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Single-cell RNA sequencing
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RAC1+ NK cells in
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Brain infiltration of the natural killer (NK) cells has been observed in several

neurodegenerative disorders, including Parkinson’s disease (PD). In a mouse

model of a-synucleinopathy, it has been shown that NK cells help in clearing a-
synuclein (a-syn) aggregates. This study aimed to investigate the molecular

mechanisms underlying the brain infi l tration of NK cells in PD.

Immunofluorescence assay was performed using the anti-NKp46 antibody to

detect NK cells in the brain of PD model mice. Next, we analyzed the publicly

available single-cell RNA sequencing (scRNA-seq) data (GSE141578) of the

cerebrospinal fluid (CSF) from patients with PD to characterize the CSF immune

landscape in PD. Results showed that NK cells infiltrate the substantia nigra (SN)

of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model

mice and colocalize with dopaminergic neurons and a-syn. Moreover, the ratio

of NK cells was found to be increased in the CSF of PD patients. Analysis of the

scRNA-seq data revealed that Rac family small GTPase 1 (RAC1) was the most

significantly upregulated gene in NK cells from PD patients. Furthermore, genes

involved in regulating SN development were enriched in RAC1+ NK cells and

these cells showed increased brain infiltration in MPTP-induced PD mice. In

conclusion, NK cells actively home to the SN of PD model mice and RAC1

might be involved in regulating this process. Moreover, RAC1+ NK cells play a

neuroprotective role in PD.
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Introduction

Parkinson’s disease (PD) is the second most frequent age-

associated neurodegenerative disease following Alzheimer’s

disease (AD) and the most common movement disorder. PD

is characterized by chronic and selective loss of dopaminergic

neurons within the substantia nigra (SN) due to intracellular

deposition of misfolded a-synuclein (a-syn) (1). PD affects 1-2%

of individuals aged over 60 years, while its prevalence is

approximately 5% in individuals over the age of 85 years.

More than 10 million people worldwide have PD (2).

Growing evidence suggests that neuroinflammation plays an

important role in PD pathogenesis. Neuroinflammation has

previously been considered as a local event in the central

nervous system (CNS). In PD, neuroinflammation is due to

impaired regulation of several chemokines and cytokines

secreted by the activated microglia (3). However, perturbations

in the peripheral immune system have been reported during

early stages of PD (4). The blood-brain-barrier (BBB) prevents

the peripheral immune cells from entering the CNS. However,

during infection or neurodegenerative conditions, the BBB can

be disrupted by free radicals, pro-inflammatory cytokines and

chemokines, proteolytic enzymes, and matrix metalloproteinases

(5). During PD progression, the integrity of the BBB is

compromised, which causes the activated resident innate

immune cells within the brain, including microglia and

astrocytes, to recruit the peripheral innate immune cells (6). A

previous study showed that peripheral lymphocytes can infiltrate

the brain via the compromised BBB in patients with Lewy body

dementia and in MPTP-induced PD model mice (7–9).

However, the detailed mechanisms of peripheral innate

immune cell infiltration into the CNS remain poorly

understood (10).

Herein, we analyzed the publicly available single-cell RNA

sequencing (scRNA-seq) data (GSE141578) of the cerebrospinal

fluid (CSF) cells from patients with PD to characterize the CSF

immune signature in these patients. Moreover, combined with

the immunofluorescence staining of the SN region of 1-methyl-

4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD

mouse model, our study revealed the neuroprotective role of

RAC1-positive natural killer (NK) cells in PD.
Abbreviations: PD, Parkinson’s disease; AD, Alzheimer’s disease; SN,

substantia nigra; a-syn, a-synuclein; CNS, central nervous system; BBB,

blood-brain-barrier; scRNAseq, single-cell RNA sequencing; CSF,

cerebrospinal fluid; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine;

