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Abstract
The aim of this work was to review studies in which genetic variants were assessed with respect to metabolic response to treatment
with novel glucose-lowering drugs: dipeptidyl peptidase-4 inhibitors (DPP-4i), glucagon-like peptide-1 receptor agonists (GLP-1
RA) and sodium–glucose cotransporter 2 inhibitors (SGLT2i). In total, 22 studies were retrieved from the literature (MEDLINE).
Variants of the GLP-1 receptor gene (GLP1R) were associated with a smaller reduction in HbA1c in response to DPP-4i. Variants of
a number of other genes (KCNQ1, KCNJ11, CTRB1/2, PRKD1, CDKAL1, IL6 promoter region, TCF7L2, DPP4, PNPLA3) have
also been related to DPP-4i response, although replication studies are lacking. The GLP1R gene was also reported to play a role in
the response to GLP-1 RA, with larger weight reductions being reported in carriers ofGLP1R variant alleles. There were variants of
a few other genes (CNR1, TCF7L2, SORCS1) described to be related to GLP-1 RA. For SGLT2i, studies have focused on genes
affecting renal glucose reabsorption (e.g. SLC5A2) but no relationship between SLC5A2 variants and response to empagliflozin has
been found. The relevance of the included studies is limited due to small genetic effects, low sample sizes, limited statistical power,
inadequate statistics (lack of gene–drug interactions), inadequate accounting for confounders and effects modifiers, and a lack of
replication studies. Most studies have been based on candidate genes. Genome-wide association studies, in that respect, may be a
more promising approach to providing novel insights. However, the identification of distinct subgroups of type 2 diabetesmight also
be necessary before pharmacogenetic studies can be successfully used for a stratified prescription of novel glucose-lowering drugs.
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Abbreviations
CDKAL1 Cyclin-dependent kinase 5

regulatory subunit associated
protein 1-like 1

DPP-4 Dipeptidyl peptidase-4
DPP-4i DPP-4 inhibitors
EMPHASIS-HF Eplerenone in Patients with Systolic

Heart Failure and Mild Symptoms
GLP-1 Glucagon-like peptide-1
GLP-1 RA GLP-1 receptor agonists

GWAS Genome-wide association study
NAFLD Non-alcoholic fatty liver disease
PDFF Proton density fat fraction
PIR Proinsulin/insulin ratio
PNPLA3 Patatin-like phospholipase 3
SGLT2 Sodium–glucose cotransporter 2
SGLT2i SGLT2 inhibitors
SORCS1 Sortilin related VPS10 domain

containing receptor 1
UGT Uridine

diphosphate-glucuronosyltransferase

Introduction

There is a considerable variation of the interindividual response
to glucose-lowering drugs in people with type 2 diabetes [1].
The hope is that genetic variants can be used to explain these
therapeutic differences and can be used to stratify subgroups
that respond particularly well to specific drug therapies for type
2 diabetes [1]. For example, pharmacogenetic studies have
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reported clinically relevant effects for a genetic variant of
GLUT2 in response to treatment with metformin [2, 3]. The
C allele of the SNP rs8192675 of the SLC2A2 gene that
encodes GLUT2 was related to a 3.6 mmol/mol (0.33%) great-
er reduction in HbA1c (CC vs TT alleles) in users of metformin
monotherapy (equivalent to a metformin dose difference of
550 mg) [2]. In addition, in individuals with newly diagnosed
type 2 diabetes being treated with metformin monotherapy,
having at least one C allele was associated with a greater reduc-
tion in multivariable-adjusted fasting blood glucose in the first
year after diabetes diagnosis compared with individuals with-
out a C allele (6.3 vs 3.9 mmol/l; genotype difference
2.4 mmol/l) [3]. Moreover, the difference between genotypes
in individuals treated with metformin was statistically signifi-
cantly larger than that in people not treated with glucose-
lowering drugs (p value for interaction <0.01) [3]. Similar
reports exist of genetic variants interfering with metabolic
responses to treatment with sulfonylureas and meglitinides [4].

The field of pharmacogenetics is still emerging and
there remains a lack of studies on the role of gene
variants in treatment effects of novel glucose-lowering
drugs, including dipeptidyl peptidase-4 inhibitors (DPP-
4i), glucagon-like peptide-1 receptor agonists (GLP-1
RA) and sodium–glucose cotransporter 2 inhibitors
(SGLT2i) [5]. The present review will focus on gene
variants related to metabolic responses to these novel
agents, including glycaemic effects, diabetes-related

metabolic traits and body-weight changes. Mainly, stud-
ies in people with type 2 diabetes will be reviewed,
although important studies in people without diabetes
will also be considered. We carried out a narrative
(not a systematic) review because a first investigation
of the current literature showed only a few eligible stud-
ies with largely different populations and few replica-
tions of study findings. Therefore, a meta-analysis
would not be possible.

The pathophysiological basis for the therapeutic
action of these novel agents has been extensively
covered in previous reviews [6, 7] and will not be
described here. Although of importance, adverse drug
reactions will not be a topic of discussion either,
because this requires an in-depth overview of pharma-
cokinetics and pharmacodynamics, which is beyond the
scope of the current work [8].

