balance a trade-off between

minimizing age-related correlations in transmission rates and

increasing sample sizes required to detect asymptotically

small differences in seropositivity. Another potential approach

to measuring R0 is to refine estimates of annual incidence in

different populations. Estimates of R0 based on annual

incidence would have to incorporate the histories of recent

circulating strains, survey timing and titre dynamics and

vaccination in each population.

A greatly reduced birth rate confers a slight antigenic lead,

but actual differences in birth rates between regions appear too

small to explain Asia’s observed lead. Current birth rates

across most of Europe, China and the USA are within 10% of

each other [19]. Birth rates are almost twice as high in some

Southeast Asian countries, including Cambodia, Laos and the

Philippines. The highest birth rates are found in Africa and the

Middle East, and are three to four times higher than birth rates

in the USA and China. Our model suggests that these regions

should contribute relatively less to influenza’s antigenic evol-

ution, assuming the differences in population structure are not

associated with higher R0, and ignoring other differences. How-

ever, taking age-assortative mixing into account may negate this

expectation, with younger populations having increased R0

[48,51] thus contributing more to antigenic evolution.

We expect these results to apply to other antigenically

varying, fast-evolving pathogens, including other types

of influenza. Enterovirus-71 circulates globally, and its VP1

capsid protein experiences continuous lineage replacement

through time, similar to H3N2 haemagglutinin [52]. Norovirus

also demonstrates rapid antigenic evolution by amino acid

replacements in its capsid protein [53]. We might expect that

areas with high transmission contribute disproportionately to

the antigenic evolution and global spread of these pathogens.

In addition, when we simulate with lower R0, we find that

differences in R0 between regions influence spatial patterns of

antigenic variation less (electronic supplementary material,

figure S8). This may explain why influenza A H1N1 and
influenza B, which are suspected to have lower R0 [10,11], are

less apt to have Asian origins than H3N2 [10].
4. Material and methods
We implemented an individual-based SIR compartmental model

of an influenza-like pathogen, originally described by Bedford

et al. [25]. In this model, a global metapopulation is composed of

three connected populations, representing tropics and temperate

north and south. Individuals’ compartments are updated using a

t-leaping algorithm. Within a region i, the force of infection is

given by

FiðtÞ ¼ biðtÞ
Ii

Ni
, ð4:1Þ

where I is the number of infected hosts. Between regions i and j, the

force of infection is given by

FijðtÞ ¼ mbjðtÞ
Ii

Nj
, ð4:2Þ

where region i is where the infection originates and region j is the

destination. Here, m is a scaling factor for interregional trans-

mission, and bj is the transmission rate of the destination region.

Transmission rates in the seasonal north and south oscillate sinu-

soidally in opposite phase with amplitude e. After recovery from

infection, a host acquires complete immunity to viruses with that

specific antigenic phenotype. Hosts that clear infection accumulate

an infection history that defines their immunity. In a contact event,

the distances between the infecting viral phenotype and each

phenotype in the susceptible host’s immune history are calculated.

The probability of infection after contact is proportional to the dis-

tance d to the closest phenotype in the host’s immune history.

An individual’s risk of infection by such a strain is

Risk ¼ min {1, cd}, ð4:3Þ

where the proportionality constant for converting antigenic dis-

tance to a risk of infection c ¼ 0.07 [25]; in other words, one unit

of antigenic distance corresponds to 7% reduction in immunity.

The linear relationship c between antigenic distance and suscepti-

bility derives from studies of vaccine efficacy [25,30,31].

Antigenic phenotypes are represented by points in a two-

dimensional Euclidean antigenic space. One unit of antigenic

distance in this space corresponds to a twofold dilution of anti-

serum in an HI assay [24]. The model is initialized at the

endemic equilibrium with antigenically identical viruses. By

default, all of the initial infections occur in the tropics. Mutational

events occur at a rate m mutations per day. When a virus mutates,

it moves in a random radial direction with a gamma-distributed

step size. This mutation rate, along with the mutation size par-

ameters (dsubscript, ds.d.) determine the accessibility of more

distant mutations in antigenic space. The radial direction of

mutation is chosen from a uniform distribution.

Data accessibility. Additional methods are described in the electronic
supplementary material. Code implementing the model is available
at https://github.com/cobeylab/antigen-phylogeography.git. The
complete code for reproducing these results is available at https://
github.com/cobeylab/influenza_phylogeography_manuscript.git.

Authors’ contributions. T.B. and S.C. conceived the study. F.W. performed
the analysis and wrote the first draft of the paper. All of the authors
contributed to and approved the final version.