UMAP, Uniform Manifold Approximation and Projection; PCA, Principal

component analysis; PC, principal components; DEGs, differentially

expressed genes; HC, healthy control; TF, transcription factor; GO, Gene

ontology; PFF a-syn, fibrils of a-syn; TH, tyrosine hydroxylase; RAC1, Rac

family small GTPase 1.
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Methods

MPTP-induced PD model mice

Adult male C57BL/6 mice were purchased from Beijing

Vital River Laboratory Animal Technology Company (Beijing,

China) and housed in a temperature-controlled room (22-24 °

C) under a 12-12 h light-dark cycle. MPTP (Cat No. S4732)

and probenecid (Cat No. S4022) were purchased from Selleck

(Shanghai, China). For the development of chronic MPTP PD

model, mice were injected subcutaneously with 25 mg/kg

MPTP and intraperitoneally with 250 mg/kg probenecid

every 3.5 days for 10 times (11). All experimental

procedures were approved by the Committee of Tongji

Hospital, Tongji Medical College, Huazhong University of

Science and Technology.
Immunofluorescence staining

The brains were prefixed by perfusion with 4%

paraformaldehyde and sectioned using the Leica freezing

microtome. The sections (25 mm thick) were rinsed with PBS

and incubated with 0.5% Triton X-100 in PBS for 30 min for

blocking. Following this, the brain sections were incubated with

primary antibodies overnight at 4 °C, followed by incubation

with Alexa Fluor 488 goat anti-rabbit or Alexa Fluor 594 goat

anti-mouse secondary antibody for 1 h in the dark at room

temperature. To stain the DNA, sections were incubated with

DAPI for 5 min. Stained sections were imaged using a scanning

microscope (SV120, Olympus, Japan). Rabbit polyclonal NKp46

(Cat No.: PA5-102860; Invitrogen, CA, USA), mouse

monoclonal RAC1 (Cat No.:66122-1-Ig; Proteintech, Wuhan,

China), mouse monoclonal tyrosine hydroxylase (Cat No.:

TA506541; OriGene Technologies, Wuxi, China), and mouse

monoclonal a-syn (Cat No.: BS-0012M; Bioss, MA, USA)

antibodies were used.
Single-cell RNA sequencing data analysis

The publicly available scRNA-seq data (GSE141578) of the

CSF cells from PD patients were downloaded and analyzed.

Cells in the CSF were sorted using the LSRFortessa cell

analyzer (BD Biosciences, CA, USA). RNA was purified and

library was prepared according to the manufacturer's

instructions using the 10x v2 5' Expression library kit. The

software RTA2 was used for basecalling, and fastq files were

generated using Cellranger mkfastq (v3.0.2), followed by

alignment to the GRCh38 3.0.0 reference genome available

at 10X Genomics using Cellranger. Expression matrices

generated using the cellranger were loaded into the Seurat

(v4.0.2) R package for downstream uniform manifold
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approximation and projection (UMAP) analysis (12). Cells

with <500 genes, <3% ribosome genes, >0.1% hemoglobin

genes, or >50% mitochondrial genes were excluded from the

analysis. A total of 18,553 CSF cells from 14 subjects (seven

PD patients and seven healthy controls) were selected for

analysis. The expression matrix was normalized using the

LogNormalization method and further scaled using all

genes. Two thousand highly variable genes were selected

using the vst method. The Harmony (v0.1.0) R package was

used to correct for the batch effect of sample identity (13).

Principal component analysis (PCA) was performed to

identify significant principal components (PCs), and 15 PCs

were used for UMAP and FindNeighbors analyses. The

FindClusters function was used to classify the cells into 16

different clusters with a resolution of 0.8. The FindAllMarkers

method with default parameters was used to identify

differentially expressed genes (DEGs) in each cluster. The

cell type was identified based on DEGs and manually

checked according to a previously published study (14). The

FindMarkers method with default parameters was used to

identify DEGs between patients with PD and healthy controls

within each cell type.
Transcription factor activity analysis

DoRothEA is a gene regulatory network that contains

transcription factor (TF)-target gene interactions (15). Human

DoRothEA regulons with confidence levels A, B, or C based on

supporting evidence were used. The Viper scores were calculated
Frontiers in Immunology 03
using the scale method. The top ten most variable TFs were