Heterogeneity of type 2 diabetes

The heterogeneity of type 2 diabetes is a major challenge
throughout the entire field of diabetes research. Recently,
there have been attempts to categorise different phenotypes
of type 2 diabetes [9–11]. First, the so-called ‘palette model’
attempted to explain the heterogeneity of people with diabetes
by using a spectrum of factors that contribute to the individual

Heterogeneity of diabetes

Subgroups of diabetes, based on clinical variables, disease progression or genetic makeup, determine re-

sponse to treatment with novel glucose-lowering drugs, along with lifestyle factors

Pharmacogenetic studies

Pharmacogenetics reveals that certain genes are associated with therapeutic responses: e.g. variants of 

GLP1R, KCNQ1, KCNJ11, CTRB1/2, PRKD1, CDKAL1, IL6 promoter region, TCF7L2, DPP4 and PNPLA3

have been associated with DPP-4i response; GLP1R, CNR1, TCF7L2 and SORCS1 variants are also re-

ported to play a role in the response to GLP-1 RA; SLC5A2 has been studied in relation to response to 

SGLT2i

Limitations of studies

Only a small number of studies have been undertaken, meaning that few data are available. Better-designed 

studies are needed that are sufficiently large and sufficiently powered; results of existing studies should be 

replicated; meta-analyses across studies and GWAS are needed

Outlook

The identification of distinct subtypes of type 2 diabetes will be necessary before pharmacogenetic insights 

can be successfully used for providing stratified prescriptions of novel glucose-lowering drugs. Other areas 

of focus include studies on microbiome composition and its effect on drug metabolism; application of lessons 

from monogenic diabetes to the field of pharmacogenetics
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risk of type 2 diabetes, including pancreatic islet development,
number of islets and beta cells, islet function and autoimmu-
nity, and incretin activity, as well as obesity, body fat distri-
bution and insulin resistance [9]. Phenotypes were then
categorised by individual (genetic) variations of these traits
in a person and their associations with risk factors [9].

Another approach involved a data-driven cluster analysis to
classify five diabetes subgroups with differing disease
progression and risk of complications [10, 11]. Moreover,
genetic differences between these diabetes clusters have been
described. The severe autoimmune diabetes cluster was
strongly associated with variants of the HLA locus, similar
to type 1 diabetes [10]. The non-autoimmune severe insulin-
deficient diabetes cluster showed an association with a variant
of the TCF7L2 gene, a locus which shows one of the strongest
genetic associations with type 2 diabetes risk [10]. The severe
insulin-resistant diabetes cluster was not associated with any
of these genetic features [10]. So far, none of the above
approaches to distinguish different diabetes phenotypes have
been used in pharmacogenetic studies.

The statistical method of latent class analysis has been
used in an attempt to identify different subgroups of
diabetes [10, 11]. This methodology may benefit pharma-
cogenetic studies as was shown previously for heart fail-
ure [12]. In the Eplerenone in Patients with Systolic Heart
Failure and Mild Symptoms (EMPHASIS-HF) trial, 2279
people with heart failure were randomised to receive either
eplerenone (an aldosterone receptor blocker) or placebo
[12]. Based on a latent class analysis using routinely avail-
able clinical variables, four subgroups with a different
response to eplerenone treatment were identified. Two of
the subgroups derived a larger benefit from eplerenone in
the EMPHASIS-HF trial, whereas the other two groups
demonstrated a higher rate of eplerenone side effects
(hyperkalaemia) and drug discontinuation [12]. These
findings may not only help to generate hypotheses on
why some individuals respond differently to treatment
but also can be a starting point to analyse potential genetic
associations with treatment efficacy in distinct subgroups.

Still, it remains important to realise that type 2 diabetes is a
heterogenous polygenic disease [1] with many different
interacting patient characteristics influencing disease progres-
sion and treatment success. Thus, although a study may report
for example an improved glycaemic response to a specific
drug in a subgroup of individuals that carry a particular
SNP, most likely in clinical practice various patient character-
istics, including obesity, metabolic risk factors and lifestyle,
may dilute the observed effect of the particular SNP. Hence,
the integration of pharmacogenetic principles into precision
diabetology will likely be highly complex [1]. Predictions of
drug efficacy will therefore have a given degree of uncertainty
and will need to take into account various metabolic and
behavioural factors.

Pharmacogenetic studies of novel
glucose-lowering drugs

A MEDLINE literature search for pharmacogenetic studies
was conducted independently by the two authors from data-
base inception up to 12 August 2020, by using a predefined
search algorithm (see electronic supplementary material
[ESM] Methods: Search strategy). We did not apply any
restrictions or filters. Out of the 2663 identified articles, 37
duplicates were removed and titles and abstracts of the
remaining 2626 publications were scanned. To identify
further relevant articles, we also screened the reference lists
of included articles. Finally, 12 published studies on DPP-4i,
six on GLP-1 RA and four on SGLT2i were included. The
characteristics and main results of these pharmacogenetic
studies are summarised in Tables 1, 2 and 3.