Competing interests. We have no competing interests.

Funding. This work was completed in part with resources provided by
the University of Chicago Research Computing Center. S.C. was sup-
ported by NIH grant DP2AI117921. F.W. was supported by NIH
grant T32GM007281.

Acknowledgements. We thank Daniel Zinder, Maciej Boni and Greg
Dwyer for helpful discussion and Ed Baskerville for programming
guidance.

https://github.com/cobeylab/antigen-phylogeography.git
https://github.com/cobeylab/antigen-phylogeography.git
https://github.com/cobeylab/influenza_phylogeography_manuscript.git
https://github.com/cobeylab/influenza_phylogeography_manuscript.git
https://github.com/cobeylab/influenza_phylogeography_manuscript.git


8
References
rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20161312
1. Shortridge KF, Stuart-Harris CH. 1982 An influenza
epicentre? Lancet 320, 812 – 813. (doi:10.1016/
S0140-6736(82)92693-9)

2. Webster RG, Bean WJ, Gorman OT, Chambers TM,
Kawaoka Y. 1992 Evolution and ecology of influenza
A viruses. Microbiol. Rev. 56, 152 – 179.

3. Cox NJ, Brammer TL, Regnery HL. 1994 Influenza:
global surveillance for epidemic and pandemic
variants. Eur. J. Epidemiol. 10, 467 – 470. (doi:10.
1007/bf01719678)

4. Cox NJ, Subbarao K. 2000 Global epidemiology of
influenza: past and present. Annu. Rev. Med. 51,
407 – 421. (doi:10.1146/annurev.med.51.1.407)

5. World Health Organization. 2016 FluNet, global
influenza surveillance and response system (GISRS).
See www.who.int/flunet.

6. Rambaut A, Pybus OG, Nelson MI, Viboud C,
Taubenberger JK, Holmes EC. 2008 The genomic
and epidemiological dynamics of human influenza
A virus. Nature 453, 615 – 619. (doi:10.1038/
nature06945)

7. Russell CA et al. 2008 The global circulation of
seasonal influenza A (H3N2) viruses. Science 320,
340 – 346. (doi:10.1126/science.1154137)

8. Bahl J et al. 2011 Temporally structured
metapopulation dynamics and persistence of
influenza A H3N2 virus in humans. Proc. Natl Acad.
Sci. USA 108, 19 359 – 19 364. (doi:10.1073/pnas.
1109314108)

9. Bedford T, Cobey S, Beerli P, Pascual M. 2010 Global
migration dynamics underlie evolution and
persistence of human influenza A (H3N2).
PLoS Pathog. 6, e1000918. (doi:10.1371/journal.
ppat.1000918)

10. Bedford T et al. 2015 Global circulation patterns of
seasonal influenza viruses vary with antigenic drift.
Nature 523, 217 – 220. (doi:10.1038/nature14460)

11. Bedford T et al. 2014 Integrating influenza antigenic
dynamics with molecular evolution. eLife 3, e01914.
(doi:10.7554/eLife.01914)

12. Viboud C, Alonso WJ, Simonsen L. 2006 Influenza in
tropical regions. PLoS Med. 3, e89. (doi:10.1371/
journal.pmed.0030089)

13. Gridded Population of the World. 2005 Version 3
(GPWv3): population count grid. Palisades, NY:
NASA Socioeconomic Data and Applications
Center (SEDAC).

14. Cheng X et al. 2012 Epidemiological dynamics and
phylogeography of influenza virus in southern
China. J. Infect. Dis. 207, 106 – 114. (doi:10.1093/
infdis/jis526)

15. Adams B, McHardy AC. 2010 The impact of seasonal
and year-round transmission regimes on the
evolution of influenza A virus. Proc. R. Soc. B 278,
2249 – 2256. (doi:10.1098/rspb.2010.2191)

16. Zinder D, Bedford T, Baskerville EB, Woods RJ, Roy
M, Pascual M. 2014 Seasonality in the migration
and establishment of H3N2 influenza lineages with
epidemic growth and decline. BMC Evol. Biol. 14,
272. (doi:10.1186/s12862-014-0272-2)
17. Chan J, Holmes A, Rabadan R. 2010 Network
analysis of global influenza spread. PLoS
Comput. Biol. 6, e1001005. (doi:10.1371/journal.
pcbi.1001005)

18. Lemey P et al. 2014 Unifying viral genetics and
human transportation data to predict the global
transmission dynamics of human influenza H3N2.
PLoS Pathog. 10, e1003932. (doi:10.1371/journal.
ppat.1003932)

19. United Nations, Department of Economic and Social
Affairs, Population Division. 2013 World Population
Prospects: The 2012 Revision. New York, NY: United
Nations.