identified and plotted.
Gene ontology enrichment analysis

DEGs between RAC1_high and RAC1_low NK cells were

identified using the FindMarker method in Seurat. The

upregulated genes in RAC1 high NK cells were used as input

for Gene ontology (GO) enrichment analysis using the

clusterProfiler (v4.0) R package, and the top five GO terms

were plotted (16).
Results

NK cells colocalize with a-synuclein
deposits in the SN of MPTP-induced PD
model mice

NK cells are present in the SN of patients with PD and

colocalize with the preformed fibrils (PFF) in a-syn PFF-injected

mice model (17). The MPTP-induced mouse model is a

gold standard in PD research for decades (18). Our

immunofluorescence assay showed that NK cells colocalize with

the tyrosine hydroxylase (TH)-positive dopaminergic neurons in

the SN (Figure 1A) and a-syn deposits in the brains of MPTP-

induced PD model mice (Figure 1B). Moreover, the expression of

the NK cell marker NKp46 was increased in the SN region of

MPTP-induced PD model mice (Figure 1C).
A B C

FIGURE 1

NK cells colocalize with a-synuclein deposits in the SN of MPTP-induced PD model mice. (A) NK cells were stained using NKp46 antibody in
green, and dopaminergic neurons were labelled by TH in red in the SN of MPTP-induced PD mice. (B) NK cells were stained using NKp46
antibody in green, and a-syn was labelled by TH in red in the SN of MPTP-induced PD mice. DNA was stained using DAPI. The results implicate
that NK cells reside with a-syn deposits, and colocalized with dopaminergic neurons in the SN of MPTP-induced PD brain. (C) Protein level of
NK marker was detected using NKp46 antibody via western blotting in the SN region of MPTP-induced PD and control mice. Increased NK cells
were found as revealed by increased NKp46 level. **p<0.01 compared with control group.
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The ratio of NK cells is increased in the
CSF of PD patients

Dysfunctional BBB in PD may lead to the passive entry of

NK cells into the brain. To uncover the potential mechanisms of

NK cell homing to the brain, we analyzed the scRNA-seq data

(GSE141578) from the publicly available GEO database

provided by Gate D et al., (7). A total of 8,319 cells were

isolated from the CSF of patients with PD (n = 7), while

10,234 cells were isolated from healthy controls (HC, n = 7)

(Table 1). These cells were assigned to known cell types based on

the expression of specific marker genes (19). The 16 identified

cell clusters were visualized using the UMAP analysis (Figure 2A

and Figure S1). Clusters were not specific to any group

(Figure 2B) and expressed marker genes corresponding to each

subtype (Figures 2C-D and Table S1). Based on DEGs, the

majority of cells were found to be CD4+ and CD8+ T cells

(Figure 2E). Furthermore, the ratio of NK cells and macrophages

(Mac) was found to be higher in the PD group (Figure 2F).
RAC1+ NK cells are associated with
SN development

Analysis of the cell clusters revealed that CD8+ T cells were

the most transcriptionally dysregulated immune cell subtype.

Moreover, Rac family small GTPase 1 (RAC1), a small GTP-

binding protein essential for cell migration and invasion, was

differentially expressed in all five cell types, including CD8+ T

cells, CD4+ T cell, dendritic cells (DCs), NK, and Mac

(Figure 3A; Table S2). These five cell types accounted for

93.2% and 91.7% of all cells in HC and PD groups,

respectively. Compared to the HC group, the expression of

RAC1 was found to be higher in all five main cell types in the
Frontiers in Immunology 04
PD group. Moreover, fewer NK cells were RAC1 positive in the

HC group compared to the PD group (Figure 3B). TF activity

was analyzed in each cell type using the DoRothEA R package.