In the following text, we, describe which genes have been
associated with therapeutic responses to each of the three newest
glucose-lowering drugs. Then, after summarising the main find-
ings we highlight important limitations of the currently available
studies.

DPP-4i

GLP1R TheGLP1R gene encodes the receptor for glucagon-like
peptide-1 (GLP-1), a peptide hormone expressed in pancreatic
beta cells [13]. Activation of the GLP-1 receptor facilitates a
glucose-stimulated insulin secretion [13]. It has been
hypothesised that genetic alterations of the GLP-1 receptor may
change the therapeutic response to DPP-4i. In fact, a variant in
the GLP1R gene (rs6923761; p.Gly168Ser) was found to be
associated with a smaller reduction in HbA1c (by 3.0 mmol/
mol [0.27%] per A allele) in individuals with type 2 diabetes
treated with sitagliptin, vildagliptin or linagliptin for 6 months
[14]. This study confirmed an earlier report that this particular
gene variant was related to a smaller HbA1c reduction during
6 months of gliptin treatment [15]. Another variant in the
GLP1R gene (rs3765467; p.Arg131Gln) was reported to be
linked to an insulinotropic effect [16]. People with type 2 diabe-
tes with the A allele (GA/AA vsGG) responded better to therapy
with DPP-4i (>10% relative HbA1c reduction) and showed a
greater HbA1c decrease after 24 weeks of therapy (1.3 ± 1.1 vs
0.9 ± 1.2%; p= 0.02) [16].

Potassium channel gene family Potassium voltage-gated
KQT-like (KCNQ1) channels play a role in the intestinal
secretion of GLP-1 and glucose-dependent insulinotropic
polypeptide (GIP), and polymorphisms in the gene coding
for these channels have been linked to type 2 diabetes through
a role in insulin release [17]. A variant in KCNQ1 (rs163184)
was found to be associated with a smaller reduction in HbA1c

after 6 months of newly onset DPP-4i therapy in type 2 diabe-
tes patients (0.3% reduction in response per each G allele)
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[18]. This study indicated a clinically relevant pharmacoge-
netic effect, although persistence of the effect was not assessed
due to lack of a longer follow-up of HbA1c values.

The KCNJ11 gene regulates one of the pancreatic beta cell
ATP-sensitive potassium channels, that play a role in insulin
secretion [19]. After sitagliptin, vildagliptin or linagliptin ther-
apy (≥3 months), individuals with type 2 diabetes and who
carried the KCNJ11 rs2285676 CC alleles had a twofold
higher odds of responding to DPP-4i, defined as HbA1c

≤53.0 mmol/mol (7.0%), than other individuals [20].

CTRB1/CTRB2 A SNP (rs7202877) that is located near genes
that encode chymotrypsinogen B1 and B2 (CTRB1/CTRB2), with
no known functional effect, is related to GLP-1-stimulated insulin
secretion [21]. The rs7202877 GG and GT genotypes were asso-
ciated with a 5.5 mmol/mol (0.5%) smaller reduction in HbA1c

compared with the TT genotype after 3 months of gliptin therapy
[21]. The genetic variant was shown to be associated with GLP-1-
induced insulin secretion. CTRB1/2 encodes chymotrypsin, and
the G allele was also associated with increased chymotrypsin
levels in the pancreas and faeces [21]. Thus, chymotrypsin may
be important for the response to DPP-4i treatment.

PRKD1 The serine/threonine protein kinase D1 enzyme,
encoded by PRKD1, plays a role in various processes such as
the regulation of cell proliferation, differentiation and apoptosis,
immune reactions, cardiac contraction, angiogenesis and cancer
development. Furthermore, the enzyme has been shown to
contribute to insulin secretion [22]. A genome-wide association
study (GWAS) found that in people with type 2 diabetes treated
with sitagliptin, saxagliptin, vildagliptin or linagliptin, a polymor-
phism in PRKD1 (rs57803087; intron variant) was associated
with a greater response to theDPP-4i [23]. In a replication cohort,
rs57803087 remained significantly associated with a better DPP-
4i response after controlling for BMI [23]. However, the results
of this small GWAS (n = 171) need to be replicated in a larger
sample and the lacking information on the association of specific
risk alleles should be provided.