20. Grenfell BT. 2004 Unifying the epidemiological and
evolutionary dynamics of pathogens. Science 303,
327 – 332. (doi:10.1126/science.1090727)

21. Lin J, Andreasen V, Casagrandi R, Levin SA. 2003
Traveling waves in a model of influenza A drift.
J. Theor. Biol. 222, 437 – 445. (doi:10.1016/S0022-
5193(03)00056-0)

22. Gog JR, Grenfell BT. 2002 Dynamics and selection of
many-strain pathogens. Proc. Natl Acad. Sci. USA 99,
17 209 – 17 214. (doi:10.1073/pnas.252512799)

23. Kucharski A, Gog JR. 2011 Influenza emergence in
the face of evolutionary constraints. Proc. R. Soc. B
279, 645 – 652. (doi:10.1098/rspb.2011.1168)

24. Smith DJ. 2004 Mapping the antigenic and genetic
evolution of influenza virus. Science 305, 371 – 376.
(doi:10.1126/science.1097211)

25. Bedford T, Rambaut A, Pascual M. 2012 Canalization
of the evolutionary trajectory of the human
influenza virus. BMC Biol. 10, 38. (doi:10.1186/
1741-7007-10-38)

26. World Health Organization. 2014 Influenza
(Seasonal). Fact sheet no. 211. See http://www.
who.int/mediacentre/factsheets/fs211/en/.

27. Jackson C, Vynnycky E, Mangtani P. 2009 Estimates
of the transmissibility of the 1968 (Hong Kong)
influenza pandemic: evidence of increased
transmissibility between successive waves.
Am. J. Epidemiol. 171, 465 – 478. (doi:10.1093/
aje/kwp394)

28. Biggerstaff M, Cauchemez S, Reed C, Gambhir M,
Finelli L. 2014 Estimates of the reproduction
number for seasonal, pandemic, and zoonotic
influenza: a systematic review of the literature. BMC
Infect. Dis. 14, 480. (doi:10.1186/1471-2334-14-
480)

29. Carrat F, Vergu E, Ferguson NM, Lemaitre M,
Cauchemez S, Leach S, Valleron AJ. 2008 Time lines
of infection and disease in human influenza: a
review of volunteer challenge studies.
Am. J. Epidemiol. 167, 775 – 785. (doi:10.1093/
aje/kwm375)

30. Gupta V, Earl DJ, Deem MW. 2006 Quantifying
influenza vaccine efficacy and antigenic distance.
Vaccine 24, 3881 – 3888. (doi:10.1016/j.vaccine.
2006.01.010)

31. Park AW, Daly JM, Lewis NS, Smith DJ,
Wood JLN, Grenfell BT. 2009 Quantifying the impact
of immune escape on transmission dynamics of
influenza. Science 326, 726 – 728. (doi:10.1126/
science.1175980)

32. Truscott J, Fraser C, Cauchemez S, Meeyai A, Hinsley
W, Donnelly CA, Ghani A, Ferguson N. 2011
Essential epidemiological mechanisms underpinning
the transmission dynamics of seasonal influenza.
J. R. Soc. Interface 9, 304 – 312. (doi:10.1098/rsif.
2011.0309)

33. Shaman J, Kohn M. 2009 Absolute humidity
modulates influenza survival, transmission, and
seasonality. Proc. Natl Acad. Sci. USA 106,
3243 – 3248. (doi:10.1073/pnas.0806852106)

34. Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch
M. 2010 Absolute humidity and the seasonal onset
of influenza in the continental United States. PLoS
Biol. 8, e1000316. (doi:10.1371/journal.pbio.
1000316)

35. Thai PQ, Choisy M, Duong TN, Thiem VD, Yen NT,
Hien NT, Weiss DJ, Boni MF, Horby P. 2015
Seasonality of absolute humidity explains
seasonality of influenza-like illness in Vietnam.
Epidemics 13, 65 – 73. (doi:10.1016/j.epidem.
2015.06.002)

36. Wallinga J, Teunis P, Kretzschmar M. 2006 Using
data on social contacts to estimate age-specific
transmission parameters for respiratory-spread
infectious agents. Am. J. Epidemiol. 164, 936 – 944.
(doi:10.1093/aje/kwj317)

37. Cauchemez S, Valleron AJ, Boëlle PY, Flahault A,
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