Results showed that cycling and naïve T cells had the highest and

lowest TF activity, respectively (Figure 3C). Low TF activity was

also observed in NK cells, indicating that post-transcriptional

modifications might contribute to NK-specific differential

gene expression.

The UMAP plot showed that the NK cell-specific expression

of RAC1 was lower in the HC group compared to the PD group

(Figure 4A), and RAC1 was the top most differentially expressed

gene in NK cells (Figure 4B). NK cells were divided into two

groups (RAC1_high and RAC1_low) according to the median

expression level of RAC1 calculated using the AddModuleScore

function in Seurat. Results showed that 55% of NK cells from the

PD group were RAC1_high, while 42% of them from the HC

group were RAC1_high (Figure 4C). Genes differentially

expressed between the RAC1_high and RAC1_low NK cells

were enriched in SN development, neural nucleus development,

and midbrain development (Figure 4D; Table S3). Thus, RAC1+

NK cells in the CSF can be considered as neuroprotective.
RAC1+ NK cells home to the SN of
MPTP-induced PD model mice

Next, we examined the SN of the MPTP-induced PD model

mice to localize and quantify RAC1+ NK cells (Figures 5A, B).

Immunofluorescence analysis showed increased number of

RAC1+ NK cells co-expressing NKp46 in the SN of PD mice

(Figures 5C-G). These results support the hypothesis that

RAC1+ NK cells home to the SN in PD model mice.
Discussion

Increasing evidence suggests that the peripheral immune

system plays an essential role in the regulation of CNS

homeostasis and diseases (20). Brain infiltration of the NK

cells has been widely observed in neurodegenerative disorders,

including AD and PD, and may play diverse roles under different

conditions (14, 17). In a triple transgenic mouse model of AD

(3xTg-AD), NK cells exhibit an enhanced pro-inflammatory

profile, and antibody-mediated depletion of NK cells in these

transgenic mice improves cognitive functions by enhancing

neurogenesis and reducing neuroinflammation without

affecting the levels of amyloid beta (21). Recent studies showed

that the number of NK cells is higher in the peripheral blood and

CNS of patients with PD. NK cells can internalize a-syn
aggregates, and systemic depletion of NK cells exacerbates

synuclein pathology in the a-syn PFF-injected mouse model of

PD, suggesting a neuroprotective role of NK cells (17, 22). These

studies indicate differential roles of NK cells under different
TABLE 1 A total of 18,553 CSF cells were isolated from 14 subjects.

Sample Cells Group

GSM4208772 1320 HC

GSM4208773 1530 HC

GSM4208774 1836 HC

GSM4208775 2000 HC

GSM4208778 1305 HC

GSM4208779 1423 HC

GSM4404055 820 HC

GSM4208766 1433 PD

GSM4208768 524 PD

GSM4208769 1195 PD

GSM4208770 1068 PD

GSM4404054 769 PD

GSM4404056 1474 PD

GSM4404057 1856 PD
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pathogenic conditions. We previously showed that STAT3

regulates the expression of immunity-related genes in

peripheral NK cells and promotes the brain infiltration of NK

cells and neuroinflammatory changes in AD (14). However, the

detailed mechanisms underlying brain infiltration of NK cells in

PD remain unclear.

The BBB consists of specialized microvascular endothelial

cells surrounded by mature pericytes and outer astrocytic end-

feet (23). The integrity of the BBB is critical for angiogenesis,

normal neuronal functions, and synaptic remodeling. BBB

disruption has been observed in several neurodegenerative

disorders including PD (24). a-syn can be bidirectionally

transported between the brain and peripheral circulation, and
Frontiers in Immunology 05
oligomeric a-syn causes BBB disruption leading to increased

BBB permeability, which is mediated by astrocyte-derived

vascular endothelial growth factor A and nitric oxide (25). The

peripheral immune cells migrate to the CSF via the disrupted

BBB. The immune signature of the CSF has helped in

understanding the potential mechanisms of peripheral CD4+ T

cel l homing to the brain and its contr ibut ion to

neurodegeneration in Lewy body dementia (8).