CDKAL1 GWAS revealed relationships between several
SNPs in CDKAL1, encoding cyclin-dependent kinase 5 regu-
latory subunit associated protein 1-like 1 (CDKAL1), and type
2 diabetes risk [24]. Cyclin-dependent kinase 5, which shares
similarities with CDKAL1, is a serine/threonine protein
kinase, which contributes to the glucose-dependent regulation

Table 2 Genotypes associated with response to treatment of type 2 diabetes with GLP-1-RA

Gene Genetic variant Study population (n) Glucose-lowering treatment Clinical outcome Reference

GLP1R rs3765467 (G>A, C, T)
rs761386 (C>G, T)

36 with T2D CSII for 6 days followed by
combination with exenatide
(5 μg twice daily) for
3 days

rs761386 CT/TT genotypes: higher glucose
levels at 120 min (75 g OGTT; p=0.032)

Insulin and C-peptide (OGTT) were not
significantly different between the
genotypes after exenatide treatment

[35]

GLP1R rs6923761 (G>A, C) 90 with T2D and
obesity

Liraglutide (1.8 mg/day s.c.)
added to metformin for
14 weeks

Variant A allele carriers showed greater
decreases in BMI (−0.59 vs −1.69 kg/m2)
and fat mass (−0.59 vs −1.69 kg)

Weight reduction after liraglutidewas greater in
A allele carriers by 2.9 kg (95%CI 0.27,
5.64) in multiple regression analysis

[36]

GLP1R rs10305420 (C>T)
rs3765467 (G>A, C, T)

289 with T2D and
obesity

Exenatide 5 μg twice daily for
6 months

T allele (rs10305420) was associated with
smaller reductions in HbA1c

(−4.4 mmol/mol) and body weight
(−1.27 kg) after exenatide (6 months)

[37]

CNR1 rs1049353 (G>A) 86 with T2D and
obesity

Liraglutide (1.8 mg/day s.c.)
added to metformin or
sulfonylurea for 14 weeks

Before and after treatment, BMI, body weight,
fat mass and waist circumference were
higher in G vs A allele carriers

The decrease in basal glucose and HbA1c was
similar in both genotypes. In A allele
carriers, HOMA-IR decreased (7.6±8.8 at
baseline; 5.8±7.4 at 14 weeks)

[39]

TCF7L2 rs7903146 (C>G, T) 162 with T2D Exenatide for 8 weeks (n=56) Plasma glucose values were similar in CC and
CT/TT genotypes (meal tests) before and
after exenatide treatment

After exenatide, CT and TT (vs CC) carriers
demonstrated insulin reduction at
30–180 min during meal test (p<0.05)

[40]

SORCS1 rs1416406 (A>G, T) 101 with newly
diagnosed T2D

Exenatide 5 μg twice daily
(weeks 1–4) then 10 μg
twice daily (weeks 5–48)

rs1416406 was significantly associated with
PIR change (p<0.05) after adjustment for
age, sex and baseline BMI

HbA1c and PIR in linear regression: greater
reduction in PIR in GG genotype

[43]

CSII, continuous subcutaneous insulin infusion; T2D, type 2 diabetes
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of insulin secretion [25]. In individuals with type 2 diabetes
treated with DPP-4i, the HbA1c reduction after 6 months
varied according to two CDKAL1 SNPs (rs7754840, G>C,
intron variant; rs756992, A>G) [24]. The HbA1c decrease
was greater in people who carried at least one variant allele
in comparison with two copies of the common allele (for
rs7754840, GG 4.4 mmol/mol [0.4%], CG 5.5 mmol/mol
[0.5%] and CC 8.7 mmol/mol [0.8%], p = 0.02; for
rs7756992, AA 4.4 mmol/mol [0.4%], AG 5.5 mmol/mol
[0.5%] and GG 8.7 mmol/mol [0.8%], p = 0.01) [24]. The
differences persisted after adjusting for age, sex, BMI, diabe-
tes duration, baseline HbA1c and the number of concomitant
glucose-lowering drugs in a linear regression analysis [24].
Thus, people with CDKAL1 type 2 diabetes risk variants
showed a better glycaemic response to DPP-4i.

IL6 promoter region IL-6, derived from muscle cells during
exercise, was shown to enhance intestinal GLP-1 secretion in
animal models [26]. It has been hypothesised that genetic
variants that upregulate IL6 transcription might also increase
GLP-1 synthesis and secretion in humans [27]. In people with
type 2 diabetes, DPP-4i treatment response (3 months) was
defined as a ≥2.2 mmol/mol (0.2%) HbA1c decrease (about
70% responders) [27]. Two IL6 SNPs were then analysed
(rs1800796, intron variant; rs2097677) and multivariate anal-
ysis showed that the adjusted OR for DPP-4i non-response of
the two SNPs combined (rs1800796 G* and rs2097677 A* vs
CC-GG) was 0.45 (p = 0.07). After stratifying the population
into low (n = 149) and moderate/high (n = 167) levels of phys-
ical activity, the OR for each group was 1.58 (p = 0.62) and
0.15 (p < 0.01), respectively [27]. These data suggest that IL6
variants might contribute to an improved DPP-4i response in
people who are more physically active.

TCF7L2 Variation in the TCF7L2 gene has been associated
with an increased risk of type 2 diabetes [28]. There are sever-
al hypotheses as to how the TCF7L2 gene product, transcrip-
tion factor 7-like 2, exerts its effects on the gut, liver or pancre-
atic beta cells [28]. TCF7L2 variant alleles impact GLP-1-
induced insulin secretion, suggesting a functional defect in
pancreatic GLP-1 signalling [29]. After genotyping TCF7L2
variants in participants with type 2 diabetes undergoing phase
3 trials with 24 weeks of treatment with linagliptin, a smaller
decrease in HbA1c was observed in individuals with the
rs7903146 TT genotype (6.2 mmol/mol [0.57%]) compared
with other genotypes (9.0 mmol/mol [0.82%] for CC;
8.4 mmol/mol [0.77%] for CT; p = 0.02 for TT vs CC geno-
types) [30]. Thus, the TCF7L2 SNP rs7903146 may be asso-
ciated with lower response to incretins.

DPP4 DPP-4i bind to the dipeptidyl peptidase-4 (DPP-4)
enzyme to enhance GLP-1 activity [31]. The efficacy of
DPP-4i could be affected by DPP4 gene variants [31]. This
hypothesis was investigated in a small study comparing
people with type 2 diabetes receiving treatment with
sitagliptin (100 mg/day or 200 mg/day) with healthy control
individuals [32]. In regression analysis, DPP4 genotype
rs2909451 (intron variant) TT was associated with increased
short-term DPP-4 enzyme activity during sitagliptin treatment
in the whole sample (standardised regression coefficient,
0.19 nmol ml−1 min−1; p = 0.04) [32].

PNPLA3Variants in the PNPLA3 gene, encoding patatin-like
phospholipase 3 (PNPLA3), are related to increased plasma
levels of hepatic NEFA and triacylglycerols [33, 34]. A genet-
ic variant (rs738409) of PNPLA3 was associated with non-
alcoholic fatty liver disease (NAFLD) and its histological

Table 3 Genotypes associated with response to treatment of type 2 diabetes with SGLT2i

Gene Genetic variant Study population (n) Glucose-lowering treatment Clinical outcome Reference

SLC5A2 rs3116149 (G>A)
rs9934336 (G>A)
rs3813008 (G>A)
rs11646054 (G>A)
rs3116650 (G>A)

908 with T2D Empagliflozin 10 mg (n=603)
vs placebo (n=305)

No association between SNPs and
response to treatment with
empagliflozin (HbA1c, fasting
glucose, body weight, systolic BP)

[44]

PNPLA3 rs738409 (C>G, T) 80 with T2D and NAFLD Dapagliflozin 10 mg, n-3
carboxylic acid 4 g,
combination of both, or
placebo (RCT)

Combination treatment: reduction in
liver fat (PDFF) was greater for CG
and GG genotypes (relative change
−25.4%) than for the CC genotype
(−16.1%)

[46]

UGT1A9 rs72551330 (T>A, C) 764 with T2D, 397
healthy control
individuals

Canagliflozin 25–400 mg/day
(in T2D group)

Higher median dose-normalised
canagliflozin AUC in UGT1A9*3
allele carriers (ratio 1.26 [95% CI
1.08, 1.44])

[47]

UGT1A9 rs72551330 (T>A, C) 65 with T2D, 69 healthy
control individuals

Canagliflozin 50–300 mg/day Dose-normalised AUC for
canagliflozin was higher (by 45%)
in UGT1A9*3 allele carriers (n=4)

[48]

T2D, type 2 diabetes
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severity in GWAS [33]. In a small study of people with
biopsy-proven NAFLD and type 2 diabetes treated with
alogliptin (25 mg/day; median follow-up 33 months), partici-
pants with the rs738409 G allele showed a positive correlation
between temporal changes in HbA1c and aminotransferase
levels (CG/GG and alanine aminotransferase: r = 0.52; p =
0.001) [34]. In addition, in participants who lost weight, those
with CG and GG genotypes showed greater improvements in
total cholesterol and triacylglycerols, and similar improve-
ment in HbA1c [34]. Thus, the effects of alogliptin (and possi-
bly other DPP4i) on liver function in type 2 diabetes and
NAFLD may differ by PNPLA3 genotypes.

GLP-1 RA

GLP1R SNPs around the exon region of the GLP1R gene
were genotyped in a small sample of people with poorly
controlled type 2 diabetes, who received exenatide for 3 days
(5 μg twice daily) and were also treated with a continuous
subcutaneous insulin infusion [35]. The CT/TT genotypes of
rs761386 (intron variant) were related to higher glucose levels
at 120 min of a 75 g OGTT (p = 0.032). Insulin and C-peptide
throughout the OGTTwere not significantly different between
the genotypes. Unfortunately, data on the long-term effects, in
particular on HbA1c, are lacking.

Two further studies from Spain [36] and China [37]
explored the relationship betweenGLP1R variants and weight
loss in type 2 diabetes. The study from Spain included indi-
viduals with poorly controlled type 2 diabetes and who were
overweight, who began liraglutide treatment up to 1.8 mg/day
for 14 weeks [36]. The GLP1R rs6923761 (non-coding) A
allele (GA/AA vs GG) was associated with a 2.9 kg larger
weight reduction after liraglutide treatment in multivariable
analysis [36]. The decreases in basal glucose levels, HOMA-
IR and HbA1c were similar in both groups. In a hospital-based
Chinese study including obese individuals with poorly
controlled type 2 diabetes, the variant T allele of GLP1R
rs10305420 (amino acid change: Pro to Leu) was associated
with a smaller reduction in HbA1c (4.4 mmol/mol [0.4%]) and
body weight (−1.3 kg) after 6 months of exenatide treatment
[37]. It is unclear whether these genetic associations would be
of the same magnitude in people with type 2 diabetes who
were of normal body weight.