Our study confirms the homing of NK cells to the brain in a

mice model of PD. The co-localization of NK cell markers and

TH, a marker of dopaminergic neurons, as well as a-syn in the

SN region indicates the involvement of NK cells in local CNS

neuroinflammation. Our results are consistent with those of a
A B

D

E F

C

FIGURE 2

scRNA-seq analysis of CSF cells in PD. (A) UMAP projection of 18,553 cells from all CSF cells. (B) UMAP projection of PD and HC groups,
respectively. NK cells were labeled with ellipse tag, which were decreased in PD group. (C) Dot plot of cell type marker genes. CD4 T was
marked using CD3 epsilon subunit of T-cell receptor complex (CD3E) and CD4 molecule (CD4); CD8 T was marked using CD3E, CD8a
molecule (CD8A), and CD8b molecule (CD8B); naïve CD4 T was marked using CD3E, CD4, transcription factor 7 (TCF7), and C-C motif
chemokine receptor 7 (CCR7); cycling T was marked CD3E, marker of proliferation Ki-67 (MKI67), and DNA topoisomerase II alpha (TOP2A); B
cell was marked using CD79a molecule (CD79A), and membrane spanning 4-domains A1 (MS4A1); Macrophage (Mac) was marked using
complement C1q A chain (C1QA), and complement C1q B chain (C1QB); Monocyte (Mono) was marked using S100 calcium binding protein A9
(S100A9), and S100 calcium binding protein A8 (S100A8); Natural killer (NK) was marked using natural cytotoxicity triggering receptor 1 (NCR1),
and natural killer cell granule protein 7 (NKG7); Dendritic cell (DC) was marked using CD1e molecule (CD1E), and CD1c molecule (CD1C);
Plasmacytoid dendritic cell (pDC) was marked using C-type lectin domain family 4 member C (CLEC4C), and interleukin 3 receptor subunit
alpha (IL3RA). (D) Heatmap of top 3 DEGs in each cell type. These cell types could be well classified using these cell-type specific DEGs. (E) Cell
type distribution in each group. (F) Cell type distribution in PD and HC group. The percent of Mac and NK was decreased in PD CSF.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.992505
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guan et al. 10.3389/fimmu.2022.992505
previous study showing the phagocytic action of NK cells on a-
syn (17). The scRNA-seq data analysis further showed the

potential pathways involved in regulating the NK cell

infiltration into the brain. The ratio of NK cells and
Frontiers in Immunology 06
macrophages was found to be higher in the CSF of PD

patients, and this change might be associated with altered

immune functions. The analysis of DEGs between HC and PD

groups showed that RAC1 is upregulated in all five cell types
A

B

C

FIGURE 3

The ratio of NK cells is increased in the CSF of PD patients. (A) Upset plot showed the intersection of DEGs among five main cell types. RAC1
was increased in PD group in all five cell types. (B) Violin plot depicts distributions of RAC1 in each cell type between PD and HC group. HC
group was colored in orange and PD group was colored in green. RAC1 was increased in PD group across five main cell types. (C) TF activity
was calculated using DoRothEA R package, and the top 10 most variable TFs were plotted. Cycling T cells showed the most active TF activity,
while naïve T cells showed the least TF activity.
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analyzed. Moreover, RAC1 was the most upregulated gene in

NK cells when comparing PD vs HC groups. Our TF activity

analysis partially excluded the transcriptional regulation of

RAC1, as revealed by the low TF activity in NK cells. The

function of RAC1+ NK cells was analyzed using the GO

enrichment analysis, and results showed that the GO terms,

including SN development, neural nucleus development, and

midbrain development, were significantly enriched in

RAC1_high NK cells, strongly suggesting a neuroprotective

role of RAC1_high NK cells. Co-localization of RAC1 and the

NK cell marker NKp46 further confirmed the presence of

RAC1+ NK cells in the SN of PD mice brains. Our combined

analysis of MPTP-induced PD mice and scRNA-seq data of CSF

from PD patients demonstrated the neuroprotective role of

RAC1+ NK cells in PD.