CNR1 The endocannabinoid system plays a role in appetite
and body-weight regulation [38]. The cannabinoid type 1
receptor, encoded by the CNR1 gene, is located in adipose
tissue and in several brain areas [38]. In obese people with
type 2 diabetes stratified by CNR1 genotypes (GA and AA
genotypes vs GG genotypes), glucose, HbA1c, insulin sensi-
tivity, BMI, body weight, waist circumference and fat mass
were measured before and after 14 weeks of liraglutide treat-
ment [39]. Among metabolic markers, insulin resistance was

found to decrease in individuals carrying the variant CNR1 A
allele. However, liraglutide therapy resulted in comparable
improvements of anthropometric measures and glycaemic
markers in all CNR1 genotypes [39].

TCF7L2 In a small pharmacogenetic study, individuals with
type 2 diabetes and the TCF7L2 rs7903146 CC genotype
were matched with individuals with CT and TT genotypes
and similar diabetes duration and BMI [40]. Participants
received a 500 kcal (2092 kJ) mixed-meal test and treatment
with exenatide for 8 weeks [40]. The rs7903146 (intron vari-
ant) T allele was associated with higher secretion of insulin,
proinsulin and C-peptide in response to the mixed meal [40].
After exenatide treatment, T allele carriers showed lower post-
prandial plasma insulin and C-peptide levels compared with
non-carriers. The data suggest that use of GLP-1 RA could
play a role in beta cell function in individuals with the
rs7903146 CT and TT genotypes. However, no difference
between genotype was observed for plasma glucose values
during the meal tests after exenatide treatment; the same was
true for HbA1c and body-weight reduction [40].

SORCS1 Sortilin related VPS10 domain containing receptor 1
(SORCS1) is expressed in the brain, heart, kidney and pancre-
atic islets, and in beta cell lines [41]. SORCS1 belongs to the
sortilin family of vacuolar protein sorting-10 domain-contain-
ing proteins and has been genetically linked to Alzheimer’s
disease [42]. SORCS1 haplotypes were associated with higher
fasting insulin levels and insulin secretion in non-diabetic
obese women but not in men or lean individuals [41]. In
persons with newly diagnosed type 2 diabetes treated with
exenatide for 48 weeks, stratifying for SORCS1 rs1416406
genotypes, revealed differences in HbA1c, glucose values
and beta cell function between the genotype groups (GG,
GA, AA) following treatment [43]. However, only the
proinsulin/insulin ratio (PIR) showed a greater reduction in
people with the GG genotype vs other genotypes and this
difference persisted after adjusting for age, sex and BMI in
regression analysis [43]. The reduced PIR suggests that people
with newly diagnosed type 2 diabetes and the rs1416406 GG
genotype might benefit from exenatide treatment.

SGLT2i

SLC5A2 The sodium–glucose cotransporter 2 (SGLT2)
protein, which contributes to renal glucose reabsorption, is
encoded by the SLC5A2 gene [44]. Several rare mutations of
this gene result in familial renal glucosuria [44]. Therefore,
variants in the SLC5A2 pose a promising target for pharma-
cogenetic research. So far, only one study has investigated the
association between SLC5A2 gene variants (intron variants)
and the glycaemic effects of SGLT2i therapy [44]. Between
five common gene variants, no clinically relevant differences
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in response to empagliflozin treatment after 24 weeks were
observed in type 2 diabetes [44]. Moreover, these variants
were not associated with diabetes-related metabolic traits in
people at increased risk of type 2 diabetes [44].

PNPLA3 PNPLA3 is expressed in liver and adipose tissue
and mediates triacylglycerol hydrolysis [45]. A PNPLA3 vari-
ant has been identified as a risk factor for steatohepatitis [45].
A 12 week randomised clinical trial investigated the effects of
a combination of dapagliflozin and n-3 carboxylic acids on the
hepatic proton density fat fraction (PDFF) in people with type
2 diabetes and NAFLD [46]. Baseline liver PDFF was lower
in individuals with the PNPLA3 rs738409 (p.Ile148Met) CC
genotype (median 17%) than in those with the CG and GG
genotype (20%). In response to the combination therapy, the
relative PDFF reduction was greater in individuals with the
CG and GG genotypes (relative change, −25%) than in those
with the CC genotype (−16%). The relative change in PDFF
observed following dapagliflozin monotherapy differed from
that seen with the combination therapy (CG and GG, +7%;
CC, −22%) [46].

UGT1A9 Canagliflozin is mainly metabolised by uridine
diphosphate-glucuronosyltransferase (UGT) 1A9 and
UGT2B4 into inactive glucuronides [47]. In vitro studies
suggested that UGT1A9 gene variants result in an alteration
of UGT enzymatic activity [47]. Therefore, variants in the
UGT genes could potentially influence the pharmacokinetics
of canagliflozin or other SGLT2i [47, 48]. A pharmacokinetic
model of canagliflozin based on data from 14 clinical trials
showed that carriers of the rareUGT1A9*3 allele showed 26%
higher median dose-normalised AUC values for canagliflozin,
indicating a better drug availability [47]. A smaller study
based on phase 1 clinical trials confirmed the role of UGT
genes in canagliflozin metabolism, with higher plasma
canagliflozin levels being observed in carriers of the
UGT2B4*2 genotype compared with non-carriers [48].
However, because of the small number of individuals with
this gene variant in those with diabetes these findings may
not be clinically relevant.

Summary of studies, and limitations

The small number of studies, thus far, that report associ-
ations between genetic variants and response to novel
glucose-lowering drug treatment have focused on
glycaemic response (e.g. HbA1c) and changes in body
weight. With respect to DPP-4i and GLP-1 RA, most
studies of gene variants have focused on the drug’s meta-
bolic pathways (e.g. variants of GLP1R) and variants of
genes involved in intestinal GLP-1 secretion (e.g.
KCNQ1). The few studies on GLP1R variants indicated
a reduced glycaemic response to treatment with both

DPP-4i and GLP-1 RA. Conflicting results for GLP1R
gene variants were found for body weight changes under
GLP-1 RA therapy. Other studies have examined SNPs in
genes that are implicated in the development of diabetes
by affecting pathophysiological defects such as beta cell
failure (e.g. TCF7L2 and CDKAL1). For these genes,
reductions in HbA1c in response to DPP-4i therapy have
been reported to be greater for CDKAL1 variants and
smaller for TCF7L2 variants.

SGLT2i reduce blood glucose concentrations via inhibition
of renal glucose reabsorption, a mechanism that is not related
to type 2 diabetes aetiology. Therefore, genetic variants relat-
ed to the development of diabetes are not likely to affect the
response to SGLT2i therapy. Most studies have focused on
examining genes affecting renal glucose reabsorption (e.g.
SLC5A2). However, the few data available indicate no clini-
cally relevant differences between SLC5A2 variants in
response to SGLT2i treatment. In addition, variants of genes
potentially involved in the pharmacokinetics of SGLT2i were
found to have no clinically relevant effects on therapeutic
response.

The relevance of the currently available pharmacoge-
netic studies is largely hampered by small genetic
effects, low sample sizes, limited statistical power, often
inadequate statistics (e.g. lack of gene–drug interactions
in models), inadequate account of confounders and
effects modifiers (e.g. obesity, comorbidity), limited
comparability due to different study designs, study
populations and definitions of study outcomes, and a
lack of replication studies. Therefore, more well-
designed studies with a sufficiently large sample size
and well-characterised diabetes phenotypes are required
to investigate and replicate the effect of genetic variants
on the metabolic response to novel glucose-lowering
drugs. A major limitation of the current studies is that
most findings have not been replicated. Currently, the
replication of results for relevant gene variants is more
important than producing new findings. When possible,
meta-analysis across studies should be undertaken to
provide robust evidence for associations.

This review also indicates that genetic studies on
drug response to DPP-4i, GLP-1 RA and SGLT2i in
type 2 diabetes have been mainly based on candidate
genes, derived from aetiological processes or drug path-
ways. Overall, the degree of insight provided by these
studies is rather limited. GWAS, on the other hand,
have the potential to provide novel insights, as these
studies make no assumptions about drug mechanisms
or underlying disease processes [1]. Only GWAS of
metformin have been reported to date [2, 49].

In conclusion, the amount and level of evidence of the current
research results are not sufficient to guide stratified prescription
use of novel glucose-lowering drugs in type 2 diabetes.
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Outlook

We provide an outlook on future perspectives of pharmaco-
genetics in type 2 diabetes. First, we indicate which novel
topics will likely turn out to be more important in pharmaco-
genetic studies of glucose-lowering drugs (e.g. the
microbiome composition and its effect on drug metabolism)
and then we elaborate on how the identification of distinct
subgroups of diabetes could advance pharmacogenetic
research. Finally, we add some lessons learnt frommonogenic
diabetes that can be applied to the field of pharmacogenetics
and we conclude by highlighting various aspects that may
advance the future of precision diabetology of type 2 diabetes.