RAC1 is a small GTPase that plays a critical role in

regulating cytoskeletal dynamics. In migrating cells, RAC1

promotes lamellipodia formation by triggering actin
Frontiers in Immunology 07
polymerization (26). RAC1 inhibition using NSC23766

prevents the NK cell migration following lenalidomide

stimulation, while RAC1 activation is mediated by the protein

cereblon (27). NK cells expressing dominant-negative RAC1 are

less cytotoxic with compromised migration abilities (28). RAC1

induces the proinflammatory NK cells by driving membrane

dynamics (29). RAC1 activation contributes to HIV-1 induced

monocyte-BBB interactions and HIV-1 infection of the brain

macrophages (30). RAC1 promotes CD4+ T cell migration in

arteriosclerosis obliterans (31). In our scRNA-seq data analysis,

RAC1 expression was found to be increased in the five main cell

types. Moreover, RAC1 expression was found to be significantly

higher in NK cells from PD patients compared to those from

health controls. Therefore, we speculate that RAC1 might be

partially involved in regulating the migration of peripheral

immune cells from the blood to the CSF.

In conclusion, our study confirms that NK cells home to the

SN of MPTP-induced PD mice. Increased NK cell ratio in the CSF
A B

DC

FIGURE 4

RAC1+ NK cells are associated with SN development. (A) Feature plot of RAC1 in NK cells. PD group showed increased RAC1 expression. (B) DEGs
between PD and HC group in CSF NK cells. Upregulated DEGs were colored in orange, and downregulated DEGs were colored in green. RAC1, Rac
family small GTPase 1; CD96, CD96 molecule; TMIGD2, transmembrane and immunoglobulin domain containing 2; RPS9, ribosomal protein S9;
RPS18, ribosomal protein S18; RPS6, ribosomal protein S6; RPS26, ribosomal protein S26; RPL41, ribosomal protein S41; CD3E, CD3 epsilon subunit
of T-cell receptor complex; RPS4Y1, ribosomal protein S4 Y-linked 1; KLF2, KLF transcription factor 2. (C) The NK cells were divided into RAC1_high
and RAC1_low groups according to the median expression level of RAC1 calculated by AddModuleScore function in Seurat. 55% of NK cells from
PD group were RAC1_high, while 42% of NK cells from HC were RAC1_high. (D) Upregulated DEGs in RAC1_high compared with RAC1_low group
were enriched in SN development, neural nucleus development, and midbrain development biological process GO terms.
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A B

D

E F

G

C

FIGURE 5

RAC1+ NK cells home to the SN of MPTP-induced PD model mice. (A) Immunofluorescence staining of NKp46 (green) and RAC1 (red) in the
brain of control mice. Whole slice was shown. (B) Immunofluorescence staining of NKp46 (green) and RAC1 (red) in the brain of MPTP-induced
PD mice. Whole slice was shown. (C) Immunofluorescence staining image of the SN region (labeled with ellipse tag) in control mice.
(D) Enlarged image of the dashed rectangle in (C, E) Immunofluorescence staining image of the SN region (labeled with ellipse tag) in PD mice.
(F) Enlarged image of the dashed rectangle in (E) Arrowhead showed the merged staining of NKp46 and RAC1. (G) The relative fluorescent
intensity of NKp46 and RAC1/NKp46 colocalization were calculated. Increased NKp46 level and RAC1/NKp46 colocalization were observed in
MPTP group. ***p<0.001 compared with control group.
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of patients with PD might be partially mediated by RAC1. Finally,

RAC1 might be involved in regulating the brain infiltration of NK

cells and RAC1+ NK cells play a neuroprotective role in PD.
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