Novel topics in pharmacogenetic studies

Genetic heterogeneity due to ethnic background may explain
why the associations between polymorphisms and therapy
response differ between populations. Furthermore, epigenetic
modifications that regulate how genes involved in the metabo-
lism of glucose-lowering drugs are expressed in different popu-
lations may also have contributed to heterogenous findings. It is
also worth noting that heritable DNA variants are only one
approach for identifying different responses to glucose-
lowering drugs. This approach should be complemented by other
analyses including targeted and non-targeted metabolomics and
proteomics. Artificial intelligence and machine learning algo-
rithms provide tools to analyse and gain insight into this vast
amount of data (computational diabetology). Furthermore, the
gut microbiome is known not only to play a role in metabolism
but also to modify certain drug effects (e.g. by altering drug
pharmacokinetics or even inactivating drugs) [50]. Thus, clinical
studies to investigate the impact of different microbiome compo-
sitions on response to, and side effects of, glucose-lowering drugs
are needed in order to advance personalised medicine. Finally,
another limitation of current pharmacogenetic studies in diabetes
is the implication of a single pathogenic gene, or a limited
number of pathogenic genes. Thus, studies only identify small
genomic regions that may contribute to the heterogeneity of drug
response. Yet, in complex disorders such as type 2 diabetes,
genetic heterogeneity of multiple different genomic regions is
the likely scenario. Deep phenotyping and genotyping
approaches are required to identify genetic networks involved
in drug response. Thus, pharmacogenetics, the application of a
single genetic variant to describe an alteration in drug effect,
needs to be extended to pharmacogenomics, a broader applica-
tion of the genome, to predict response to glucose-lowering
medications.

Subgroups of diabetes

Untangling the heterogeneity of type 2 diabetes will most
likely improve pharmacogenetic studies. For example, a

data-driven cluster analysis was able to identify five diabetes
subgroups with distinct phenotypes, risk of complications and
genetic associations [10, 11]. These subgroups were
comprised of individuals with predominately insulin deficien-
cy or with insulin resistance [10]. In turn, low beta cell func-
tion has been shown to be associated with reduced glycaemic
response to GLP-1 RA [51] and higher insulin resistance was
associated with reduced glycaemic response to DPP-4i [52].
Thus, reducing phenotypic heterogeneity by characterisation
of type 2 diabetes subgroups with predominately insulin defi-
ciency or insulin secretion may be a good starting point to
further study the associations between genetic markers and
glycaemic response to novel glucose-lowering drugs.

Lessons from monogenic diabetes

A strategy to advance pharmacogenetic progress in
diabetology is to reduce heterogeneity in patient popula-
tions with type 2 diabetes. This strategy has already been
proven successful for studies on drug effects in monogenic
diabetes, including MODY and neonatal diabetes [1]. The
most common cause of MODY are mutations in the gene
encoding hepatocyte nuclear factor 1α (HNF1A). A small,
randomised crossover trial demonstrated that people with
genetically defined HNF1A diabetes not only had a five-
fold greater glycaemic response to gliclazide (a sulfonyl-
urea) than to metformin therapy but also an almost four-
fold greater response to gliclazide than people with type 2
diabetes [53]. This dramatic pharmacogenetic finding has
resulted in a specific treatment algorithm for HNF1A
MODY [1]. Rare neonatal forms of diabetes that develop
within the first year of life are often caused by mutations
in the KCNJ11 gene, which encodes a subunit of the
pancreatic potassium channel that tightly regulates insulin
secretion by beta cells [54]. In individuals with diabetes
caused by KCNJ11 mutations the sensitivity of these
potassium channels was decreased, thereby reducing insu-
lin secretion in the presence of glucose. Sulfonylureas
have been shown to promote insulin secretion in these
individuals by closing the potassium channels and have
been proposed as a safe and more effective replacement
of insulin therapy [54].

Precision drug treatment

In the future, genetic information from individuals with
type 2 diabetes may be usefully combined with other
clinical markers to guide a stratified prescription of the
most effective glucose-lowering therapy for a particular
person [55]. Both single SNP and genetic scores may be
useful in this respect, as are non-genetic traits. An
example relevant to precision drug treatment is a recent
study showing that non-genetic markers of insulin
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resistance were related to glycaemic response to DPP-4i
[52]. In this cohort study from the UK, a subgroup
(22% of the study population) had type 2 diabetes and
were obese and had high triacylglycerol levels [52].
This metabolic subgroup showed both a reduced short-
term glycaemic response as well as a reduced long-term
efficacy of DPP-4i treatment. Interestingly, with respect
to GLP-1 RA there was no evidence of an association
between clinical markers of insulin resistance and either
6 month glycaemic effects or durability of response for
up to 3 years [52]. In the future, genetic information
may be combined with such clinical markers to guide
stratified drug prescription in type 2 diabetes.

Another important aspect of precision diabetology is
that the costs of genotyping are currently high but this
will most likely change in the future. Still, genotyping
costs need to be weighed against the costs of subopti-
mal glucose-lowering treatment over several months or
years. Therefore, there is a need to develop implemen-
tation and evaluation strategies to assess the cost-
effectiveness of pharmacogenetic information in diabetes
care compared with conventional treatment approaches.

The final question remains of how pharmacogenomic
results can be applied to the complex heterogeneous
disease that is type 2 diabetes. Most likely, the identi-
fication of distinct subtypes of type 2 diabetes will be
necessary before pharmacogenetic insights can be
successfully used for providing stratified prescriptions
of novel glucose-lowering drugs.
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